A NOTE ON PARTITIONS AND TRIANGLES WITH INTEGER SIDES

ರ್ಷ (೯೬೫) ಕಟ್ಟಡಿಸಲಿಗೆ ಅದೆ.

GEORGE E. ANDREWS

In a recent paper [2], Jordan, Walch, and Wisner characterize the number T(n) of incongruent triangles with integer sides that have perimeter n. They determine T(n) by first noting that T(4)=0, T(6)=T(8)=1, T(10)=2, T(12)=3, T(14)=4, and then proving two theorems equivalent to the assertions: (1) T(2n+12)=T(2n)+n+3; (2) T(2n)=T(2n-3). In this note we remark that T(n) may be simply handled by relating it to $p_3(n)$ and $p_2(n)$, the number of partitions of n into 3 and 2 parts, respectively. In the following [x] denotes the greatest integer in x and $\{x\}$ is the nearest integer to x.

THEOREM.
$$T(n) = p_3(n) - \sum_{1 < j < \left[\frac{1}{2}n\right]} p_2(j)$$
.

Proof. Each partition of n into three parts yields a unique triangle of the desired type and conversely, except when the sum of the smallest two parts does not exceed the largest part. This happens for each partition of j into two parts c and d with $1 < j < \frac{1}{2}n$, for then c + d + (n-j) is the related partition of n and c + d < n - j. Hence $T(n) = p_3(n) - \sum_{1 < j < \frac{1}{2}n} p_2(j)$.

Corollary.
$$T(n) = \left\{\frac{n^2}{12}\right\} - \left[\frac{n}{4}\right] \left[\frac{n+2}{4}\right].$$

Proof. Since $p_2(n) = [\frac{1}{2}n]$ (see [1, p. 81, Ex. 1]), it is a simple problem in mathematical induction to prove that

$$\sum_{1 \le j \le \frac{1}{2^n}} p_2(j) = \left[\frac{n}{4}\right] \left[\frac{n+2}{4}\right].$$

The formula $p_3(n) = p("\{1,2,3\}", n-3) = \{n^2/12\}$ for n > 0 is given in Example 2 of [1, p. 81].

We note that this corollary gives us an operational formula through which we may easily compute T(n); furthermore, all the assertions for T(n) described in the first paragraph are easily deduced from it.

This paper was partially supported by National Science Foundation Grant MCS75-19162.

References

1. G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and Its Applications, vol. 2, Addison-Wesley, Reading, Mass., 1976.

2. J. H. Jordan, R. Walch, and R. J. Wisner, Triangles with integer sides, Notices Amer. Math. Soc., 24 (1977)

A-450.

686-689

DEPARTMENT OF MATHEMATICS, THE PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PA 16802.