96 SOME GAMES ARE ALREADY NUMBERS

A SHORT SNORT DICTIONARY
It is much harder to do justice to SNORT positions, although I feel that

in fact SNORT has a much richer theory than COL. There are some inequality
and -equality rules like those for COL, but since they are less frequently
applicable swe do not give many. Perhaps the most valuable rule is that if
you can move in a node that is adjacent to every node not your own colour,

you should do so. Our abbreviated notation is explained in Chapters 10

and 15.
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'Perh.aps it is fortunate that positipns in SNQRT games tend to break
up rapidly, and that we can delete edges quning two nodes with the same
tint, so that in practice we need only tabulate the values of small positions.
ngl?l).' connected positions succumb easily to the above rule, so that in
fa.ct itis long chains that are hardest to analyse. The reader should have little
difficulty in finding the best move in actual play, even for quite large positions.
Larger COL and SNORT dictionaries will be found in Winning Ways.

CHAPTER 9

On Games and Numbers

And now there came both mist and snow,
And it grew wondrous cold:
And ice, mast-high, came floating by,
As green as emerald.
Samuel Taylor Coleridge,
The Ancient Mariner
We know that not all games are numbers, and that for example the game
* = {0]0} is not a number, since it is confused with 0. But since for every
positive number x, we have —x < * < x, and since we have the equality
* + * = 0, we can confidently handle all games whose values can be expressed

as sums of numbers and .
in dominoes, which is equivalent to the position

But the position

+—+ in SNORT, has the rather worse value {1|—1}. This game G is strictly
less than all numbers greater than 1, strictly greater than all numbers less
than —1, and confused with all numbers between —1 and 1 inclusive. But
fortunately once again, we have G + G = 0, so that at least the situation
does not get more complicated when we consider multiples of G.

Now in general we can get a lot of information about an arbitrary game
G by comparing it with all numbers. The game G will define two “Dedekind
sections” in the Class of all numbers (the Left and Right values), and any
number between these two sections will be confused with G, while numbers
above the greatest or below the least will be comparable with G in the
appropriate sense.

This information tells us between which limits G lies, but there is also a
mean value of G, which tells us where its centre of mass lies. We shall give
algorithms for computing the Left, Right, and mean values in this Chapter.

Unfortunately, there is a large part of the argument that is inapplicable
to the general infinite game. We adopt the convention of considering only
short games in detail from now on, until Chapter 16, when we consider the
differences between short games and long ones. A short game is one which has
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98 ON GAMES AND NUMBERS

only finitely many positions in all. But we always explicitly add this adjective
to the hypotheses of any theorem which needs it, and often add comments
on general games later.

THEOREM 55. (The Archimedean principle.) For any short game G, there is
some integer n with —n < G < n.

[For general G, there is some ordinal a with —a < G < o.]

Proof. Take n greater than the total number of positions in G, and consider
playing in G + n. Left can win -this by just decreasing n by 1 each time he
moves, waiting for Right to run himself down in G. Since G + n > 0, we
have G > —n, and similarly G < n.

[In general we give an inductive proof, taking for o the least ordinal greater
than all a;, ag.]

. THE LEFT AND RIGHT VALUES

i We need to kngquwhich numbers x have x > G, and which y have y < G.
! These conditions define two Dedekind sections in the Class of all numbers,
called the Left section L(G) and the Right section R(G), as follows.

A number x is put into the right-hand part of L(G) iff x > G, and so in the
left-hand part if x < G, while y is put into the left part of R(G)if y < G, the
right part if y > G.

Inparticular, if z is any number, L(z) has for its left part all numbers strictly
{ess than z, z and greater numbers forming its right part, while R(z) has z
and smaller numbers to its left, greater numbers to its right.

86 L(2) and R(z) are the'sections just to the.left and right of z, respectively.
For a more general game G,-if L(G) is one of the two sections L(x), R(x) for
some number x, we call x the Left value Ly(G) of G, while y is called the
Right value Ry(G) if R(G) = L(y) ‘or R(y).

We introduce the obvidus order on sections (S < T if some number is
1 to the right of S-and the left of T), so that'L(z) < R(2) for each number z. -
[ | Bt for other games, the inequality goes the other way, for if L(G) <'x < R(G),

' we have x < G < x, and so G = x. How do we compute these sections, in
geéneral?

THEOREM 56. We have L(G) = max R(G*) = L, say,
GL

and R(G) = min L(G®) = R, say
GR

unless L < R, when G is a nuimber, namely the simplest number x satisfying
L < x < Rywhen we have'L(G) = L(x), R(G) = R(x).
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[For general G, we must replace max and min by sup and inf.]

Proof. We tackle the case L < R first. If x is the simplest number between,

then
xt <L <x<R<xR

so the moves from G — x to G — x%, G — x® are no good. But neither, in
view of ‘the definition of L and R, are those to G* — x and G® — x, so that
G — x, having no good move for either player, is a zero game.

In the case that L > R, the moves to G* — x, G® — x are bad for the
same reason, if x > L, x < R, respectively. So we need only consider, if
x > L, moves to G — xR, and if x < R, moves to G — x~ But these fail,
since we have x® > x > L in the first case, and x* < x < R in the second.

STOPPING POSITIONS

When the value of a position is a number, neither player will wish to move
in it, for any move by Left will decrease the value, and any move by Right
increase it. We can be kind to the players and agree to stop the game (possibly
before its real end) as,soon as the value becomes a number, and score positive
values in favour of Left, negative ones in favour of Right. So we shall call
positiotis of G which are equivalent to numbers the stopping positions of G.

Now Left will naturally prefer to arrange that when the game stops in
this. sense, its value ‘will be as large as possible, while Right will prefer to
make it small. If they play-in this-way, the value.of the game when its stops
will be a perfectly definite number which depends only on who starts.
Moreover, each player will prefer that when the game stops it is his opponent
who is about to move (and so do himself some harm).

Now we can describe the situation by saying that if Left starts, the game
will end at some number x, with some player P (Left or Right) about to play,
by the equality L(G) = P(x), and. the corresponding assertion that if Right
starts the game will end at a number y with Q about to play, by the equality
R(G) = Q(y). This is because Theorem 56 tells us that the Left and Right
sections of G are computed exactly as we should compute the numbers x and
¥, and locate the players P and Q.

Summary. We can determine exactly what are the order relations between
a game G and all numbets by simply playing'G intelligently until it stops and
then noting the value and who is about to play.

Examples

The game {5|4,7}. In this game, if Left starts, the game will end at 5,
with Right to play, and so L(G) = R(5), the section “just to the right” of 5.
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If Right starts, the game ends with Left to play, at the number 4, if Right has
any sense, and so R(G) = L(4), just to the left of 4. We conclude that G is
strictly less than all numbers greater than 5, strictly greater than all numbers
less than 4, and confused with all numbers between 4 and 5 inclusive,

The .game {9|{7]2}}. Here L(G) = R(9), the argument being as before,
but;we have R(G) = R(7), for if Rightstarts, moving to {7 |2}, Left continues
the game for one more move, before it stops at value 7 with Right to play.
So the game is less than numbers greater than 9, greater than numbers less
than or equal to 7, and confused with numbers between 7 (exclusive) and
9 (inclusive),

The game {{3| 0} | {3|9}}. Here if Left starts we arrive at L(0), while if
Right starts we stop at R(). But these are not the Left and Right sections of
G, for we have R(2) > L(0). So in this case, Gis a number, namely the simplest
number x satisfying L(0) < x < R@G), namely 0 itself. So in fact we have
L(G) = L(0), R(G) = R(0), G = 0.

If we had replaced the position O here by-4, the answer would have been
1, if-by —1, the answer would still have been 0; and if by +1, we would no
longer have had a number, and L(G) = L(1), R(G) = R®).

Moral. When computing Left and Right values, look out for the inequality

L.< R between Left and Right sections.

The games * and 1. Since * = {0|0}, we have L(s) = R(0), R(») = L(0).
We need not beware, since L is safely greater than R, and we conclude that
» is greater than all negative numbers, less than all positive numbers, but
confused with 0. Again, since t = {0| {0]0}}, we find L(1) = R(0), R(}) =
R(0), and so 1 is strictly positive (as we knew) but-strictly less than all positive
numbers. (Note that for 1, we had L = R, so almost had to beware, etc. But
not quite!)

So these games are-infinitesimal in a totally new sense, for we have, for
instance, ‘

1 1 1

N 0<f<w, 0<T<8°, 0<T<§ﬁ,...

(2‘“" being identified with the smallest ordinal having that cardinal), and so
on. (Informally, 0 < t < 1/On.).Rather than invent some long adjective to
qualify the word infinitesimal in this sense, we simply call such games small.
So a smail game is any game G for which we have —x < G < x for every
possible positive number x. Some small games (like 1) are positive, others
(like ]) negative, and still others (like *) are fuzzy, while of course zero is itself
. small game. So the small World is indeed a microcosm of the larger one.
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THE ALL SMALL GAMES

We call a game all small if all its positions are small games.

THEOREM 57. G is all small if and only if every stopping position of G is zero.

Proof. Jf some position of G were a non-zero number, it would be a non-
small position of G. So we need only prove that if all the stopping positions
are zero, then 8o are the Left and Right values. This follows immediately
from Theorem 56.

Note. There are positive games smaller than all positive all small games.
Orne such is the value {0|{0| —2}} of the domino position . The

multiples of T are among the largest of all small games.

- THE MEAN VALUE THEOREM

We shall prove that for every short game G there is a real number m, called
the mean value m(G), such that for every finite n, the game nG is “nearly
equal” to nm. This result, for a slightly different class of games, was first
conjectured by J. Milnor, and first proved for that class by O. Hanner. A
simplified proof, for the Class of games considered here, was given by Elwyn
Berlekamp. All these proofs depend on a fairly complicated analysis that
yields a strategy for playing nG so as to énsure a stopping value near the
desired mean value nm,

The first proof given here is the remarkable “1-line” proof found by Simon
Norton, which proves the existence of the mean value and finds good bounds
for nG, but which does not enable us to compute this value! Then we shall
give another proof, found by Norton and the author jointly, which gives us
an easy algorithm for computing the mean value and much other information.
This new proof formalises and simplifies an idea whose germ is found in the
papers of Milnor and Hanner but which was discovered only after a com-
pletely independent analysis.

We start with some obvious inequalities about the Left and Right values
Ly(G), Ry(G). Recall “that these are the numbers next to the sections L(G)

and R(G).

THEOREM 58. We have

Ro(G) + Ry(H) < Ry(G + H) < Ry(G) + Lo(H) < L(G + H)

‘ < Lo(G) + Lo(H).
Proof. These-are obvious in terms of strategies. Thus Left, playing second
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in G + H, can guarantee a stopping value of af least'Ry(G) + Ry(H) by reply-
ing always in the component Right moves in, and following in that component
his strategy yielding its Right value. The others can be proved similarly, but
arg in fact equivalent tq this one. For instance

Ry(G) = Ry(G + H — H) 2 Ry(G + H) + Ry(—H) =
THEOREM 59, YThe “meqn value theorem,) For every short game G there is a
nitmber. m(G) and a number t (both real) such that
L nm(G) — t < nG < nm(G) + ¢
for all finite integers n.

Proof. -After the previous theorem, it will suffice to prove that Ly(nG) and
Ry(nG). have a difference bounded independently of the number n, for then
(1/m)Ro(nG) and (1/n)Ly(nG) must converge to a common value m(G), since we
have the inequalities

Ry(G + H) — L.(H).

: Ry(G) & <~— o(nG) < Lo(nG> < Ly(G).

Byt e have

v R(nG) < L(nG) = R((n —-1)G + GY < R(nG) + L(G — GY)

| S . .
for the G* for which the max in Theorem 56 is attained.

Note.The proofshows also that the number ¢is bounded by max Ly(G — G%),-

and s1m11arly, bouhded by max Ly(G® — G). These inequalities will be im-

proved'later.

THE TEMPERATURE THEORY

we can‘régard "the game G as vibrating between its Right and Left values
in-Such a-way that on-average-its centre’ of mass is at m(G). So in order to
compute m(G) we must find some way of cooling it:down so as to quench
these-vibrations,and perhaps'if we cool it Sufficiently far, it will cease to
vibrate at all;and Jreeze at m(G).

Now the heat in a game comes largely from the excitement of playing it—
if there are positions in G from which each player can gain tremendously
by making a suitable move, then G will naturally be very ‘heated! So for
instance the game. 0{1000,| — 1000} is a very hot pesition, for although its
mean value is zero, the player who moves first in it stands to gain 1000. On
the hatural scale, the temperature of this game is 1000°.

‘On this theory, we should be able to cool G through a témperature of t°
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by making it just that much less exciting to move in each position of G that
has not already stopped. So we shall define a new game G, (G cooled by t) by
charging each player a fee of ¢ every time he makes a move, until the value
becomes a number. A formal definition is complicated slightly by the need to
detect when this has taken place.

Definition. Jf G is a short game, and ¢ a real number > 0, then we define the

cooled game G, by the formula

G, = {G4—t|G" + 1},
unless possibly this formula defines a number (which it will for all sufficiently
large t). For the smallest values of ¢ for which this happens, the number
turns out to be constant (that is, independent of ), and we define G, to be
this constant number for all larger ¢.

[ The reader will see that our definition of G, contains an assertion, and so
does not really count as a definitior until this assertion is verified to hold for
all short G. The reason the theory does not work for general games G is that
this assertion fails to hold for certain long games G.]

To see how the definition works, we treat the case G = {4]1}, supposmg it
already established that 4 =4, 1, =1 for all ¥. Then our formula glves

{4 —t|1+1t} = G(t) unless perhaps whér G(t) is'a number, when. .
When is G(t) a number? Obv10usly when ¢ exceeds 13. What number is G(t)"
The answer to thxs question depends on t,and in fact we have

Git)=2forld <t g2
2 for2 <t<g3
1 for3 <t<g4
0 ford <t

So as the definition asserts, G(t) is a constant number (21) for all the smallest
numbers ¢ for which it is a number (namely the numbers ¢ with 13 < ¢ < 2),
and so we have G, = {4 —t|1 + ¢} for 0 <t <14 and G, _2 for all

larger .
We define the sections L(G) and R/(G) to be L(G,) and R(G).

THEOREM 60. For all short games G and real numbers t > 0, we have
L(G) = max R(GY) — t = L, say,
and
R(G) = min L{G®) + t = R,, say,

unless possibly L, < R,. In this latter case, G, is a number x, namely the simplest
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number between L, and R, for all small enough u with L, < R, and we then have

L(G) = L(x), R(G) = R(x).
Proof. This follows immediately on applying Theorem 56 to G, For the
moment, wé are continuing to-suppose that G, is well-defined.

THE THERMOGRAPH OF G

We find it convenient to describe the various numbers associated with G
on a diagram. The Left options of ‘the -G with which we are concerned will
usually be greater, than the-Right ones, so we shall reverse the pormal con-
vention and put positive values on the left, and ‘negative; ones on the right.
(This happy, convention has, various other advantages which, will appear
gradually,) The temperature scale is vertical, and at height ¢ we indjcate the
Left and Right values of G,, which define the Left and Right boundaries of the
thermograph of G. (We eli'e indebted to, Elwyn Berlekamp ‘for, this snappy
substitute for oyr own phrase “thermal diagram”.)

As our example, we take the game G = {{7|’5} | {4|1}}. The calculation
of the thermal properties, of this game is iflusgrated in Fig 15, the game itself
being drawn below its thermograph: Since the games 7, 5,’4 and 1 are already
numbers, they remain constant when caoled, by agbitrary t, so that their
thermographs are vertical lines above the appropriate numbers..

Now the Left boundary L(H) for the game H = {7|5} is obtained, at
any fate until H, becomes a number, by subtracting ¢ from the Right boundary
of the game 7. Since this is vertical, and subtraction corresponds to moving

N a .
positive 7 negative
values . values

F1G. 15. Computing thermographs.
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right in the diagram, this gives a line starting at 7 and moving diagonally
up and right. Similarly the Left boundary is a line starting at 5 and initially
moving diagonally up and left. But since these lines meet at a height of 1
above the number 6, H, will be the constant number 6 for all ¢ larger than 1,
and the Left and Right boundaries will be vertical above this point.

So the thermograph of H is the pyramid /7, 5\\—that is to say, an isosceles
right-angled triangle with hypotenuse on this interval, except that, like all
thermal diagrams, it has a mast on top. The Right boundary of this diagram
consists of the right side of the triangle together with the mast.

In a similar way, the game K = {41} yields the pyramid /4, 1\, with
a mast which starts at a height of 14 above the point 2. Tts Left boundary is
the left side of this pyramid together with the mast. Now we compute
L(G) = R(H) —t, R(G) = LK)+t (until G, becomes a number) by
pushing the Right boundary of H still further right, and the Left boundary of
K still further left. Applied to the Right boundary of H this yields a line
starting at 5 and travelling vertically upwards until ¢ = 1, then diagonally
right and up thereafter. From the Left boundary of K we get-a line vertical
till z = 13, then diagonally up and left.

These lines meet at a height ¢ = 13 directly above the value 44, and so they
define the Left and Right boundaries of G below this point, these boundaries
above this point being vertical. So the diagram for G is a lop-sided “house”
with a mast.

When we consider the implications of this procedure for the general short
game G, we obtain:

THEOREM 61. For any short game G, the thermograph is a region whose
Left boundary is a line proceeding either vertically or diagonally up and right in
stretches, the Right boundary being in stretches vertical or diagonal up and left.
Beyond some point, both boundaries coincide in a single vertical line (the mast).
The coordinates of all cornets in the diagram are dyadic rationals.

Proof. This requires only the obsérvation that on subtracting ¢ from a line
which is vertical or diagonal up-and-left we obtain one correspondingly
diagonal up-and-right or ‘vertical, and that two such lines aiming towards
each other must meet, at a point whose coordinates can be found with a single
division by 2.

The proof of the theorem assures us at last that the definition of G, has
the properties presupposed in it, and incidentally makes Theorem 60 an
honest theorem.

Now we ask about the corresponding sections L(G,) and R(G,). On which
side are they of the numbers near to them?

THEOREM 62. (See Fig. 16). The sections L(G) and R(G) are “just inside”
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the boundary of the diagram on vertical stretches, “just outside” on diagonal’

stretches. At-points of the mast above its foot, L(G )is-to the right of R(G)) i the
diagram; that-is to say, L(G,) ‘< R(G,). At corners of the diagram the sections
behave in the samé way ds at immediately smaller values of t. (So their'behaviour

is “continuous downwards”s)
e 29

. G G, -t
Gon+tl. L(G) © R(G) @ R

) F1G. 16. The left and-right sections of G,are indicated by the dashed lines. Note how they cross the

firm lines at corners, and cross each other at the foot of the mast. This behaviour is typical

Proof. These properties are preserved in the passage from the diagrams for
G* and G® to that for G.

Now Theorem 62 makes it natural to prolong the boundaries just a little
way downward below the line ¢ = 0. These prolongatiens are to be vertical
when the corresponding section at ¢ =0 is just inside the thermograph
diagram, and diagonally “outwards™ when it is just outside. When we do this
(as we shall), we read off the natute of the'sections for t = 0 from the diagram
as well, The rules for computing these: prolongations are the obvious exten-
sions of the rules for the rest of the diagram, and we shall say no more about
them. The reader who examines Figs 15, and 16 closely will see that these
prolongations were already present.

THEOREM 63. G.> x implies G, > x

x+G),=x+G,
(x =G, =x—-0G,
for all short games G and dyadic rationals x.

Proof. Obvious from the properties and construction of thermographs.
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THEOREM 64. (G + H), = G, + H, for short G, H.

Proof. If G, H, or G + H is equal to a number X, this follows from Theorem
63. Otherwise, we can use the inductive definitions of G, H,, (G + H), to
give a I-line proof:

G +H, ={G4~t+H,G +H—t|GR+1t+ H,,G, + H + t}
= {(G + B|(G + B} = (G + H),

THEOREM 65. If G > H, then G, 2 H,. In particular, from G = H, we can

deduce G, = H,.

Proof. We have G > H iff G — H > 0, so this theorem follows from the
previous one.

Note. The contrary possibility that the value of G, might depend on the
form of G makes Theorems 63 and 64 slightly more subtle than they appeared
at first sight. But all is now well.

Definition. We write G_, for the ultimate value of G,, and ¢, for the value of ¢
beyond which L(G,) = L(G ), t for the value beyond which R(G,) = R(G,)-
The numbers ¢, and t,, are called respectively the Left and Right temperatures
of G, and their maximum is just the temperature (G) of G. See Fig. 16.

THEOREM 66. G, is none other than the mean value m(G) of G. (From now on,
we use the new notation G.) We have the inequalities
L(G) < L(G) < L(G) +t
R(G) — t < R(G) £ R(G)
(G + H) < max (¢(G), t(H))
(and similar inequalities with t(G) replaced by t,(G), t o(G)), and also the equalities
t,(G) = tp(—G), %G) = t(—G),
and the “cooling equality”
(Gt)u = Gt+u‘
Proof. The first statement follows from Theorem 64 and the facts that
L(G) < L(G), R(G) < R(G)), which, like the remaining inequalities of the
next two lines follow from the assertions about the slopes,of the Left and

Right boundaries. The third inequality is proved as follows: since for
t > t(G), t(H) we have G, = G, H, = H_, for such't we have

(G + H), = G, + H,
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a number. So such ¢ are also greater than t(G + H). The inequalities about
—G are qbvioys. So we are left with the cooling equality, which has a 1-line
inductive proof.

This theorem implies in particular that we obtain the thermograph for
G, by submerging that for G tg the depth ¢ (see Fig. 17). In other words, the
way we cool a game is by pouring cold water on it!

t t

V

7 [ I

. F1G. 17. How to cool a game by pouring water on it.
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“Thermography.” 'has been much extended and generalised by Elwyn
Berlekamp and- his .co-workers,» who have applied it to “Go” and other tradi-
tional games in the following works:
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Inst., Berkeley CA, ISSN 1075-4946, 1996.
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LCS/TR-348, MIT Lab. for Comput. Sci., Cambridge MA.

CHAPTER 10

Simplifying Games

You boil it in sawdust : you salt it in glue:
You condense it with locusts and tape:
Still keeping one principal object in view —
To preserve its symmetrical shape.
Lewis Carroll, “The Hunting of the Snark”

One quite valuable way to simplify games is to simplify our notation for
them! (This is more important than it might seem, because even with the
best will in the world, the names of games can get inordinately long) So
we first present some useful abbreviations.

We omit the curly brackets round games whenever this is possible without
too much confusion—so for instance we shall write 4, B | C for the game
{4, B| C}. Next, we need some way of distinguishing between {{4 | B} | C}
and {4 | {B| C}}, and so we introduce || as 4 ‘stronger* separator than }, when
these games become A4 | B|| C.and 4 || B| C respectively..(4 || B| C may be
pronounced “A slashes B slash C?’) Thus the game we used as an example for
temperature theory would now be called 7| 5 || 4| 1. Sometimes it is handy to
introduce triple slashes |||, but usually we can get along quite happily with
judicious use of brackets to supplement the above conventions.

The initial positions of many games are of the form

{4,B,C,...| -4, —-B, —C,...}

being symmetrical as regards Left and Right. So we introduce the abbrevia-
tion +(4, B, C,...) for this game. In particular, the notation +G will mean
{G| —G}. Note that this will prevent us in future from using # to denote'an
ambiguous sign, so that the phrase “+x or —x” will appear more cominonly
than usual from now on. Finally, there are many positions of the form

{A4,B,C,...|4,B,C,...}
in which the moves for Left and Right are identical, rather than symmetrical.
109
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110 SIMPLIFYING GAMES

We shall use
{4,B,C,...}

as an abbreviation for this game.

Some other notational conventions for particular games will be introduced
in our Chapter 15. A fairly compleic dictionary is given at the end of the
book.

However, the real simplifications we.have in mind concern the form of G
rather than its name. The main problem is to see how we can simplify the
Jorm of a given game without affecting its value. We first discuss some modi-
fications which might change the value, but in a predictable way.

THEOREM 67. The value of G is unaltered or increased when we
(i) increase any G* or GR, .

(i) remove some GR or add a new G%,

(iii) replace the G® by.the KX, for any.game K > G

Proof. Let H be the game obtained by so modifying G. Then in the game
H — G itis easy to check that Right has'no good first move.

Informally, it is even more obvious that tHése modifications are in Left’s
favour, for giving him new moves or prohibifing certain moves for Right will
not harm Left. These principles are used repeatedly in analysing individual
gaies, often-in very much more general formis.

3
DOMINATED AND REVERSIBLE OPTIONS

Suppose two different Left options of G are comparable with each other,

say G1* < G, Then we say G is dominated by G™, since Left will plainly:

regard the latter as 'thi¢ better move. Similarly, if G**'> G® (note the reversed
inequality) we call. GR* dominated by G*.

Now supposé instéad that the Left optiérd G has itself a Right option
G*oRo say, for which we Have the ingquality GLoRo* G. Then we say that the
move from G to G™° is a reversible move, being reversible through G
Similarly a Right option G: of G is reversible (through G®:*) if and only if it
has some Left option G®:** > G. It turns._out that whenever ong¢ player
(Left, say) makes a reversible move, his opponent mlght as well reverse it
(for he i improves on the original position by so doing). So instegd of moving
from G to G, Left mlght as well move straight from G to some G-oRe: A
formal version of this result is part of the next t{leorem

THEOREM 68, The following changes do not affect the value of G.
(i) inserting as a new Left option any A < G, or as a new Right option any
Bi> G.

THE SIMPLEST FORM OF A SHORT GAME 111

(ii) Deleting any dominated option
(i) If G* is reversible through GoRo, replacing G*° as a Left option of G
by all the Left options GLoRoL of GLoRo,

(iv) If G*t is reversible through G™“', similarly replacing G*' by all the
GR,L R

Proof. Because of the importance of this theorem, we give a more detailed
proof. Suppose first that 4 <1I G, and let: H = {G~, 4| GX} be the modified
game in (i). Then in H — G the moves from H to G* G® have as counters
those from —G to —G%, —G®, and conversely, and the move from H to 4
yields the position A — G <110 by assumption. So there is no good move in
H — G, whence H = G.

Part (i) now follows, for if G** is dominated by G, and H denotes G with
G** deleted, we have GX' < Glo<i H, and so the insertion of G will not
affect the value of H. Recall the fact that for any game G and any G, G¥
we have G* <11 G <1 GR, for from the difference G — G* or GR — G, Left
can plainly move to 0. (This theorem is part of Theorem O of part 0!)

Part (iii) is the most important and léast obvious part. Let us write
G = {G™, G¥ | G®}, H = {G R .G | GR}, where G* denotes the typical
Left option other than G™ of.G. Now consider the difference

H — G = {GloRoL G| G’} + {-G" | =G¥, —G"}.

The moves from H to G* of, G® and from —G to ~G~, — GR counter each
other, so we need only considér those from H'to GloRol and from G to
~ G*o. The first of these is shown to be bad by

GLoRel o GoRo < G,

and the second is countered by the move from — GL° to — GL°Ro_ after which
Right is to move in the position H — G*°Ro, His moves from — G%oRo to
— GFoRol have counters in H, so he must move from H to GR. But this is a
bad move, since G* — GX®o > GR _ G > 0.

Part (iv) follows by symmetry.

THE SIMPLEST FORM OF A SHORT GAME

Now let.G be a short game. We aim to find the simplest form of G. By induc-
tion, we can suppose that each game G%, G® has already been put_into sim-
plest form, if we like. In any case, we proceed as follows—eliminate from G
any option which is dominated by some other option, and then replace any
reversible option G or G®'.by the corresponding smaller positiops GLoRol
or GRi LR respectively. Repeat, if necessary, until no option of G is dominated
or reversible.

g e e o e




bl
T i B

ey

ST

e

-

12 SIMPLIFYING GAMES

THEOREM 69. Suppose that G and H (not necessarily short) have neither
dominated nor reversible options. Then G and H are equal if and only if each
Left or Right option of either is equal to a corresponding option (Left or
Right respectively) of the other.

Proof. Suppose G = H, and consider playing G — H. The move for Right
to-G® — H must have a replyfor Left, say to either G** — H or G® — HR..
The former cas is impossible, for it implies GR- > H'= G, so that GR was
reversible in G. So we have proved that for each G® there is'some H®R with
G® > HR Since similarly éach H® > sonie G* -and neither game has domi-
nated options, we must in fact have each G® = some H® and conversely.
Similar statements hold for th‘e Left options.

¢

This theorem assures us that ¢ach short game has a unique simplest form.
We shall now discuss some examples.,

Examples. The position {T | 1}. We know already that
=it =tr1+e

obviously greater than « = TR’. So T is reversible through » as a Left option,
and can therefore be replaced by #- = 0. So we have {1 |1} = {0] 1}. Since
there is no 0%, 0 cannot be reversible in-this (indeed, O can never be reversible
in any game), and since {0 |1} is pos1t1ve (Left can win, Right can’t), 1 is not
reversible.as 3 Right option. So {t|1} = {0| 1} in simplest form.

(Recall that 1 is the game {0{ *}, where * = {0] 0}.)

The game x | y. Let x and y bé ndmbers, and consider the game x | y. Then
if x < y, this is the simplest number between x and y, so we shall consider the
contrary case x > y. Then plainly the game x | v has no dominated options.
Moreover, its thermograph is the' pyramid <x, ¥\, 4nd so x|y determines,
the numbers x and y. It must therefore be in simplest form, for if the option
y (say) were-reversible,-we should have x |y = x| y® or {x|}, which games
have different thermographs.

Now we assert that for any number z, we have (x | WH+z=(x+z|y+z)

This is because in the difference
XN +z+(=y - [(-x -2

the nfoves not in z have exatt counters, while the move for Right (say)
from z t6 z® is-countéred by Left’s move to —y — z, since by the thermo-:
graph, we have’x|y > y + (z — z).

This kind of translation invariance allows us to normalise x | y to the form
u =+ v, where u = 4(x + y), v-= 4(x — y). Of-course it holds only for x > y,
and shows that in this region, x | y exhibits a strikingly continuous behaviour«:
for all real numbers x and y. o
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FIG. 18. The game x| y. Note: Poinfs on boundaries here behave similarly to the points just
South-East ( \) of them.

Thegamex + a+ b + ... & k. Letx,a,b,...,kbenumbers. Since +tisits
own negative, and is zero if t < 0, we can suppose thata>b>c>...>k=0.
Then the thermograph of +a+ b is sketched in Fig. 19. This shows that
—a+ b < ta+ b < +a — b. But this shows us that in the game

tatb={atbh ta+b|-atb ta-b}

a a—-b 0 —a+b —-a

F1G. 19. Thermographsof + a+ bandx+a+ b +... + k
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114 SIMPLIFYING GAMES

the options +a + b and +a — b are dominated, for the difference between
the two options on either Side is just that between +a + b and a — b. So in
fact +a+b={atb|—a+b}, for since we know the simplest form
{a+b|a — b} of a +b, we can see that this option is not reversible. In a
similar way, we find that the simplest formof x + a+ b +... +kis

{xj—aib_—t...iklx—aibi—...i—k}

and that its thermograph is as shown.

Of course this uses the orderinga > b > ... > k,and is entirely concordant
with experience and expectations For since the game +a represents an
advantage of a move to the first player to move in it, when playing a sum of
such games, the first player will take that with the largest g, then his opponent
will take the next largest, and so on. In particular, the Left value will be
x+a—-b+c~—...,andthe Right valuex —a+b—=c +....

In practice it is often simpler not to normalise games x|y to the form
u + v, but the rules-still apply—in a sum of such games one should always
move in that with the largest diameter x — . (The diameter as here defined is
twice the temperature of this game)

DOMINO POSITIONS AND PROPOSITIONS

We return to the game with dominoes discussed in Chapter 7. To avoid
pages full of little squares, we represent positions by graphs in which nodes
represent squares, and edges join nodes representing adjacent squares.
(Compare out’coniventions for COL and SNORT.) Itt this form, Left’s move
is to remove two nodes joined by a vertical edge, while Right removes a pair
of nodes joined by a horizontal edge.

Note that fhe game collld be played on any graph in which two kinds of
edges are by definition c¢alled +horizontal and vertical, but the addition of
new such graphs does not'seem to maké the game'any more interesting.
Similar comments aré often appli¢ablé to' other games Wwe shall discuss.

We attach at the end of the chapter a dictionary for dominoes like those for
COL and SNORT. To show how the dictionary was prepared, we discuss in
detail some of the results, and some particular positions. Most of the results
referring to general positions are due to Norton.

0. A graph like <@’}j (for instance) has the same value as the correspond-

ing graph@?:kI . (For the possible moves are in one-to-one cor-

respondence.)

DOMINO POSITIONS AND PROPOSITIONS 115

1. A position like has the same value as @—@ (For the

two moves for Vertical (Left) through the central node are equivalent,)

2. If we delete a horizontal edge or introduce a new vertical edge, the
value is unaltered or increased. (For these cannot harm Left or help

Right.)

3. @—-+ .—@g@_._@ . (For the linking harms only Right.)

4. If the starred edge in @1' can be deleted without affecting the value of
this position, tlen the same holds of the starred edge in .

(This edge is called explosive.) (From the inequalities

@——<BD<@ ~B-@— —~D<C @)

Now we discuss some particular positions.
The position | ]we have already discussed in Chapter 7, where it appeared

as . Since the players have essentially unique moves, its value is plainly

{1] =1} = £ 1. Now the position T™? has the same value, for the additional

move for Left is to ,_I (value %) which is dominated by the move to 1. This
shows that the new edge i§ explosive, and so we have for instance

@E:é "

In general, let us note that if Left has at most n + 1 moves, even supposing
the collaboration of Right, and he actually has a first move leading .to a
position of value n, then this move dominates all others. In the position
] , for instance, Left’s move to I + I = 2 is dominant, and nght has
essentlally only one move, to so that we have I:I] =2|-4=31+14
(The form 2| —4 is better in practlce, 3 + 1% ‘in theory’.) So this posmon has

mean value 2. The two moves for Left (say) are equivalent in I , SO this

position has value {—1|1} = 0. This result enables us to say that :I:I has

also the value 2| —4, and so the new edge in it is explosive.

. (We should

We are now in a position to evaluate the 3 x 3 square
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obviously describe sizes in terms of nodes here, since these correspond to I '
I

\ b |fd c le b If
squares in the original game.) Jh the position { {, the two moves for Left i
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Now it js trivial that —2'< G (add 2 to .G and see how easy it is to win), I
so'the Left option 4| —2 is reversible through —\2,. and so can be replaced by |
the Left options (there aren’t any) of —2. In this way, we see that G simplifies ’
to +1, its simplest form. )
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It is not hard to show'that the 3.x 4 rectangle {-1-3-has value 13. For this

is plainly a lower bound (break the rectangle across the dotted line), and.a

!

i

; . | F1G. 20. The equation 5 x § = 0.
quick strategic discussion shows that Left cannot win the difference ”
| |

If not, the position is either as in the fourth drawing, with Right’s third
~ 1. g move in the top left 3 x 3 square. say, when we can make the moves of that
i drawing, or Right has taken the centre. In the last case, we do not really

 L.arger rectangles are something of a problem. But if we’only want to work l} break any horizontal lines when we partition as indicated into 4 regions of
out who wins, we can employ’ the following type of argument. From the ' J values 1,4, —4, — 3, and so we are at least half a move ahead.

Wiy S i

-5

s i ot

4 x 4 square, Left can move to i The zig-zag patterns -, ], I__‘, ; ,... give rise to an interesting 4
il . i
o 1 ! EI 1 I sequence of values. Letting ZZ be the value of ti.he n-square zig-zag pattelm, i
> = = 3 wefindZZ, =0,2Z, = 1,ZZ, =+,2Z, =1|0,ZZ, = +1,ZZ, = 2|=, ]
‘ > 1 ) 2 1) 3 ] 4 ] 5 6 E
1.0 0. oo l 2z, - +1s, 2z, 22[1)0 2Z, = +2[0,2]%); ZZ, = 1%, and §

l ZZ,, = ZZy». The later values get more complicated, but we can fairly
and so thé 4 x 4 square'is a win f(?r the first player. Simi.la.\r arguments can I‘: easii;' calcul;te them almost exactly. n
be found for'the 4 x 6 rectangle, using the value of the position] 771771 1, :‘{ In fact we find ,
which does not-take too long to compute. . I O-ish 5,
The 5 x.5 square can be siown to be a secand player win (and so have M ZZspss o snts =018 _ 4
value 0) by the following special strategy. This gives Left 6 moves, or keeps I ZZgps1 o gn—3 = E1-ish .

Right down to 5 moves and gives Left 5.moves. I .
Supposing Right’s first move is in the top left 3 x 3 square, make the moves ‘ ZZgys, = lish

a, b of the first drawing if we can, followed by any ¢ in the top three rows, and h ZZ,,_ , = 2|0-ish !
the moves d, g, f. If not, make the move b of the later drawings and occu k .

tge centre if posfible, followed by any move d other than e and?sof the secoxlm)(}i, !f ZZ4 = (n|n —1]fn = 2||n = 3... 1|ljfi}il 0)-ish

drawing, then such of ‘thosé moves e and f which are still legal. If this is (' where’ the suffix “-ish” means “infinitesimally shifted”. In other words, we

impossible, the mhove ¢ of the third drawing might be available, and lead : write G-ish for G + ¢, when ¢ is infinitesimal. In these particular cases, of

back to a similar strategy to our first attempt. i course, the various infinitesimal shifts ¢ are small games.
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The gamg ZZ,, has mean value 1 — (1/2"), is.strictly less than 1, and
strictly greater than any negative number, but not greater than 0. These
results follow from the thermographs:

ZZ,
| szz
Y 2|1)0 = ZZ,

1|0 = zZ,

Fie. 21.

The rectangie B has a very interesting value. Note first that we have

E; = 0, so the value is zero or positive. The moves for Left are to ]

and [, whichequal _(0)and I (2] 0) by some of our theorems. The moves

*—e

for Right are to Ij(ol —2) and B (| —2). So we have the equality

E= {0,2]0]0| —2,4| =2} = G, say.

The option 4| —2 is plainly dominated by 0| —2, and since G > 0, the Left
: option 2|0 is reversible to 0, and can be replaced by the (non-existent) 0.
| So we have G = 0] 0| —2, which, since we see it is strictly positive, is in
simplest form.
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For reasons that will only appear later, this game is called -, (pronounced
“tiny-two”). For any positive number x, we have a similar game “tiny-x”

“tiny-x" = 0||0| —x = +,.

For each positive x, + is a positive infinitesimal, and indeed a small game
in the sense of Chapter 9, since it is strictly smaller than all positive numbers.
But other calculations show that for strictly positive x these games are
smaller than all positive all small games, such as 1. As a matter of notation,
we abbreviate sums involving such games in a natural way—thus 5+, means
5+ +,and 5 —, means 5 — +,.

It is possible to define powers 1 of T for positive x > 1 so that whenever
x > y, then 1% is infinitesimal compared fo 1%, and all these powers are all
small. We have thus a rough-and-ready scale of infinitesimals:

Firstly, infinitesimal numbers, like 1/w, 1/¢,, etc.
Next, the all small games, such as 1, 12, etc.
Finally, the games like + ,,-+,, etc.

We say finally because indeed the games -+, really tend to zero as a tends to
On, any strictly positive game being bigger than some + . (Any short positive
game is greater than some +,) But we should also add that, zerothly, there
are some infinitesimal games that are strictly greater than all infinitesimal
numbers! These remarks are very much amplified in Chapter 16.

A DOMINO DICTIONARY

We now tabulate values for all dpmino positions with at most 6 nodes
(Fig. 22). The game of dominoes has a behaviour in some ways intermediate
between the two games COL and SNORT of this chapter, with typical
values not so restricted as those of COL nor so chaotic as those of SNORT.
Many of these are derivable from each other by simple rules. Often it ob-
viously does not affect play if we make a configuration bend in the opposite

direction to the given one—for instance [; = . There are also a number

of rules telling us that on certain occasions edges may be deleted without
affecting values, as described earlier in this chapter. Here is a brief catalogue

of explosive edges:
The ones indicated by lightning bolts in:

E L o
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. “ Some fairly large domino positions we have analysed are:

1 1% i
bt ) 0 “
}a% " (bnégemi!;deau "}3 to é'% E )’ B B g E solss E':I o
- .¥.2 " " [0 ‘_;“ ’i‘l : ! +, —~%  tls 1sj0 13 2|0 2| -4 ‘2|—-12“
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© ) o 1 0 . i &]1 We have chosen these as being of shapes fairly likely to arise in actual play.
;_‘ 2 .L Elﬂ. } I +1 ‘;

Goran Andersson’s Domino game is called “Domineering” in Winning Ways, where
1w ,:fal L:ll illo &lt Li!‘s +1 ri

larger dictionaries can be found. The necessary evaluations have been greatly eased
2|1 2|~%
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by David Wolfe’s “combinatorial games toolkit” for partizan game theory which
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runs on Linux computers. You can obtain it from

©

http://www.gustavus.edu/~wolfe/papers-games/

.,
,
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or by sending e-mail to wolfe @ gustavus.edu.
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‘Fxc. 22.

arid‘edges joining any one of the configurations below to any one of the
indicated surrounding nodes:
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