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again and again. The players know that they interact only once, so that retaliation is ;
impossible. Ch apter TWO
Snowdrift: two players each receive an endowment, on provision that they pay a fee to &
b the experimenter that is lower than the endowment. They must decide whether they are ‘
:ﬁ?ng to pay the fee or not, knowing that if both are willing, each of them pays only

Game Dynamics and Social Learning

2.1 GAMES

It can be difficult to decide what is best. The task can be fraught with uncertainties
» (as when an investor wants to optimize a portfolio), or it can be computationally
: demanding (as when a traveling salesman has to find the shortest route through
87 towns). A peculiar complication arises in interactions between two (or more)
decision-makers with different views about what is best. This is the realm of game

theory.
. As an example, consider two players I and Il engaged in the following, admittedly
childish game. At a given signal, each holds up one or two fingers. If the resulting

sum is odd, player I wins. If the sum is even, player II wins. Clearly there is no
outcome that can satisfy both players. One of the players would always prefer to
; switch to the other alternative. Situations with a similar structure abound in social
>~ - interactions. )

Let us formalize this. Suppose that player I has to choose between n options,
or strategies, which we denote by ey, .. s, e,, and player II between m strategies
fi,....f,. If I chooses ¢; and II chooses f;, then player I obtains a payoff a; and
player II obtains b;. The game, then, is described by two n x m payoff matrices A
and B: alternatively, we can describe it by one matrix whose element, in the i-th row
and j-th column, is the pair (ay, b;) of payoff values. The payoff is measured on a
utility scale consistent with the players’ preferences. In biological games, it can be
1 some measure of Darwinian fitness reflecting reproductive success. For simplicity,
. we stick to monetary payoffs.

The two players in our example could bet, say, one dollar. Each player has two

4 strategies, even and odd, which correspond to e; and e, for player I and f; and f;
' for player II, and the payoff matrix is

1 (-1,1) (1, ~D)
((1,_1) (_1,1)). @.1)

If the outcome is (—1, 1), player I (who chooses the row of the payoff matrix) would
have done better to choose the other strategy; if the outcome is (1, —1), itis playerII,
the column player, who would have done better to switch. If players could out-guess
each other, they would be trapped in a vicious circle.
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Figure 2.1 The simplices S, S3, and S4. On the top row, S; and S5 are imbedcied in R? and
R3 respectively.

2.2 MIXED STRATEGIES

For both players, it'is clearly important not to have their dccisﬁn anticipated by
the co-player. A good way to achieve this is to randomize, i.e., to let chance decide.
Suppose that player I opts to play strategy e; with probability x;. This mixed strategy
is thus given by a stochastic vector x = (x1ye..nxy) (With x; >0 and x; + -+ +
x, =1). We denote the set of all such mixed strategies by S,: this is a simplex in
R", spanned.by the unit vectors e; of the standard base, which are said to be the
pure strategies, and correspond to the original set of alternatives, see figure 2.1. (All
components of e; are 0 except the i-th component, which is 1.)

Similarly, a mixed strategy for player II is an element y of the unit simplex S,,.
If player I uses the pure strategy e; and player I uses strategy y, then the payoff for
player I (or more precisely, its expected value) is

m
(Ay)i = _ayy;. 2.2)
j=1
If player I uses the mixed strategy x, and II uses y, the payoff for player I is
x-Ay =) x(Ay)i =Y ayny, 23)
i ij

and the payoff for player II, similarly, is

X-By =Y byxy;. 2.4)

i,j
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(The dot on the left hand side denotes the dot product, or Euclidean product, of two
vectors.)

If player I knows, by any chance, the strategy y of the co-player, then player I
should use a strategy that is a best reply to y. The set of best replies is the set

BR(y) = arg maxx- Ay, 2.5

i.e., the set of all x € §,, such that
z- Ay < x - Ay (2.6)

holds for all z € S,. Player I has no incentive to deviate from x.

Since the function z+> z - Ay is continuous and S, is compact, the set of best
replies is always non-empty. It is a convex set. Moreover, if x belongs to BR(y),
so do all pure strategies in the support of X, i.e., all e; for which x; > 0. Indeed, for
all i,

(Ay); = ¢; - Ay < x- Ay. 2.7

If the inequality sign were strict for some i with x; > 0, then x; (Ay); <x;(x - Ay);
summing over all i=1,...,n thenleadsto a contradiction. It follows that the set
BR(y) is a face of the simplex S,. It is spanned by the pure strategies which are best
replies to y. :

2.3 NASH EQUILIBRIUM

If player I has found a best reply to the strategy y of player I1, player I has no reason
not to use it—as long as player II sticks to y.

But will player II stick to y? Only if player II has no incentive to use another
strategy, i.e., has also hit upon a best reply. Two strategies x and y are said to form
a Nash equilibrium pair if each is a best reply to the other, i.e., if x'e BR(y) and
¥ € BR(x), or alternatively if

z- Ay < x- Ay (2.8)
holds for all z € S,,, and
x-Bw <x-By 2.9

holds for all w € S,,. A Nash equilibrium pair (x, y) satisfies a minimal consistency
requirement: no player has an incentive to deviate (as long as the other player does
not deviate either).

A basic result states that Nash equilibrium pairs always exist for any game (A, B).
This will be proved in section 2.11. The result holds for vastly wider classes of games
than considered so far; it holds for any number of players, any convex compact sets
of strategies, any continuous payoff functions, and even beyond. But it would not
hold if we had not allowed for mixed strategies: this is shown by the simple example
from section 2.1 (betting on even or odd). In that case, the mixed strategies of
choosing, with equal prebability 1/2, an even or an odd number, obviously lead to
an equilibriym pair: each player gains, on average, zero dollars, and none has an
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incentive to deviate. On the other hand, if player I uses any other strategy (xi, x2)
against the (1/2, 1/2) of player II, player I would still have an expected payoff of
zero. However, the other player would then have an incentive to deviate: whenever
X1 > x2, the best reply for II would be to play (1, 0). If player II did that, however,
player I would do better to play (0, 1), and the vicious circle would be in full swing.

In this example, (x, y) with x=y = (1/2, 1/2) is the unique Nash equilibrium
pair. We have seen that as long as player II chooses the equilibrium strategy y, player
T'has no reason to deviate from the equilibrium strategy x; but that on the other hand,
player I has no reason not to deviate, either. This would be different if (x,y) were a
strict Nash equilibrium pair, i.e., if

z-Ay <x- Ay (2.10)
holds for all z # x, and
Xx-Bw < x- By 2.11)

holds for all w # y. In this case, i.e., when both best-reply sets aye. singletons, each
player will be penalized for unilaterally deviating from the equiljbrium.

Whereas every game admits a Nash equilibrium pair, many gamés admit no’strict
Nash equilibrium pair; the number game from section 2.1 is an example.

Moreover, even if there exists a strict Nash equilibrium, it can be alet-down, as the
Prisoner’s Dilemma example from section 1.3 shows. This game has a unique Nash
equilibrium, which is strict: both players defect, i.e., x = y=(0, 1). Each player, in
that case, would be penalized for deviating unilaterally. If both players, however,
were to deviate, and opt for cooperation, they would be better off.

A further caveat applies: for many games, there exists not one, but several equi-
librium pairs. Which one should the players choose? They could, of course, sit down
and talk it over, but this is not considered a solution. In many cases players cannot
communicate—sometimes this is prohibited by explicit rules, and sometimes it is
just a waste of breath. Consider the Snowdrift game from section 1.4, for instance.
In that case, it is easy to see that (e, f;) and (e, f;) are two Nash equilibrium pairs.
They look similar to a bystander, but certainly not to the players themselves. The
strategy pair (e;, f,) means that player I shovels and player II, leans back and relaxes.
Player I will not like this, but has no incentive not to shovel*—for refusing to shovel
means spending the night in the car. Of course player I would prefer the other Nash
equilibrium pair. But if player I aims at that other equilibrium, and consequently
uses strategy e;, while player II stubbornly clings to the strategy f, corresponding
to the equilibrium pair which is better for II, then both players end up with the
strategy pair (e, f;) (an uncomfortably cold night in the car), which is not a Nash
equilibrium pair.

2.4 POPULATION GAMES

So far, we have considered games between two specific players trying to guess each
other’s strategy and find a best reply. Let us now shift perspective, and consider a
population of players, each with a given strategy. From time to time, two players
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meet randomly and play the game, using their strategies. We shall consider these
strategies as behavioral programs. Such programs can be learned, or inherfted, or
imprinted in any other way. In a biological setting, strategies correspond to different
types of individuals (or behavioral phenotypes). . .

In order to analyze this set-up, it is convenient to assume that all individuals in
the population are indistinguishable, except in their way of interacting, i.e., that the
players differ only by their type, or strategy. This applies well to certain games such
as the Prisoner’s Dilemma, where both players are on an equal footing; but for many
other examples of social interactions, there is an inherent asymmetry—for instance,
between buyers and sellers.

For simplicity, we start by considering only symmetric games. In the case of two-
player games, this means that the game remains unchanged if I and II are permuted.
In particular, the two players have the same set of strategies. Hencs: we assume
that n =m and f; =e; for all j; and if a player plays strategy e; against someone
using strategy e; (which is the former f;), then that player receives the same payoff,
whether labeled I or II. Hence a;; = bj;, or in other words B = AT (the transpose of
matrix A). Thus a symmetric game is specified by the pair (4, AT), and therefore
is defined by a single, square payoff matrix A.

As we have seen with the Snowdrift example, a symmetric game can have asym-
metric Nash equilibrium pairs. These are plainly irrelevant, as long as it is impossi-
ble to distinguish players I and II. Of interest are only symmetric Nash equilibrium
pairs, i.e., pairs of strategies (X, y) with x =y. A symmetric Nash equilibr'ium, tl}us,
is specified by one strategy x having the property that it is a best reply to itself (i.e.,
X € BR(x)). In other words, we must have

Z - AX <X AX (2.12)

for all ze S,. A symmetric strict Nash equilibrium is accordingly given by the
condition

Z- Ax < X- AX 2.13)

for all z # x. ' . '
We shall soon prove that every symmetric game admits a symmetric Nash equi-

librium.

2.5 SYMMETRIZING A GAME

There is an obvious way to turn a non-symmetric game (A, B) into a symmetric
game: simply by letting a coin toss decide who of the two players will be 1abe1c':d
player L A strategy for this symmetrized game must therefore specify what to do in
role I, and what in role II, i.e., such a strategy is given by a pair (e;, f;). A mi'x.ed
strategy is given by an element z = (z;) € Sym, Where z; denotes the pr.C)bal.)lhty
to play e; when in role I and f; when in role II. To the probability distribution z
correspond its marginals: x; =Y ; Zij and y; = Y, zj. The vectors x = (x;) 'and
y=(y;) belong to S, and S, respectively. It is easy to see that for any given
xe S, and y € S, there exists a z € S,,,; haVing x and y as marginals, for instance
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zj=2x;y; (barring exceptions, there exist many probability distributions with the
same marginals).

The payoff for a player using (e;, f 7) against a player using (e, f;), with i ke

{1,...,n}and j,le{l,..., m}, depends on the outcome of the coin-toss and is
given by
1 1
Cij ki = Eail + Ebkj. (2.14)

Let us !?rieﬂy take for granted that every symmetric game has a symmetric Nash
equilibrium. Then it can easily be deduced that every game (A, B) has a Nash
equilibrium pair.

Indeed, let us assume that 7 € S, is a symmetric Nash equilibrium for the sym-
metrized game (C, CT). This means that

z2-C2<z-Cz (2.15)

forall z€ S,,,. Let x and y be the marginals of z, and X and § the marginals for z.
Then

z-Cz= Z ZiiCyj i ZRl (2.16)
ikl
1 - 1 _
=5 Zzijailzkl + 5 ZZijbijkl 2.17)
ikl ikl

1 - o1 1
=3 D_maudi+5 3 yibyf = FX AV +5y-B'R (218)
il jk

Since Z is a symmetric Nash equilibrium, equation (2.15) implies

X -Ay+X-By <X-Ay+x- By. (2.19)
For y =¥ this yields
X- Ay < X Ay, (2.20)
and for x =X, )
X- By <x- By. 2.21)

E:nce X €BR(¥) and § € BR(X), i.e., (X, ¥) is a Nash equilibrium pair of the game
, B).

2.6 POPULATION DYNAMICS MEETS GAME THEORY (

We now consider a symmetric game with payoff matrix A and assume that in alarge,
well-mixed population, a fraction X; uses strategy e;, fori =1, ..., n. The state of

the population is thus given by the vector x & Su- A player with strategy e; has as
expected payoff

(Ax); =) " ayx;. (2.22)
j
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Indeed, this player meets with probability x; a co-player using e;. The average
payoff in the population is given by

X Ax =) x(Ax%):. (2.23)

It should be stressed that we are committing an abuse of notation. The same symbol
X € S, which denoted in the previous sections the mixed strategy of one specific
player now denotes the state of a population consisting of different types, each type
playing its pure strategy. (We could also have the players use mixed strategies, but
there will be no need to consider this case.)

Now comes an essential step: we shall assume that populations can evolve, in the
sense that the frequencies x; change with time. Thus we let the state x(¢) depend on
time, and denote by X; (¢) the velocity with which x; changes, i.e., ¥; =dx; /dt . In
keeping with our population dynamical approach, we shall be particularly interested
in the (per capita) growth rates x; /x; of the frequencies of the strategies.

How do the frequencies of strategies evolve? How do they grow and diminish?
There are many possibilities for modeling this process. We shall mostly assume that
the state of the population evolves according to the replicator equation. This equation
holds if the growth rate of a strategy’s frequency corresponds to the strategy’s payoff,
or more precisely to the difference between its payoff (Ax); and the average payoff
X - AX in the population. Thus we posit

i = x,-[(AxQ— X - AX] (2.24)

fori=1,...,n. Accordingly, a strategy e; will spread or dwindle depending on
whether it does better or worse than average.

This yields a deterministic model for the state of the population. Indeed, any
ordinary differential equation X = F(x) with a smooth right hand side (such as eq.'
(2.24)) has a unique solution for each initial condition x, i.e., a function ¢ > x(¢)
from an open interval / (containing 0) into R” such that x(0) =x and such that
%(t) =F(x(¢)) holds for all ¢ € I. For all differential equations that we consider in
this book, the interval I can always be taken to be the whole real line R.

We may interpret the right hand side of the differential equation as a vector field
x> F(x). It associates to each point x in the domain of definition of F (an open
subset B of R") the “wind velocity” F(x) € R" at that point. The solution then
describes the motion of a particle, released at time O at x and carried along by
the wind. At a point z such that F(z) =0, the velocity is zero. This corresponds to
a rest point: a particle released at z will not move. We note that multiplying the
right hand side F(x) by a positive function M(x) > 0 corresponds to a change in
velocity. The particle will then travel with a different speed, but along the same
orbit.

Before we try to explain (in section 2.7) why we are interested in equation (2.24),
let us note that »_ %; = 0. Furthermore, it is easy to see that the constant function
x;(2) =0 for all ¢ obviously satisfies the i-th equation in (2.24). From this follows
that the state space, i.e., the simplex S,,, is invariant: if x(0) € S,, then x(z) € S, for
all t € R. The same holds for all sub-simplices of S,, (which are given by x; =0
for one or several i), and hence also for the boundary bd S, of S, (i.e., the union of
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all such sub-simplices), and moreover also for the interior intS, of the simplex (the
subset satisfying x; > 0 for all i).

2.7 IMITATION DYNAMICS

The replicator equation initially showed up in the context of biological games. The
assumption that payoff corresponds to reproductive success, and that individuals
breed true, leads almost immediately to this equation. Clearly, for the economic
games we are considering here, strategies are unlikely to be inherited, but they can
be transmitted through social learning. If we assume that individuals imitate each
other, we meet the replicator equation again.

To be more precise, let us assume that from time to time, a randomly chosen
individual randomly samples a model from the population and imitates that model
with a certain likelihood. Thus the probability that during an interval of length At,
an individual switches from strategy e; to e; is given by x; JyAt. The corresponding
input-output equation is

xi(t+ A —xi(0) = ) fmxgAr =Y fuxixAt, (2.25)
which in the limit A¢ — 0 yields
E=x) (fy = fidx. (2.26)
J

In general, the rates f;; will depend on the state x. For instance, we can assume that
fij = [(A%); — (Ax);14. (2.27)

This means that an e; player comparing himself with an e; player will adopt the
latter’s strategy only if it promises a higher payoff: and if this is the case, the switch
is more likely if the difference in payoff is higher. In that case, since Ji—fi =
(Ax); — (Ax);, the input-output equation yields

%= xi Y [AX); — (AN Jy = ml(A%); —x - Ax],  (228)
j

which is just the replicator equation (2.24). We would obtain it in a similar way if,
instead of the payoff (Ax);, we use a more general “fitness” term measuring the
success of a strategy, for instance (1 — s)B + s(AX);, with 0 <s < 1. This is the
convex combination of a “baseline fitness” B = B(x) > 0 (the same for all types)

and the payoff. The size of s specifies the importance of the game in evaluating the .

“appeal” of a strategy.
We could also assume that

fi = (1 —5)B + s(Ax);, (2.29)

which means that the switching rate depends only on the success of the model (and
not on the payoff of the e; player); or that

Jfi = (1 —5)B — s(Ax);, (2.30)
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which means that players are all the more prone to imitate one another the more
reason they have to be dissatisfied with their own payoff. The role of the convex
combination is to guarantee that (at least for small s) the rate is positive.

Not every imitation mechanism leads to the replicator equation. For instance, we
could assume that if two players compare their payoffs, the better will always be
imitated by the worse. Thus f; =0 if (AX); < (Ax);, f =1 if (Ax); > (Ax);, and
fi= % say, in the case of a tie. This leads to a differential equation with a discon-
tinuous right hand side. The dynamics reduces, incidentally, to that of a replicator
equation in every region of the state space defined by a specific ordering of the
payoff values (Ax);.

Not all learning is social learning (i.e., learning from others). We can also learn
from our own experience, for instance by using mostly those strategies that have
brought success so far. Moreover, social learning could disregard the success of a
model, for instance, by simply imitating whatever is most frequent.

It is worth emphasizing that imitation (like selection, in genetics) does not produce
anything new. If a strategy e; is absent from the population, it will remain so (i.e., if
x;(¢) = 0 holds for some time ¢, it holds for all #). There exist game dynamics that are
more innovative. For instance, clever players could adopt the strategy that offers the
highest payoff, even if no one in the population is currently using it. Other innovative
dynamics arise if we assume a steady rate of switching randomly to other strategies.
This can be interpreted as an “exploration rate,” and corresponds to a mutation term
in genetics.

2.8 BASIC PROPERTIES OF THE REPLICATOR EQUATION

It is easy to see that if we add an arbitrary function f(x) to all payoff terms (Ax);,
the replicator equation (2.24) remains unchanged: what is added to the payoff is
also added to the average payoff x- Ax, since ) x; =1, and cancels out in the
difference of the two terms. In particular, this implies that we can add a constant ¢;
to the j-th column of A (for j =1, ..., n) without altering the replicator dynamics
in S,,. We shall frequently use this to simplify the analysis.

Another useful property is the quotient rule: if x; > 0, then the time-derivative of
the quotient satisfies

(ﬁ) = (ﬁ) [(Ax); — (Ax%);]. (231)

Xj xj
More generally, if V = [] xip ‘ then
N
V= V[p-Ax— (Zp,-)x-Ax]. (2.32)

The rest points z of the replicator equation are those for which all payoff values
(Az); are equal, for all indices i for which z; > 0. The common value of these payoffs
is the average payoff z - Az. In particular, all vertices e; of the simplex S, are rest
points. (Obviously, if all players are of the same type, imitation leads to no change.)
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The replicator equation admits a rest point in intS, if there exists a solution (in
intS,) of the linear equations

(AX)1 = -+ - = (AX),. (2.33)

Similarly, all rest points on each face can be obtained by solving a corresponding
system of linear equations. Typically, each sub-simplex (and S, itself) contains one
or no rest point in its interior.

One can show that if no rest point in S, exists in the interior of Sy, then all orbits

inintS, converge to the boundary, for t — = co. In particular, if strategy e; is strictly
dominated, i.c., if there exists a w € S, such that (Ax); < w - Ax holds for all x € A
then x; (#) — 0 for t — +o00. In the converse direction, if there exists an orbit x(1)
bounded away from the boundary of S, (i.e., such that for some a > 0 the inequality

xi(¢#)>a holds for all t >0 and all i =1, ..., n), then there exists a rest point in
intS,. One just has to note that fori =1, ..., n,
(logx;) = % /xi = (AX(2)); — x(2) - AX(?). 2.34)

Integrating this from 0 to 7', and dividing by 7', leads on the left hand side to
[log x;(T') —log x;(0)]/ T, which converges to 0 for T — +00. The corresponding
limit on the right hand side implies that for the accumulation points z; of the time
averages

1 T
zi(T) = —/ x; (t)de, 2.35)
T Jo

the relations z; >a >0, 3 z; =1, and

Za1j2j="-=zanj2j (236)

must hold. Thus % is a rest point in intS,.

2.9 THE CASE OF TWO STRATEGIES

Letusdiscuss the replicator equation when there are only two types in the population.
Since the equation remains unchanged if we subtract the diagonal term in each
column, we can assume without restricting generality that the 2 x 2 matrix A is of

the form
0 a
( b 0 ) . .37

Since x; = 1~ x4, itis enough to observe x, which we denote by x.Thus x, = 1—x,
and

X =x[(Ax); —x - Ax] = x[(Ax)i — (x(Ax); + (1 — x)(Ax),)], (2.38)
and hence

x =x(1 —x)[(Ax); — (Ax),]. (2.39)
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Figure 2.2 Classification of the replicator dynamics for n =2: (a) inertia; (b) .dornin:'moe;
(c) bi-stability; (d) stable coexistence. Circles denote rest points. Filled circles

correspond to stable rest points.

Since (AX); =a(l — x) and (Ax), = bx, (2.39) reduces to

x =x(1 —x){a— (a + b)x]. (2.40)
‘We note that
a=limZ=. 2.41)
x—0 X

Hence a corresponds to the limit of the per capita growth rate of the missing strategy
e;. Alternatively,

a= (2.42)

£ &

where the derivative is evaluated at x = 0.

Let us omit the trivial case a = b =0: in this case all points of the state space S
(i.e., the interval 0 <x < 1) are rest points. The right hand side of our differential
equation is a product of three factors, the first vanishing at 0' and the sec.ond at 1;
the third factor has a zero £ = ;% in the open interral ]0, 1{ if and only if ab > 0.
Thus we obtain three possible cases, see figure 2.2:

1. There is no fixed point in the interior of the state space. This happer'ls if an‘d
only if ab < 0. In this case, X always has the same sign in ]0, 1[. If thl.S sign is
positive (i.e.,if @ > 0and b < 0, at least one inequality being strict,) this means
that x () — 1 forz — +o00, for every initial value x (0) with 0 < x(0) < 1. The
strategy e, is said to dominate strategy €. It is always the best reply, for
any value of x €]0, 1[. Conversely, if the sign of % is negative, then x()—>0
and e, dominates. In each case, the dominating strategy converges towards
fixation.
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As an example, we consider the Prisoner’s Dilemma game from section 1.3. The
payoff matrix is transformed into
0 -5
5 0 (2.43)

2. There exists a rest point £ in 0, 1[ (i.e., ab > 0), and both a and b are negative.
In this case x <0 for x € ]0, £[ and % > O for x € )X, 1[. This means that the
orbits lead away from £: this rest point is unstable. As in the previous case, one
strategy will be eliminated: but the outcome, in this bistable case, depends on
the initial condition. If x is larger than the threshold %, it will keep growing; if
it is smaller, it will vanish—a positive feedback.

and defection dominates.

As an example, we can consider the repeated Prisoner’s Dilemma from section
1.5. The payoff matrix is transformed into

0 -5
(_45 0) (2.44)

and it is best to play TFT if the frequency of TFT-players exceeds 10 percent.

3. There exists a rest point £ in J0, 1] (i.e., ab > 0), and both @ and b are positive.
In this case x > O for x € ]0, Z[and x <Oforx €%, 1[. This negative feedback
means that x (t) converges towards £, for t — 400 the rest point ¥ is a stable
attractor. No strategy eliminates the other: rather, their frequencies converge
towards a stable coexistence.

This example can be found in the Snowdrift game from section 1.4. The payoff

matrix is transformed into
0 10
15 0 (2.45)

and the fixed point corresponds to 40 percent helping and 60 percent shirking,

. These three cases (dominance, bi-stability and stable coexistence) will be revisited
inthe nextsection. But first, we relate the replicator dynamics to the Nash equilibrium
concept.

2.10 NASH EQUILIBRIA AND SATURATED REST POINTS

Letus consider a symmetric n x n game (A, AT) with a symmetric Nash equilibrium
z.'This means that

X-Az<z- Az (2.46)
for all x € S,,. With x =¢;, this implies

(Az); <z-Az 2.47)
fori=1,...,n. Equality must hold for all i such that z; >0, as we have seen in

section 2.2. Hence z is a rest point of the replicator dynamics. Moreover, it is a
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saturated rest point: this means by definition that if z; = 0, then
(Az); —z- Az <0. (2.48)

Conversely, every saturated rest point is a Nash equilibrium. The two concepts
are equivalent.

Every rest point in intS, is trivially saturated; but on the boundary, there may be
rest points that are not saturated, as we shall presently see. In that case, there exist
strategies not present in the population z, that would do better, than average (and
better, in fact, than every type that is present). Rest points and Nash equilibria have
in common that there exists a ¢ such that (Az); = ¢ whenever z; > 0; the additional
requirement, for a Nash equilibrium, is that (Az); < ¢ whenever z; =0.

Hence every symmetric Nash equilibrium is a rest point, but the converse does
not hold. Let us discuss this for the examples from the previous section. It is clear
that the fixed points x € 0, 1[ are Nash equilibria. In case (1), the dominant strategy
is a Nash equilibrium, and the other is not. In case (2), both pure strategies are
Nash equilibria. In case (3), none of them is a Nash equilibrium. If you play a bi-
stable game, you are well advised to choose the same strategy as your co-player;
but in the case of stable coexistence, you should choose the opposite strategy. In
both cases, however, the two of you might have different ideas about who plays
what.

In the bi-stable case, which of the two pure equilibria, e; or e,, should be chosen?
The first idea is: the one with the higher payoff (if it exists). This is said to be the
Pareto-optimal outcome. In the example given in section 1.7, this is clearly the TFT
strategy. The definition of Pareto-optimality depends on the actual payoff values, and
is not specified by the replicator dynamics: after adding constants to every column
of the payoff matrix, a different strategy may be Pareto-optimal.

The Pareto-optimal solution is not always convincing. Consider for instance the
payoff matrix

2 —1000
(0 ( ) (2.49)

Clearly, e; is Pareto-optimal. But will you play it against an unknown adversary?
That player might be a fool, and choose e,. In that case, you would 1ose much.
Obviously, e, is the safer Nash equilibrium. (And on second thought, your co-
player may not be a fool, but just suspect that you might be one; or suspect that you
might suspect, etc., . . .) ’

In a bi-stable game
o B
( s ) (2.50)

(with a > y and § > B), the strategy e, is said to be risk-dominant if it provides the
higher payoff against a co-player who is as likely to play e, as e;. This means that
(1/2)(e + B) > (1/2)(y +8), or

y—a<pf-—34. (2.51)
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This condition is invariant with respect to adding constants to each column, and
implies for the normalized matrix (2.37) that g > b, i.e., (since both values are
negative) X < 1/2. Hence the risk-dominant equilibrium, in a bistable 2 x 2 game,
is the one with the larger basin of attraction.

A handful of results about Nash equilibria and rest points of the replicator dy-
namics are known as folk theorem of evolutionary game theory. For instance, any
limit, for ¢ - +00, of a solution X(t) starting in intS, is a Nash equilibrium; and
any stable rest point is a Nash equilibrium. (A rest point z is said to be stable if for
any neighborhood U of z there exists a neighborhood V of z such that if x(0eV
then x(z) € U for all ¢ > 0.) Both results are obvious consequences of the fact that if
z is not Nash, there exists an i and an € such that (Ax); —x- Ax > ¢ for all x close to
z. In the other direction, if z is a strict Nash equilibrium, then z is an asymptotically
stable rest point (i.e., not only stable, but in addition attracting in the sense that for
some neighborhood U of z, x(0) € U implies x(¢) — z for t — +00). The converse
statements are generally not valid.

2.11 EXISTENCE OF NASH EQUILIBRIA

In order to prove the existence of a symmetric Nash equilibrium for the symmetric
game with n X n matrix A, i.e., the existence of a saturated rest point for the cor-
responding replicator equation (2.24), we perturb that equation by adding a small
constant term € > 0 to each component of the right hand side. Of course, the relation
Y %; =0 will no longer hold. We compensate this by subtracting the term ne from
each growth rate (Ax); — x - AX. Thus we consider

X; = x;[(AX); — X - AX — ne] + e. 2.52)

Clearly, Y x; =0 is satisfied again. On the other hand, if x; =0, then %; = ¢ > 0.
This influx term changes the vector field of the replicator equation: at the boundary
of Sy, (which is invariant for the unperturbed replicator equation), the vector field
of the perturbed equation points towards the interior.

We shall see presently that (2.52) admits at least one rest point in intS,, which
we denote by z,. It satisfies

(Azo); — 2z, - Az, = e(n - 1 ) (2.53)
(Ze)i

Let € tend to 0, and let z be an accumulation point of the z, in S,. The limit on
the left hand side exists, it is (Az); — z - Az. Hence the right hand side also has a
limit for € — 0. This limit is 0 if z; > 0, and it is =<0if z; =0. This implies that z
is a saturated rest point of the (unperturbed) replicator equation (2.24), and hence
corresponds to a Nash equilibrium.

All that remains to be shown is the existence of a rest point for equation (2.52).
Readers who know Brouwer’s fixed point theorem will need no proof. All others
can find it in the next two sections.

e B s
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(@) (b)

Figure 2.3 (a) This is not a simplicial decomposition. (b) The barycentric decomposition is
a simplicial decomposition.

2.12 SPERNER’S LEMMA

Let us consider an n — 1-dimensional simplex S, i.e., the closed convex hull of n
points yi, ..., ¥, such that the vectors y; — y,, i=1,...,n — 1, are linearly in-
dependent. Any non-trivial subset of the vertices yi, ..., y, spans a sub-simplex
of S. The boundary of S is the union of the n full (i.e., n — 2-dimensional) faces.
A simplicial decomposition of S consists of finitely many n — 1-dimensional sim-
plices whose union is § and whose interiors are pairwise disjoint. We furthermore
require that if two such (closed) sub-simplices are not disjoint, they must share a
face: i.e., if the intersection contains a vertex of one sub-simplex, that point is also
a vertex of the other, see figure 2.3.

An example is the barycentric subdivision. (The barycenter of the simplex §
is (y1 + - -+ 4 yn)/n). We begin with the barycenters of all 1-dimensional sub-
simplices, i.e., the midpoints of the edges. They divide the edges of S into
1-dimensional subsimplices. We then introduce the barycenters of the 2-dimensional
sub-simplices of S, and consider the 2-dimensional sub-simplices obtained as a con-
vex hull of such a barycenter and a 1-dimensional sub-simplex on the boundary of
the corresponding face; and so on into higher dimensions.

Now suppose that we are given a coloring of the vertices of the simplicial decom-
position by n colors, in the sense that we associate to each vertex an i € {1,...,n}.
We require that the vertices y; of S are colored by the colors i, and that for any sub-
simplex of S, only the colors of the vertices spanning that sub-simplex are used. We

say that a sub-simplex is /-colored if I C {1, ..., n} is the list of all colors actually
occurring at the vertices of that sub-simplex.
Sperner’s lemma states that there always exists an odd number of {1,...,n}-

colored sub-simplices. (In particular, we need the full set of colors for at least one
sub-simplex of S.)

The proof goes by induction. For n =2 (i.e., for the segment S;) the statement is
obvious. Suppose it is proved up to n — 1. We can apply this to the boundary face of
S, which is opposed to y,: its simplicial decomposition contains an odd number
of sub-simplices which are {1, ..., n — 1}-colored.
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Figure 2.4 A coloring of a simplicial decomposition of §3, and the graph described in section
2.12,

We now construct a graph having as vertices the barycenters of the sub-simplices
of S. We join two such barycenters by an edge if and only if the corresponding sub-
simplices share a {1,...,n — 1}-colored face, see figure 2.4. We add one further
vertex o lying outside of S, and connect it with the barycenters of those sub-simplices
havinga {1, ..., n — 1}-colored face on the boundary of S. We see immediately that
o is connected to an odd number of barycenters, which belong to sub-simplices
having a full face belonging to the face of S opposite of y,.

If a sub-simplex is {1, . .., n}-colored, it has exactly one {1, ..., n — 1}-colored
face. Hence its barycenter lies on exactly one edge of the graph; it is an end-point of
the graph. As to the other barycenters, they either lie on two edges, or on none at all.

Indeed, if a sub-simplex thatis not {1, ..., n}-coloredhasan{l,...,n— 1}-colored
face, then the opposite vertex must have one of the colors 1,...,n — 1, and hence
that sub-simplex has exactly one additional {1,...,n — 1}-colored face.

We note that it i§ possible that the graph has closed loops. But since an odd number
of edges issues from o, there must be an odd number of end-points of the graph, and
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hence an odd number of fully colored sub-simplices of S. Thus Sperner’s lemma
holds.

2.13 A FIXED-POINT THEOREM

We now show that a smooth vector field on the plane Y x; =1 satisfying

Z % =0 (2.54)
and
xx=0=>%>0 (2.55)

has a fixed point in intS,. We proceed indirectly and assume that it has no fixed
point. To each point x € S, we can associate the “color” i := min{; : x; <0}. This
is possible because X # Qand ) X = 0. We note that condition (2.55) implies that
on each sub-simplex of S, only the colors of the vertices spanning that face are used.

This induces a coloring for any simplicial decomposition. Each such decompo-
sition must have an odd number of fully-colored sub-simplices. Now consider a
sequence of simplicial decompositions whose width (the size of the largest sub-
simplex) converges to 0. (For instance, we can start with the barycentric subdivision
of S, and then iterate this ad lib.)

This yields a sequence of fully-colored sub-simplices: by compactness, the sub-
sequence converges to a point X € S,. For each i, this point is a limit of i-colored
vertices, and hence must satisfy %; <0. Since ) %; =0 this implies X =0, a contra-
diction.

Hence the vector field (2.52) must have some fixed point in S,. This closes the
gap in the proof that each replicator equation admits a saturated fixed point.

2.14 ROCK-SCISSORS-PAPER

Whereas there exist only four possible types of replicator dynamics for n = 2, there
exist about a hundred of them for n =3 (and for n > 3 a full classification seems
presently out of sight). A particularly interesting example occurs if the three strate-
gies dominate each other in a cyclic fashion, i.e., if e; dominates ey, in the absence
of e3; and similarly if e, dominates es; and e3, in turn, dominates e;. Such a cycle
occurs in the game of Rock-Scissors-Paper. If we assume that the winner receives
one dollar from the loser, the payoff matrix is

0 1 -1
-1 0 1 ). (2.56)
1 -1 0

This is a zero-sum game: one player receives what the other player loses. Hence the
average payoff in the population, x - AX, is zero. There exist only four rest points,
one in the center, m = (1/3, 1/3, 1/3) € intS3, and the other three at the vertices ;.
The only Nash equilibrium is m.
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Figure 2.5 The replicator dynamics of the Rock-Scissors-Paper game with payoff matrix
2.58):(@a=1;b)a>1;(c)0<a<].

Let us consider the function V := x;x3x3, which is positive in the interior of S3
(with its maximum at m) and vanishes on the boundary. Using (2.32) we see that
t — V(x(2)) satisfies

V= Vi(xy —x3+x3—x; +x1—x2) =0. .57

Hence V is a constant of motion: all orbits t — x(¢) of the replicator equation remain
on constant level sets of V, see figure 2.5. This implies that all orbits in intS, are
closed orbits surrounding m. The invariant set consisting of the three vertices e; and
the orbits connecting them along the edges of S; is said to form a heteroclinic set.

Any two points on it can be connected by “shadowing the dynamics.” This means to
travel along the orbits of that set and, at appropriate times that can be arbitrarily rare,
to make an arbitrarily small step. In the present case, it means for instance to flow
along an edge towards e;, and then step onto the edge leading away from e;. This
step can be arbitrarily small: travelers just have to wait until they are sufficiently
close to the “junction” e;.

Now let us consider the game with matrix

0 -1
-1 0 a |. (2.58)
a -1 0

For a > 0, it has the same structure of cyclic dominance. For a # 1 the game is
no longer a zero sum game, but it has the same rest points. The point m is a Nash
equilibrium and the boundary of S3 is a heteroclinic set, as before. But now,

X - AX = (@ — 1)(x1x2 + x2x3 + X3X1) 2.59)
and hence
V=V(a— D1 —3@xix2 + x2x3 + x3%1)] (2.60)
Via—1)

= —5—[(161 —x2)? 4+ (k2 — x3)* + (x3 — x1)*1. (2.61)

This expression vanishes on the boundary of S3 and at m. It has the sign of a — 1
everywhere else on S3. If @ > 1, this means that all orbits cross the constant-level sets
of V in the uphill direction, and hence converge to m. This implies that ultimately,

GAME DYNAMICS AND SOCIAL LEARNING 43

all three types will be present in the population in equal frequencies: the rest point
m is asymptotically stable, see figure 2.5b. But for a < 1, the orbits flow downhill,
towards the boundary of §3. The Nash equilibrium m corresponds to an unstable
rest point, and the heteroclinic cycle on the boundary attracts all other orbits, see
figure 2.5¢.

Let us follow the state x(¢) of the population, for a < 1. If the state is very close
to a vertex, for instance ey, it is close to a rest point and hence almost at rest. For
a long time, the state does not seem to change. Then, it picks up speed and moves
towards the vicinity of the vertex es, where it slows down and remains for a much
longer time, etc. This looks like a recurrent form of “punctuated equilibrium’: long
periods of quasi-rest followed by abrupt upheavals.

2.15 STOCHASTIC PROCESSES AND FIXATION PROBABILITIES

So far, we have considered the limiting case of infinitely large populations. If we
assume a population of finite size, we can no longer rely on deterministic models. In
finite populations, random fluctuations, due for instance to sampling effects, have
to be taken into account. Instead of ordinary differential equations, we must use
stochastic processes.

Let us assume, in the simplest case, that a population of finite size M consists of
two types of players only, €; and e;. From time to time, one of the players updates
strategy, by imitating a model chosen from the population. The state of the population
is given by the number i of individuals of type e; (while the number of players of
type e; is M —i). Let p;; be the probability that the transition leads from i to J-The
matrix P is tri-diagonal, i.e., p; =0if | j —i| > 1. The states 0 and M are absorbing:
if all individuals are of the same type, imitation can not introduce the other type. We
write p; i1 =b; and p; ;| =d; (because these transition probabilities correspond,
in another interpretation, to birth and death rates).

We denote by p; the probability that a population in state i will eventually reach
state M, i.e., consist entirely of type e, . This state M is absorbing, since once reached
it will not be left. The probability p; that, starting in state i, such a Jixation of the
type e; occurs, must satisfy

pi=dipi1+ A —b; —d)pi + bipia (2.62)

fori=1,..., M—1.Indeed, in the first updating event, the number of e, ’s will either
increase or decrease by 1, or remain unchanged (when a player imitates someone
of his own kind); and after this first step, fixation must occur. Moreover, we have
po=0and py =1. Setting y; := p; — p;_1, equation (2.62) can be written as

d

Yig1 = b—:y,-. (2.63)

Since p1 =y1 and Yi_o yi = px — po = px, we obtain

M
d did, dy-y
1=pM=§y,~=p1(1+1—7—1-+-'-+b—1l—);"'m>, (2.64)
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so that
1+ Y Tl de/be
1+ Z;’:ll %=1 di/bx

fori =1,..., M.Inparticular, we denote by p1,2 the fixation probability py,ie., the
probability that a single individual of type €; in a population consisting otherwise
of type e, will eventually be imitated by everyone. It is given by

1

So far, we have not specified the imitation mechanism, In this chapter, we shall
consider only the so-called Moran process, developed in the context of population
genetics. For this reason, we shall adopt the corresponding terminology, and assume
that each individual has a certain “fitness,” which in our context means some measure
of success, such that individuals with a higher fitness are more likely to be imitated
(see section 2.7). The Moran process consists in drawing one individual at random
(each has the same probability 1/M of being chosen) and endowing it with the
type of a “model player” who is selected from the population with a probability
proportional to that model’s success.

Thus let us assume, as a first example, that individuals of type e; have fitness r,
while those of type e have a fitness normalized to be equal to 1. We then obtain for

the death rate
i M-—i
== ) ———— ) 2.67
4 (M)(ri—{—M—i) ( )

where the first fraction is the probability that the updating individual is of type e,
and the second that the selected model is of type e;. Similarly, for the birth rate,

M-—i ri
bi:( M )(ri+M—i>' (2.68)

Hence d; /b; =1/r and
1

(2.659)

Pi

P2 = (2.66)

_1-r
P12 = 1M

(2.69)

If r — 1, we obtain as limiting value p1,2 = 1/M, which is reassuring. This is the
fixation probability of a neutral type, i.e., the probability that a single individual
of type e;, doing exactly as well as the resident e; individuals, will eventually be
copied by the entire population.

2.16 GAMES IN FINITE POPULATIONS

Now suppose that in a population of size M, individuals are engaged in pairwise
games, and strategies are determined by type e, or e;. If the payoff matrix is

o p
(y 3) , 2.70)
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then the expected payoff depends on the state i of the population. For a player of
type ey, it is given by

i—1 M—i

F; =
=y athy o @7
and for a player of type e; by
i M—-i-1
Gi =
=y 1t @72

(Players do not play against themselves.) As in section 2.7, we assume that the
fitness, i.e., the likelihood to be imitated, is given as a convex combination of the
payoff and a “baseline fitness,” the same for all, which we normalize to 1. Hence
the fitness of an e; individual, if the population is in state i, is given by

fi=A—-s)+sF (2.73)
and that of an e, individual is
8 = (1 - S) + SG,'. (274)

Here the parameter s € [0, 1] measures the “strength of selection,” i.e., the impor-
tance of the game for overall success. If s =0 the game is irrelevant. In the limiting
case of an infinitely large population, the Moran process leads to the switching rate
given by equation (2.29) and hence to the replicator dynamics.

The birth and death rates are
M- if;
b = !
( M ) (lf M- i)g,-) @7
and
i M —ig;
==}l ———"—
(M) (tf + (M -~ i)g,-) ’ @76)
so that
_d_,'__i.__ l—S(l—Gi)
b,-—f,-____—l—s(l——E-)’ .77

The fixation probability (2.66) is therefore given by

-1

M-1 j
1—-s5+5G;
o= |1+ — =t .
12 ,2;1 1 Srray; (2.78)
2.17 LIMITING CASES
For small s, expression (2.77) can be approximated, up to first order, by
d;
5= 1 —s(F; — Gy). 2.79)
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Now by equations (2.71) and (2.72),

1
M-1

withé= —a+ SM —8M + 8 and f =a — B — y + 8. Hence up to first order in
s, the fixation probability of type e is, according to equation (2.78), given by

M-1 k -1
pr2 = [1 +y JJa- sH,~)] ) (2.81)

k=1 i=1

H :=F —-G;= e+ fil (2.80)

It is easy to see that
M-1 k M~—1
S TJa-say=M-1-5) (M -iH, (2.82)
k=1 i=1 i=1
and that
M—1 M-1 M-l
DM —i)E+ fiy=MM—-De+Mf-2)) i—fY i® (283)
i=1 i=1
The first sum..on the right hand side is M(M — 1)/2 and the second sum is
M(M — 1)(2M — 1) /6. This yields altogether

MM — DMF + f +38)/6 = M(M — 1)(eM — f)/6, (2.84)

withe=a+28—y —28 and f =20+ B+ y —44. Upto first order in s, equation
(2.81) yields

pra=[1=2eu -] /. (2.85)

We say that strategy e, is advantageous if its fixation probability is higher than that
of a neutral mutant, i.e., if p;» > 1/M. This condition reads eM > f, i.e.,

alM —-2)+BCM - 1) > yM+1)+82M —4). (2.86)
For the limit M - co we obtain
a+28 >y +28, (2.87)

or, with the normalization from matrix (2.37), b < 2a. This inequality always holds
if e; dominates e;, i.e., if » <0 and a > 0 (one inequality being strict). The domi-
nant strategy is always advantageous. In the case of stable coexistence, i.e., a >0
and b > 0, it means that X > 1/3, where £ = ;% is the Nash equilibrium. Thus if
1/3 <% <2/3, both strategies are advantageous. Finally, in the case of a bi-stable
game, i.e., if a <0 and b < 0, inequality (2.86) means that X < 1/3, where % is the
unstable Nash equilibrinm in 0, 1[. This means that for the replicator equation, the
basin of attraction ofe; is more than twice as large as that of e,. In particular, if e;
is advantageous, itds risk-dominant. If £ lies between 1/3 and 2/3, none of the two
strategies is advantageous.
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For the examples of a Repeated Prisoner’s Dilemma game (section 1.7) or a
Snowdrift game (section 1.4), we see from inequality (2.86) that cooperation is
advantageous for M > 4 resp. M > 20.

The fixation probability p2,1 of e, is obtained similarly to that of e; (by replacing
e with —2¢ — B +2y + 8 and f with —4a + 8 + y -+ 26). The condition 01,2 > P21
means

M—-2)(a—38 > My - 8). (2.88)

In the limit of large M, this reduces to the condition @ — § > y — B. This is just the
condition @ > b that e, is risk-dominant.

For any value of 7 €[0, 1], the vector (x,0,...,0,1 —w)e Sy is a stationary
distribution of the imitation process. Let us assume that with some probability 1 > 0,
players can change their strategy without imitating another player, just by random
trial. In that case, the resulting Markov chain is recurrent. It describes the interplay
between innovation and imitation. Let us assume that & is so small that we can
separate the time scales of the two processes. This means that most of the time, the
population is in the homogeneous state 0 or M. Occasionally, a single individual
tries the other strategy. Then, the imitation process starts anew, leading either to the
extinction of the new type or to its fixation. In this “adiabatic” case, the resulting
process can be approximated by a Markov chain with two states, 1 and 2, (which
correspond to homogeneous populations consisting of type e; or €;). This Markov

chain is given by the matrix
l—p21 P21
’ ’ 2.89
( p2 1= ,01,2) (289)

whose unique stationary distribution, the left eigenvector

( £1,2 , P2,1 ) (2.90)
P12+ P21 P12+ P21

describes the prevalence of the two types, for large time spans. In particular, for the
bi-stable case and large M, strategy e, is risk-dominant if and only if the stochastic
process spends more time in the corresponding homogeneous state.

The same “adiabatic” argument holds also for 7 types ;. If the “innovation rate”
w is sufficiently small, the population will always consist of one or at most two types
only. If in ahomogeneous population, a single individual switches to a different type,
then the imitation process will have caused the fixation or the elimination of that type
before the next innovation occurs. If we assume that these innovations are random
explorations, i.e., that every non-resident type has the same chance 1/(n — 1) to
occur, we obtain an n X n Markov chain P with transition probabilities Pi given by

pi = pji/(n—1) (2.91)

for i # j. Here, pj,; is the fixation probability of j in i, i.e., the probability that
a single individual of type j in a population consisting otherwise of type i will
eventually be copied by the entire population.
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Chapter Three

Direct Reciprocity: The Role of Repetition

3.1 HELP

As Darwin wrote, “The small strength and speed of man, his want of natural weapons,
etc., are more than counterbalanced . . . by his social qualities which lead him to
give and receive aid from his fellow-men” (itatics added). In its simplest form, to
help means to confer a benefit b to another individual, at a cost ¢ to oneself. This
can be viewed as an atom of social interaction.

In the Donation game, two players have to decide simultaneously (more precisely,
in ignorance of the co-player’s decision) whether to give help to their co-player or
not. The two strategies e, and e, will be denoted by C (for cooperate) and D (for
defect), respectively. This yields the following payoff matrix:

b—c —c
( b 0 ) . 3.1
If not otherwise stated, we will assume b > ¢ > 0. The second strategy D dom-

inates the first. This is an example of a Prisoner’s Dilemma game, as described in
section 1.3, i.e., a symmetric 2 x 2 game whose payoff matrix

R S
(T P) (3.2)

T>R>P>S. (3.3)

satisfies

The Prisoner’s Dilemma game encapsulates the tug-of-war between the common
interest (R is larger than P) and the selfish interest (D dominates C). Selfishness
ought to win in this conflict. Indeed, the game has a unique Nash equilibrium, namely
defection; and imitation of successful individuals leads inexorably to the demise of
cooperation, see section 2.10.

It can be interesting to compare this Donation game with the Snowdrift game (see
section 1.4). Both players can receive a benefit b each, if they come up with a fee
¢ < b. They have to decide simultaneously whether to pay the fee or not, knowing
that if both decide to pay, they will share the cost. The payoff matrix is

b—% b—c 3.4)
b 0o/ .

Obviously, it is best to do the opposite of what the other player does. If your co-
player is willing to pay the fee, you yourself can safely skip it. But if your co-player




