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This note has Maple code which reorders the vertices of a Directed Acyclic Graph (DAG) so that 

all edges are from higher numbered nodes to lower numbered nodes.  That is this always possible 

to do relies on the Order Extension principle, i.e. that any partial order can be extended to be a 

total order.  This is a deep theorem for infinite sets but for finite sets the proof is easy and there 

are algorithms, called Topological Sorting, that run in linear time. 

 

For finite DAG’s, one approach is to assign levels to each vertex in the graph as follows: 

 For a sink (vertex with no outgoing edges), assign      ( )   . 

 Remove all the sinks from the graph, then for all new sinks created, assign      ( )   . 

 Continue until all vertices have an assigned a level. 

 

From this level assignment, it is clear that all edges will go from higher level vertices to lower 

level vertices, assuming that the graph is acyclic.  [This should be checked by any program that 

implements this algorithm!]. 

 

Next order the vertices according to assigned level and renumber all vertices and edges 

according to this numbering scheme.  The resulting graph will have the desired property, that is, 

that all edges will go from a higher numbered vertex to a lower numbered vertex. 

 

Maple Programs 

 

The appendix to this note lists three Maple programs that implement the desired graph 

rearrangement.  For this purpose, our graph data structure is: 

 Vertices of the graph are labeled 1, 2, … n 

 Vertices are the indices of a list.  Each member of the list is a vertex.  This element of the 

list represents an outgoing edge from the vertex. 

For example, suppose the graph contains these edges: 

                

Then the graph would be represented as  {   } { } { } { }  

 

Program Description 

DAGlevel From a DAG, create a list of levels assigned to each vertex 

(Fail if the graph is not a DAG!) 

LevelOrder From a list of levels, create an ordering of the vertices with 

levels from low to high. 

GRperm From a specified graph and permutation, 

construct an isomorphic graph. 
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# Procs for DAG 

 

Help := proc() print(`DAGlevel(DAG) LevelOrder(Lorder) 

GRperm(GR,Perm`); end: 

 

# DAGlevel 

# Input: DAG as list of vertices with sets of outedges 

# Output: Levels of vertices satisfying: 

# Level(sink) = 0 

# Level(v) = 1 + max(Level(outedges)) 

 

DAGlevel := proc(DAG) 

 local n, v, e, doMore, Level; 

 

 n := nops(DAG); 

 Level := [0$n]; 

 doMore := true; 

 while doMore do 

  doMore := false; 

  for v from 1 to n do 

   if DAG[v] = {} then next; end; 

   for e in DAG[v] do 

    if Level[e] >= Level[v] then 

     Level[v] := Level[e] + 1; 

     if Level[v] >= n then 

      print(`Not a DAG!`); 

      return FAIL; 

     end; 

     doMore := true; 

    end; 

   end; 

  end; 

 end; 

 return Level; 

end: 

 

# From a list of levels for vertices, produce another list of 

the vertices 

# in non-decreasing level order 

# Example: Level = [3,3,1,0,2], then output will be [4,3,5,1,2] 
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# Note: vertices 1 and 2 could be in either order since they 

have the same level 

 

LevelOrder := proc(Level) 

 local L, n, i; 

 

 n := nops(Level); 

 L := [seq([Level[i],i],i=1..n)]; 

 L := sort(L); 

 return [seq(L[i][2],i=1..n)]; 

end: 

 

# Given a graph and a Permutation of the vertices (as produced 

by LevelOrder), 

# create a renumbered (but isomorphic) graph 

 

GRperm := proc(GR,Perm) 

 local n, v, e, InvPerm, GRout; 

 

 n := nops(Perm); 

 InvPerm := [0$n]; 

 for v from 1 to n do InvPerm[Perm[v]] := v; end; 

 GRout := [{}$n]; 

 for v from 1 to n do 

  for e in GR[v] do 

   GRout[InvPerm[v]] := GRout[InvPerm[v]] union 

{InvPerm[e]}; 

  end; 

 end; 

 return GRout; 

end: 


