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Chapter One

Introduction: Social Traps and Simple Games

1.1 THE SOCIAL ANIMAL

Aristotle classified humans as social animals, along with other species, such as ants
and bees. Since then, countless authors have compared cities or states with bee hives
and ant hills: for instance, Bernard de Mandeville, who published his The Fable of
the Bees more than three hundred years ago.

Today, we know that the parallels between human communities and insect states
do not reach very far. The amazing degree of cooperation found among social insects
is essentially due to the strong family ties within ant hills or bee hives. Humans, by
contrast, often collaborate with non-related partners.

Cooperation among close relatives is explained by kin selection. Genes for helping
offspring are obviously favoring their own transmission. Genes for helping brothers
and sisters can also favor their own transmission, not through direct descendants,
but indirectly, through the siblings’ descendants: indeed, close relatives are highly
likely to also carry these genes. In a bee hive, all workers are sisters and the queen is
their mother. It may happen that the queen had several mates, and then the average
relatedness is reduced; the theory of kin selection has its share of complex and
controversial issues. But family ties go a long way to explain collaboration.

The bee-hive can be viewed as a watered-down version of a multicellular organ-
ism. All the body cells of such an organism carry the same genes, but the body cells
do not reproduce directly, any more than the sterile worker-bees do. The body cells
collaborate to transmit copies of their genes through the germ cells—the eggs and
sperm of their organism.

Viewing human societies as multi-cellular organisms working to one purpose is
misleading. Most humans tend to reproduce themselves. Plenty of collaboration
takes place between non-relatives. And while we certainly have been selected for
living in groups (our ancestors may have done so for thirty million years), our actions
are not as coordinated as those of liver cells, nor as hard-wired as those of social
insects. Human cooperation is frequently based on individual decisions guided by
personal interests.

Our communities are no super-organisms. Former Prime Minister Margaret
Thatcher pithily claimed that “there is no such thing as society.” This can serve
as the rallying cry of methodological individualism—a research program aiming
to explain collective phenomena bottom-up, by the interactions of the individuals
involved. The mathematical tool for this program is game theory. All “players” have
their own aims. The resulting outcome can be vastly different from any of these
aims, of course.
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1.2 THE INVISIBLE HAND

If the end result depends on the decisions of several, possibly many individuals
having distinct, possibly opposite interests, then all seems set to produce a cacophony
of conflicts. In his Leviathan from 1651, Hobbes claimed that selfish urgings lead to
“such a war as is every man against every man.” In the absence of a central authority
suppressing these conflicts, human life is “solitary, poore, nasty, brutish, and short.”
His French contemporary Pascal held an equally pessimistic view: “We are born
unfair; for everyone inclines towards himself. . . . The tendency towards oneself is
the origin of every disorder in war, polity, economy etc.” Selfishness was depicted
as the root of all evil.

But one century later, Adam Smith offered another view. An invisible hand har-
monizes the selfish efforts of individuals: by striving to maximize their own revenue,
they maximize the total good. The selfish person works inadvertently for the public
benefit. “By pursuing his own interest he frequently promotes that of the society
more effectually than when he really intends to promote it.” Greed promotes behav-
ior beneficial to others. “It is not from the benevolence of the butcher, the brewer, or
the baker, that we expect our dinner, but from their regard to their own self-interest.
We address ourselves, not to their humanity but to their self-love, and never talk to
them of our own necessities but of their advantages.”

A similar view had been expressed, well before Adam Smith, by Voltaire in his
Lettres philosophiques: “Assuredly, God could have created beings uniquely in-
terested in the welfare of others. In that case, traders would have been to India
by charity, and the mason would saw stones to please his neighbor. But God de-
signed things otherwise. . . . It is through our mutual needs that we are useful to
the human species; this is the grounding of every trade; it is the eternal link be-
tween men.”

Adam Smith (who knew Voltaire well) was not blind to the fact that the invisible
hand is not always at work. He merely claimed that it frequently promotes the
interest of the society, not that it always does. Today, we know that there are many
situations—so-called social dilemmas—where the invisible hand fails to turn self-
interest to everyone’s advantage.

1.3 THE PRISONER’S DILEMMA

Suppose that two individuals are asked, independently, whether they wish to give a
donation to the other or not. The donor would have to pay 5 dollars for the beneficiary
to receive 15 dollars. It is clear that if both players cooperate by giving a donation
to their partner, they win 10 dollars each. But it is equally clear that for each of
the two players, the most profitable strategy is to donate nothing, i.e., to defect. ®o
matter whether your co-player cooperates or defects, it is not in your interest to part
with 5 dollars. If the co-player cooperates, you have the choice between obtaining,
as payoff, either 15 dollars, or 10. Clearly, you should defect. And if the co-player
defects, you have the choice between getting nothing, or losing 5 dollars. Again,
you should defect. To describe the Donation game in a nutshell:
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if the co-player if the co-player
makes a donation  makes no donation

s~

if I make a donation 10 dollars , 1€ —5 dollars ,

My payoff _
+ if I make no donation 15 dollars y— < 0 dollars ) o)

But the other player is in the same situation. Hence, by pursui.ng their selfish
interests, the two players will defect, producing an outcome that is bz}’d for bgth.
Where is the invisible hand? “It is often invisible because it is not here,” according

ist Joseph Stiglitz. ‘
N ';‘i:;: Zgange gapme is fn example of a Prisoner’s Dilen.zma. This is an interaction
between two players, player I and II, each having two options: to coop?,rat.e (play C)
or to defect (play D). If both cooperate, each obtains a Reu.zard R that is higher than
the Punishment P, which they obtain if both defect. But if one player d'efects an.d
the other cooperates, then the defector obtains a payoff .T (the Temptation) that 1’s
even higher than the Reward, and the cooperator is left with a payoff S (the Sucker’s

payoff), which is lowest of all. Thus,
T>R>P>S. (1.1)

As before, it is best to play D, no matter what the co-player is doing. T7 ﬂ F? S

if player I  if player I1
plays C plays D

if player I plays C R, K S, T A {\
“
Payoff for player I J
if player I plays D T,s P Y

If both players aim at maximizing their own payoff, they end. up wi.th a suboptl-
mal outcome. This outcome is a trap: indeed, no player has an incentive to switch
unilaterally from D to C. It would be good, of course, if both jointly ac?opted C. But
as soon as you know that the other player will play C, you are faced with the.TeI.np-
tation to improve your lot still more by playing D. We are bgck at' the beginning.
The only consistent solution is to defect, which leads to an economic stalemate.

The term “Prisoner’s Dilemma” is used for this type of interaction because when
it was first formulated, back in the early fifties of last century, it was pr(?sented as the
story of two prisoners accused of a joint crime. In order to get confessions, the staEe
attorney separates them, and proposes a deal to each:.they can go free (as state’s
witness) if they rat on their accomplice. The accompl‘lce would then have to face
ten years in jail. But it is understood that the two prisoners cannot both become
state’s witnesses: if both confess, both will serve seven years. If l.)OFh keep mum,
the attorney will keep them in jail for one year, pending trial. This is the onglpal
Prisoner’s Dilemma. The Temptation is to turn state’s witness, the Reward consists

in being released after the trial, (which may take place only one year from now), the
Punishment is the seven years in jail and the Sucker’s payoff amounts to ten years

of confinement. v C N
C I5 AV, D

o)
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The young mathematicians who first investigated this game were employees of
the Rand Corporation, which was a major think tank during the Cold War. The
may haYe been inspired by the dilemma facing the two superpowers. Both time So)-l
V}et Union and the United States would have been better off with joint nuclear
disarmament. But the temptation was to keep a few atomic bombs and wait for the

ren
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1.4 THE SNOWDRIFT GAME

The Prisoner’s ]?ilemma is not the only social dilemma displaying the pitfalls of
selﬁs%mess. Apother is the so-called Snowdrift game. Imagine that the experimenter
promises to give the two players 40 dollars each, on receiving from them a “fee” of
30 dc?llars. The two players have to decide separately whether they want to come
up with the fee, knowing that if they both do, they can share the cost. This seems
to be the obvious solution: they would then invest 15 dollars each, receive 40 in
return, and thus earn 25 dollars. But suppose that one player absolutely refuses
to pay. In t.hat case, the other player is well advised to come up with 30 dollars

because this still leads to a gain of 10 dollars in the end. The decision is hard’
to swallow, however, because the player who invests nothing receives 40 dollars. If
both players are unwilling to pay the fee, both receive nothing. This can be descrit;ed

if my co-player if my co-player

contributes refuses to contribute
if I contribute 25,5 40
My payoff ’ 0
if I refuse to contribute 40 1O
, ) 0,0

as a game with the ‘tvyo options C (meaning to be willing to come up with the fee)
and D (not to be willing to do $0). If we denote ttie payoff values with R,S,T, and
P, as before, we see that in the place of (equation 1.1.) we now have w

T>R>S>P. (1.2)

Due.to the §mall difference in the rank-ordering (only S and P have change& place)
playing D is not always the best move, irrespective of the co-player’s decision If
!:he co-player opts for D, it is better to play C. In fact, for both players, the best mc;ve
Ls«,to'dc.) the opposite of what the co-player decides. But in addition l;oth know that
Fhey will be better off by being the one who plays D. This leads to e; contest, If both
11.1s1st on fheir best option, both end up with the worst outcome. One of thexin has to
yield. This far the two players agree, but that is where the agreement ends

Th.e name Snowdrift game refers to the situation of two drivers caught v;/ith their
cars in a snow drift. If they want to get home, they have to clear a path. The fairest
soluﬂox} would be for both of them to start shoveling (we assume that 'both have a
shovel in their trunk). But suppose that one of them stubbornly refuses to dig. The
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other driver could do the same, but this would mean sitting through a cold night. It
is better to shovel a path clear, even if the shirker can profit from it without lifting a

finger.

1.5 THE REPEATED PRISONER’S DILEMMA

The prisoners, the superpowers, or the test persons from the economic experiments
may seem remote from everyday life, but during the course of a day, most of us will
experience several similar situations in small-scale economic interactions. Even in
the days before markets and money, humans were engaged in ceaseless give and take
within their family, their group or their neighborhood, and faced with the temptation

to give less and take more.
The artificial aspect of the Donation game is not due to its payoff structure, but to

. the underlying assumption that the two players interact just once, and then go their

separate ways. Most of our interactions are with household members, colleagues,
and other people we are seeing again and again.

The games studied so far were one-shot games. Let us assume now that the same
two players repeat the same game for several rounds. It seems obvious that a player
who yields to the temptation of exploiting the co-player must expect retaliation.
Your move in one round is likely to affect your co-player’s behavior in the following
rounds.

Thus let us assume that the players are engaged in a Donation game repeated for
six rounds. Will this improve the odds for cooperation? Not really, according to an
argument called backward induction. Indeed, consider the sixth and last round of
the new game. Since there are no follow-up rounds, and since what’s past is past,
this round can be viewed in isolation. It thus reduces to a one-shot Donation game,
for which selfish interests, as we have seen, prescribe mutual defection. This is the
so-called “last-round effect.” Both players are likely to understand that nothing they
do can alter this outcome. Hence, they may just’as well take it for granted, omit
it from further consideration, and just deal with the five rounds preceding the last
one. But for the fifth round, the same argument as before prescribes the same move,
leading to mutual defection; and so on. Hence backward induction shows that the
players should never cooperate. The players are faced with a money pump that can

deliver 10 dollars in each round, and yet their selfish interests prescribe them not to
use it. This is bizarre. It seems clearly smarter to play C in the first round, and signal
to the co-player that you do not buy the relentless logic of backward induction.

It is actually a side-issue. Indeed, people engaged in ongoing everyday interactions
do rarely know beforehand which is the last round. Usually, there is a possibility for
a further interaction—the shadow of the future. Suppose for instance that players
are told that the experimenter, after each round, throws dice. If it is six, the game is
stopped. If not, there is a@urther round of the Donation game, to be followed again
by a toss of the dice, etc. The duration of the game, then, is random. It could be over
after the next round, or it could go on for another twenty rounds. On average, the
game lasts for six rounds. But it is never possible to exploit the co-player without
fearing retaliation.
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In contrast to the one-shot Prisoner’s Dilemma, there now exists no strategy that is
best against all comers.If your co-player uses an unconditional strategy and always
defects, or always cooperates, come what may, then it is obviously best to always
defect. However, against a touchy adversary who plays C as long as you do, but turns
to relentlessly playing D after having experienced the first defection, it is better to
play C in every round. Indeed, if you play D, you exploit such a player and gain an
extra 5 dollars; but you lose all prospects of future rewards, and will never obtain
a positive payoff in a further round. Since you can expect that the game lasts for 5
more rounds, on average, you give up 50 dollars.

What about the repeated Snowdrift game? It is easy to see that if the two players
both play C in each round, or if they alternate in paying the fee, i.e., being the C
player, then they will both do equally well, on average; but is it likely that they
will reach such a symmetric solution? Should we rather expect that one of the two
players gives in, after a few rounds, and accepts grudgingly the role of the exploited
C player? The joint income, in that case, is as good as if they both always cooperate,
but the distribution of the income is highly skewed. :

" 1.6 TOURNAMENTS

>

Which strategy should you chose for the repeated Prisoner’s Dilemma, knowing
that none is best? Some thirty years ago, political scientist Robert Axelrod held a
computer tournament to find out. People could submit strategies. These were then
matched against each other, in a round-robin tournament: each one engaged each
other in an iterated Prisoner’s Dilemma game lasting for 200 rounds (the duration
was not known in advance to the participants, so as to offer no scope for backward
induction). Some of the strategies were truly sophisticated, testing out the responses
of the co-players and attempting to exploit their weaknesses. But the clear winner
was the simplest of all strategies submitted, namely Tit for Tat (TFT), the epitome
of all retaliatory strategies. A player using TFT plays C in the first move, and from
then on simply repeats the move used by the co-player in the previous round.

The triumph of TFT came as a surprise to many. It seemed almost paradoxical,
since TFT players can never do better than their co-players in a repeated Prisoner’s
Dilemma game. Indeed, during the sequence of rounds, a TFT player is never ahead.
As long as both players cooperate, they do equally well. A co-player using D draws
ahead, gaining T versus the TFT player’s payoff S. But in the following rounds, the
TFT player loses no more ground. As long as the co-player keeps playing D, both
players earn the same amount, namely P. If the co-player switches back to C, the
TFT player draws level again, but resumes cooperation forthwith. At any stage of
the game, TFT players have either accumulated the same payoff as their adversary,
or are lagging behind by the payoff difference T — S. But in Axelrod’s tournament,
the payoffs against all co-players had to be added to yield the total score; and thus
TFT ended ahead of the rest, by doing better than every co-player against the other
entrants.

Axelrod found that among the 16 entrants for the tournaments, eight were nice in
the sense that they never defected first. And these eight took the first eight places in
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the tournament. Nice guys finish first! In fact, Axelrod found that another strategy
even “nicer” than TFT would have won the tournament, had it been entered. This
was TFTT (Tit for Two Tats), a strategy prescribing to defect only after two con-
secutive D’s of the co-player. When Axelrod repeated his tournaments, 64 entrants
showed up, and one of them duly submitted TFTT. But this strategy, which would
have won the first tournament, only reached rank 21. Amazingly, the winner of the
second tournament was again the simplistic 7FT. It was not just nice, it was trans-
parent, provokable, forgiving, and robust.This bouquet of qualities seemed the key
to success.

1.7 ARTIFICIAL SOCIETIES

The success of Axelrod’s tournaments launched a flurry of computer simulations.
Individual-based modeling of artificial societies greatly expanded the scope of game
theory. Artificial societies consist of fictitious individuals, each equipped with. astrat-
egy specified by a program. These individuals meet randomly, engage in an iterated
Prisoner’s Dilemma game, and then move on to meet others. At the end, the ac-
cumulated payoffs are compared. Often, such a tournament is used to update the
artificial population. This means that individuals produce “offspring”, i.e., other fic-
titious individuals inheriting their strategy. Those with higher payoffs produce more
individuals, so that successful strategies spread. Alternatively, instead of inheriting
strategies, the new individuals can adapt by copying strategies, preferentially from
individuals who did better. In such individual-based simulations, the frequencies of
the strategies change with time. One can also occasionally introduce small minori-
ties using new strategies, and see whether these spread or not. In chapter 2, we shall
describe the mathematical background to analyze such models.

Let us consider, for instance, a population using only two strategies, TFT and AlID.
The average payoff for a TFT player against another is 60 dollars (corresponding
to 6 rounds of mutual cooperation). If a TFT player meets an AllD player, the latter
obtains 15 dollars (by exploiting the co-player in the first round) and the former
loses 5 dollars. If two AlID players meet each other, they get nothing.

if the co-player  if the co-player
plays 7it for Tat  always defects

if I play Tit for Tat (TFT) 60 -5
My payoff
if I always defect (AlID) 15 0

Players having to choose among these two strategies fare best by doing what the
co-player does, i.e., playing TFT against a TFT player and AlID against an AllD
player. But in individual-based modeling, the fictitious players have no optlon.s.
They are stuck with their strategy, and do not know their co-player’s strategy in
advance. Obviously, the expected payoff depends on the composition of the artificial
population. If most play TFT, then TFT is favored; but in a world of defectors, AlID
does better. In the latter case, the players are caught in a social trap. Games with




