We check that the function works.

```
> f(1/2);
    1
    4
```

```
> f(2);
    -1
```

Now try plotting the function.

```
> plot(f,-2..2);
```

Remember this syntax. When \(f \) is a proc, the command `plot(f(x),x=-2..2)` will not work.

We now examine a more complicated example. The following procedure `trap(f,a,b,n)` computes an approximation of the definite integral \(\int_{a}^{b} f(x) \, dx \) using the trapezoidal rule with \(n \) divisions. Type it in.

```
> trap:=proc(f,a,b,n)
>    local s,i,ds,exact,x ;
>    s:=0;
>    for i from 1 to n-1 do
>        s:=s+f(a+i*(b-a)/n):
>    od:
>    s:=2*s + f(a) + f(b):
>    ds:=s*(b-a)/2/n:
>    exact:=int(f(x),x=a..b):
>    print('The integral by the trapezoidal rule with n = ',n,' is ');
>    print(evalf(ds));
```

8.4 Local and global variables

If the local statement is not used in a MAPLE `V proc`, then all variables within the proc are declared `local` by default. To change the default we use the `local` and `global` statements.

```
> g := proc(x,y)
>    local z,i;
>    global v,w;
>    if x>y>1 then
>        v:=x+y:
>    else
>        w:=x-y:
>    fi;
>    RETURN(x*y);
> end;
```
Now try some examples to see what this proc is doing.

> g(2,3);
> v,w;
> g(1/2,1/3);
> v,w;

Do you see what's going on? Each time g is called, the global value of v or w is changed depending on the input (x,y).

8.5 Reading and saving procs

Although the editing features of MAPLE V are getting better and better with each release, it is usually more convenient and wiser to write MAPLE V programs using an editor and save them in ordinary text files. For instance, instead of typing the proc trap (given in Section 8.3) directly into a worksheet within maple, it would be better to create it using an editor in, say, the file trap. The MAPLE V read function is used to read a file into a maple session. We give an example for Windows. If this file was in the sub-directory myprogs within the maplev4 directory, try

> read 'c:\maplev4\myprogs\trap';

and then trap is ready for use. A variant of this should work on other platforms. For instance, in the unix version try

> read trap;

if your MAPLE V session was started in the same directory.

8.6 Viewing built-in MAPLE V code

One of the great features of MAPLE V is that most of the built-in functions are written in the MAPLE V programming language and the code is accessible to the user. To see how MAPLE V defines the Gamma function, try

> interface(verbosproc=2);
> op(GAMMA);

9. Saving and Reading Files

In Section 8.5 we saw that the MAPLE V read command may be used to read in programs in a MAPLE V session. In this chapter we examine the ways the following may be saved and read: (1) variables, (2) sessions, and (3) worksheets. Also we will examine the different ways in which MAPLE V worksheets may be exported.

9.1 Saving a Maple Session

A MAPLE V session may saved through the File menu by releasing on Save As ... or by clicking on The options are then Maple Worksheet, Maple Text, Text, and LaTeX Source.
The default is Maple Worksheet. The file extension for a maple worksheet is *mws*. If you saved your session as *first.mws* then, in a later session, you may open this worksheet by selecting Open ... or by clicking on . When this worksheet is open, the whole worksheet is visible but the values of variables have not been assigned. The values of variables may be assigned using the `save` command.

```maple
> x := 5;
> y := 7;
> z := int(1/u, u);
> save 'first.m';
> save x, y, part1;
```

In the session above, all the variables were saved in the maple binary file *first.m*. The values of `x` and `y` were saved in the text file *part1*.

9.2 Reading MAPLE V programs

See Section 8.5 on reading MAPLE V procs. MAPLE V programs may be read in the same manner. An existing MAPLE V worksheet may be opened under the File menu by selecting Open ... or by clicking on .

Text files and `.m` files may be read with the `read` command. We read two files created in the last section:

```maple
> read 'first.m';
> read part1;
```

When `first.m` is read, the values of all the variables `x`, `y`, and `z` are assigned but not displayed. When the text file `part1` is read, the variables `x` and `y` are assigned their previous values and displayed.

9.3 Saving worksheets and LaTeX

In Section 9.1 we saw how a maple worksheet may be saved as a `.mws` file and opened in a later session. A worksheet may also be saved as a plain text or LaTeX file. In the File menu, select Export As ... and then select either Plain Text ..., Maple Text ..., or LaTeX ... To convert maple output into LaTeX, use the `latex` function. Try

```maple
> with(linalg):
> A := matrix(3,3,(i,j) -> sin(Pi*i*j/6));
> latex(A);
```

10. Document Preparation

MAPLE V (Release 4) has many new features for creating documents. It is now possible to add maple output to text and create technical documents. There are also facilities for adding headings, changing fonts, inserting expandable subsections, bookmarks, and hyperlinks.
We now demonstrate some of these features with a specific example. Suppose we have the following:

Problem. Reduce the weight of a ball-bearing with diameter 2 cm by 50% by drilling a hole through the center. Determine the diameter of the required drill-bit.

This problem can be solved easily in MAPLE by computing a certain integral and solving an equation. Start maple and type in the following.

```maple
> v := Int(4*Pi*x*sqrt(1-x^2), x=0..r);

\[ v := \int_{0}^{r} 4\pi x \sqrt{1 - x^2} \, dx \]

> v := value(v);

\[ -\frac{4}{3} (1 - r^2)^{3/2} \pi + \frac{4}{3} \pi \]

> rrs := solve(v=2*Pi/3, r);

\[ rrs := \text{RootOf}(-12Z^4 + 12Z^2 - 3 + 4Z^6, -0.6083087005, \text{RootOf}(-12Z^4 + 12Z^2 - 3 + 4Z^6, 0.6083087005)) \]

> convert(rrs[2], radical);

\[ \frac{1}{2} \sqrt{4 - 2^{1/3}} \]
```

The desired diameter is

\[2r = \sqrt{2} \sqrt{2 - 2^{1/3}} \approx 1.212 \text{ cm}. \]

You may be wondering what is going on in this problem. We can make a much clearer document by adding text.

10.1 Adding text

First we add some text to our document. Click the cursor on the first line of maple input. Then in the Insert menu, select Execution Group and Before Cursor. A maple prompt `>` should appear above the first line of input. Now click on `T` and type

Reduce the volume of a ball bearing with diameter 2 cm by 50% by drilling a hole through the center. Determine the diameter of the required drill-bit.
To create a new paragraph, click on \mathbb{A} and then \mathbb{T}. Now type

First we observe that the ball bearing is the solid obtained by rotating a circle of radius 1 cm about the y-axis. If we let r be the radius of the drill-bit then, by the shell method, the volume of material removed is given by

Now we would like to add some in-line math.

10.2 Inserting math into text

In the Insert menu, select Math Input and a red $\mathbb{?}$ should appear. Type

$$\text{Int}(4\pi x \sqrt{1-x^2}, x=0..r)$$

What was maple input should now appear as math in your document. Click to the right of the math and click on \mathbb{T} and type

We compute the integral

Let's add a title.

10.3 Adding titles and headings

Click on the first line of the worksheet. In the Insert menu, select Execution Group and Before Cursor. Then click on \mathbb{T}. In the box \mathbb{P} Normal $\mathbb{2}$ select Title. Now type

The Ball Bearing Problem

The document should now have a title. Press enter and type your name

William E. Wilson

Your name should now be underneath the title. Press enter again. To make a heading this time, we select Heading 2. Type

Statement of the problem

To underline this heading, click on \mathbb{U}. Now make a heading entitled Solution for the next paragraph.

Let's move some of the maple computations into a new subsection.

10.4 Creating a subsection

Use the first mouse button to highlight the maple inputs

$$v:=\text{Int}(4\pi x \sqrt{1-x^2}, x=0..r)$$

and

$$v:=value(v);$$

together with their output. Now click on \mathbb{B}. A little button $\mathbb{=} \text{should appear.}$ Try clicking on it. Pretty neat! Now see if you can add a heading to this subsection using the Heading 3 selection.
Now we shall add some more text and math by cutting and pasting.

10.5 Cutting and pasting

First we create a new region. Click on the vertical bar attached to \(\text{①} \) and click on \(\text{⑤} \) and then \(\text{③} \). There should now be a new text region below the new subsection. Now type

Our computation gave

At this point, we would like to add an equation to our document. This time we will use the mouse to cut and paste. First click on \(\text{⑤} \) and type

\[
> \ 'v' =
\]

Now, instead of retyping maple input, we move the cursor to the maple output above and use the mouse to highlight

\[
\frac{4}{3} (1 - r^2)^{3/2} \pi + \frac{4}{3} \pi
\]

Use the mouse or hot-keys to copy the selection and paste it to the right of the equal-sign. The hot-keys are system dependent. In Windows, use control-c to copy and control-v to paste. Observe how the displayed math has been converted to maple input. Now type a semi-colon and press enter.

\[
> \ 'v' = -4/3*(1-r^2)^{3/2}*\pi+4/3*\pi;
\]

\[
v = \frac{4}{3} (1 - r^2)^{3/2} \pi + \frac{4}{3} \pi
\]

Now use the mouse to highlight the maple input line

\[
> \ 'v' = -4/3*(1-r^2)^{3/2}*(\pi+4/3*\pi);
\]

and hit control-x (or delete) and this line should now be erased. Finally, add enough text and equations so that the document is complete. A rendition of how it might appear is given below.

The Ball Bearing Problem

William E. Wilson

Statement of the problem

Reduce the volume of a ball bearing with diameter 2 cm by 50% by drilling a hole through the center. Determine the diameter of the required drill-bit.

Solution

First we observe that the ball bearing is the solid obtained by rotating a circle of radius 1 cm about the y-axis. If we let \(r \) be the radius of the drill-bit then, by the shell method, the volume \(v \) of
10.6 Bookmarks and hypertext

A *bookmark* is a name that marks a location in a worksheet. Selecting this name will move the cursor to the specified location. To create a bookmark at the last equation in our document, click the cursor on the equation. Then, in the **View** menu, select **Bookmarks** and then **Edit Bookmark** ... An **Add or Modify Bookmark** window should appear. In the **Bookmark Text** box, type a word, say, **ANSWER** and click on OK. Although the worksheet appears no different, it now has a single bookmark. We may access this bookmark by selecting **Bookmarks** in the **View** menu. Now **ANSWER** should appear in the submenu. Select **ANSWER** and the cursor will move to the specified location. Try moving the cursor to a different place in the worksheet and select **ANSWER** again.

Now we will use our bookmark to create a hyperlink in our worksheet. A **hyperlink** is a link from one location in the worksheet to a different location in the worksheet or to a different worksheet altogether. The presence of a hyperlink is indicated by green underlined text. Clicking on this text will move the cursor to the new location. In our worksheet we will attach a hyperlink from the word **diameter** in the statement of the problem to our bookmark **ANSWER**.

Move the cursor to the word **diameter** near the top of the worksheet and in the **Insert** menu se-
lect HyperLink... A HyperLink Properties window should appear. In the Link Text box, type diameter. Then click on near the Book Mark box and select ANSWER (or type ANSWER in the box). Finally, click on OK. The worksheet should now contain a green diameter. You will need to delete the old “diameter”. Try clicking on diameter. The cursor should move to the last equation in the worksheet where we placed the bookmark ANSWER.

Try adding a hyperlink to a different worksheet. First create a new worksheet say shell.mus, which contains a description of the shell method. Then attach a hyperlink to the phrase “shell method” in the original worksheet.

11. OVERVIEW OF PACKAGES

In Chapters 6 and 7 we needed the plots and linAlg packages. In this chapter we give a brief description of the main functions in some of the other packages. Remember, a package must be loaded with the with command. To see a list of the available packages try

> ?index[packages]

11.1 Numerical approximation

The numerical approximation package is numapprox. Remember to first type

> with(numapprox);

Functions include

- chebyshev: Chebyshev expansion
- hornerform: convert into Horner form
- infnorm: L-infinity norm
- minimax: best minimax rational approx.
- pade: Pade approximation

11.2 Combinatorial functions

The combinatorial functions are in the combinat package. Functions include

- character: character table of S_n
- choose: subsets
- graycode: graycode order
- multinomial: multinomial coefficient
- partition: partitions of a given integer
- permute: permutations
- randperm: random permutation
- stirling1: stirling number of the first kind

11.3 Number Theory

The number theory package is numtheory.

Functions include:

- bernoulli: Bernoulli numbers and polynomials
11.5 Statistics

The stats package has seven subpackages:
- anova — analysis of variance
- describe — data analysis
- fit — linear regression
- random — random numbers with a given distribution
- statevlf — numerical evaluation of distribution function
- statplots — statistical plotting
- transform — data manipulation

The following function is available at the top level.

\[
\text{importdata(filename, n)}
\]

Imports data from a file into \(n \) streams.

Each subpackage must be loaded separately. For instance, to load the anova (analysis of variance) subpackage, type

```r
> with(stats[anova]);
```

11.6 Student calculus

The student package contains many functions to help the calculus student solve problems step-by-step. In Section 5.7.2 we used the functions changevar, intparts to do some integration problems. The package also includes the following functions:

- complete_square complete the square
11.7 Other packages

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance</td>
<td>distance between two points</td>
</tr>
<tr>
<td>DoubleInt</td>
<td>double integral</td>
</tr>
<tr>
<td>leftbox</td>
<td>plots Riemann sum (also see middlebox, rightbox)</td>
</tr>
<tr>
<td>makeproc</td>
<td>converts expression to function</td>
</tr>
<tr>
<td>midpoint</td>
<td>midpoint of two points</td>
</tr>
<tr>
<td>showtangent</td>
<td>plots a function together with its tangent at a given point</td>
</tr>
<tr>
<td>simpson</td>
<td>Simpson’s rule</td>
</tr>
<tr>
<td>trapezoid</td>
<td>the trapezoidal rule</td>
</tr>
</tbody>
</table>

12. Glossary of Commands

- **Function composition operator**

 Syntax: f@g

 Gives the composition of the functions f and g.

 Example:

  ```
  > (sin@cos)(x);
  ```

- **animate**

 Animation of a 2-dimensional plot [plots]

 Syntax: animate(F(x,t),x=a..b,t=c..d)

 Animation of F(x,t) on the interval [a, b] with frames c ≤ t ≤ d.

 Example:

  ```
  > with(plots):
    animate(sin(x*t), x=-10..10, t=1..2);
  ```

- **animate3d**

 Animation of a 3-dimensional plot [plots]

 Syntax: F(x,y,t), x=a..b, y=c..d, t=p..q

 Animation of F(x,y,t) for a ≤ x ≤ b, c ≤ y ≤ d.
with frames $c \leq t \leq d$.

EXAMPLE:

```plaintext
> with(plots):
animate3d(cos(x+t*y), x=0..Pi, y=-Pi..Pi, t=1..2);
```

assign

Assignment of solution sets

SYNTAX: assign(S)

Assigns the variables given in the set S.

Example:

```plaintext
> S:={y=-1, x=2}: assign(*); x, y;
```

asympt

Asymptotic expansion

SYNTAX: asympt($f(x), x, n$)

Gives the asymptotic expansion to order n of $f(x)$ as $x \to \infty$.

Example:

```plaintext
> asympt(GAMMA(x)^2/GAMMA(2*x)*4^x/sqrt(Pi), x, 3);
```

changevar

Performs a substitution in an integral

SYNTAX: changevar($u = g(x)$, int($f(x), x$), u)

Performs the substitution $u = g(x)$ on the given integral.

Example:

```plaintext
> with(student): Int(x^2/sqrt(1-x^6), x):
> changevar(u=x^3, *);
```

coeff

Coefficient in a polynomial

SYNTAX: coeff($p(x), x, k$)

Returns the coefficient of x^k in the polynomial $p(x)$.

Example:

```plaintext
> expand((1+x+x^2)^10): coeff(*, x, 10);
```

collect

Collect coefficients of like powers

SYNTAX: collect($expr, x$)

Write the expression as a polynomial in x.

Example:

```plaintext
> (x+1)^3+y-(y+1)^3+x: collect(*, x);
```

combine

Combine terms

SYNTAX: Combine($expr$)

Combines terms in the expression.

Example:

```plaintext
> combine(sqrt(x+2)*sqrt(x+3));
```

contourplot

2-dimensional contour plot

SYNTAX: contourplot($f(x,y), x=a..b, y=c..d$)

Produces level curves of the function $f(x,y)$ with x, y in the specified ranges.

Example:

```plaintext
> with(plots): contourplot(sin(x*y), x=0..Pi, y=0..Pi);
```

convert

Convert data type

SYNTAX: convert($expr$, type)

Converts the expression to the new type.

Example:
series(sqrt(1-x), x, 4):
convert(%, polynom);

degree Degree of a polynomial
SYNTAX: degree(p(x), x)
Returns the degree of the polynomial in x.
EXAMPLE:
> degree((x+y)^6+(y-x^2)^10, x);

denom Denominator of an expression
SYNTAX: denom(expr)
Returns the denominator of the expression.
EXAMPLE:
> denom((x*sin(x)-cos(x))/x^2);

diff Differentiation
SYNTAX: diff(z, x)
Returns the (partial) derivative \(\frac{dz}{dx} \).
EXAMPLE:
> diff(sin(x^2*y^2), x);

display Displays a list of plots
SYNTAX: display(L)
Displays the plot structures in the list L.
EXAMPLE:
> with(plots): P1:=plot(sin(x), x=0..Pi, style=POINT): P2:=plot(x, x=0..Pi):
> display([P1,P2]);

dsolve Solve ord. differential equations
SYNTAX: dsolve(deqn, function)
Solves the given differential equation for the unknown function.
EXAMPLE:
> dsolve(diff(y(x),x$2)-y(x)=sin(x), y(x));

evalf Evaluate using floating-point arith.
SYNTAX: evalf(expr, n)
Evaluate the expression to n digits.
EXAMPLE:
> evalf(exp(-Pi), 20);

expand Expand an expression
SYNTAX: expand(expr)
Expands the expression.
EXAMPLE:
> expand((2*x+1)*(3*x-5));

factor Factor a polynomial
SYNTAX: factor(p)
Factors the polynomial p.
EXAMPLE:
> factor(x^3+x^2+y-x*y^2-y^3);

floor Greatest integer function
SYNTAX: floor(r)
Returns the greatest integer less than or equal to r.
EXAMPLE:
> floor(-11/3);

fsolve Solve using floating-point arith.
SYNTAX: fsolve(eqns, vars)
Finds an approximate solution to the given set of
equations.
EXAMPLE:
> fsolve(cos(x)=x/2,x);

ifactor Prime factorization of an integer
SYNTAX: ifactor(n)
Computes the prime factorization of the integer n.
EXAMPLE:
> ifactor(999);

implicitplot 2-dim. plot of a function defined
[plots] implicitly
SYNTAX: implicitplot(f(x,y)=c,x=a..b,
y=c..d)
Plots the set of points (x,y) satisfying f(x,y) = c
in the indicated ranges.
EXAMPLE:
> with(plots):
 implicitplot((x^2+y^2+y^2)^2=1, x=-1..1,
y=-1..1, z=-1..1);

implicitplot3d 3-dim. plot of a function
defined implicitly
SYNTAX: implicitplot3d(f(x,y,z)=c,x=a..b,
y=c..d,z=e..f)

Plots the set of points (x,y,z) satisfying f(x,y,z)
= c in the indicated ranges.
EXAMPLE:
> implicitplot3d(x^2+y^2+z^2=1, x=-1..1,
y=-1..1, z=-1..1);

int Compute an integral
SYNTAX: int(f(x),x)
Computes \(\int f(x) \, dx \).
SYNTAX: int(f(x),x=a..b)
Computes the definite integral \(\int_a^b f(x) \, dx \).
EXAMPLE:
> int(x^2/sqrt(1+x^2),x=1..sqrt(3));

isolve Integer solutions to equations
SYNTAX: isolve(eqns, var)
Finds integer solutions to the given set of equa-
tions (if they exist).
EXAMPLE:
> isolve({x^3+x*y=2, x^2+y^2=2}, {x,y});

latex Convert to \LaTeX
SYNTAX: latex(expr)
Converts the expression into \LaTeX.
EXAMPLE:
> latex(int(1/x,x));

lhs Left-hand side of an equation
SYNTAX: lhs(eqn)
Gives the left-hand side of the given equation.
EXAMPLE:
> a := x^2 + y^2 = r^2; 1hs(a);

\[a := x^2 + y^2 = r^2 \]

limit Compute a limit
SYNTAX: limit(f(x), x = a)
Computes the limit \(\lim_{x \to a} f(x) \).
EXAMPLE:
> limit((cos(x)-1)/x^2, x = 0);

\[\text{normal} \]
Normalize a rational function
SYNTAX: normal(expr)
Simplifies the expression by clearing common factors.
EXAMPLE:
> normal((1-q^7)+(1-q^6)/(1-q^2)/(1-q));

\[\text{numer} \]
Numerator of an expression
SYNTAX: numer(expr)
Returns the numerator of the expression.
EXAMPLE:
> numer((x+sin(x)-cos(x))/x^2);

\[\text{op} \]
Extracts operands of an expression
SYNTAX: op(expr)
Converts the expression into a list of operands.
SYNTAX: op(n, expr)
Extracts the \(n \)-th operand in the expression.
EXAMPLE:
> w := x^3 + x*y + y; op(w); op(2, w);

plot 2-dimensional plot of a function
SYNTAX: plot(f(x), x = a..b)
Plots the function \(y = f(x) \), \(a \leq x \leq b \).
EXAMPLE:
> plot(x*sin(x), x = 0..Pi);

plot3d 3-dimensional plot of a function
SYNTAX: plot3d(f(x, y), x = a..b, y = c..d)
Plots the function \(z = f(x, y) \), \(a \leq x \leq b, c \leq y \leq d \).
EXAMPLE:
> plot3d(sin(x*y), x = 0..Pi, y = 0..Pi);

polarplot Plots a polar curve
SYNTAX: polarplot(f(t), t = a..b)
Plots the polar curve \(r = f(\theta) \), \(a \leq \theta \leq b \).
EXAMPLE:
> with(plots):
polarplot(sin(t), t = 0..2*Pi);

product Find the product
SYNTAX: product(f(i), i = a..b)
Computes the product \(\prod_{i=a}^{b} f(i) \).
EXAMPLE:
> product((a+i-1), i = 1..6);

radsimp Simplify radicals
SYNTAX: \texttt{radsimp(expr)}
Simplify the expression containing radicals.
EXAMPLE:
\begin{verbatim}
> radsimp(sqrt(3)*sqrt(15));
\end{verbatim}

\texttt{rationalize} Rationalize the denominator
SYNTAX: \texttt{rationalize(expr)}
Rationalize the denominator in the expression.
EXAMPLE:
\begin{verbatim}
> (1+sqrt(2))/(sqrt(2)-sqrt(3)):
 rationalize(');
\end{verbatim}

\texttt{rhs} Right-hand side of an equation
SYNTAX: \texttt{rhs(eqn)}
Gives the right-hand side of the given equation.
EXAMPLE:
\begin{verbatim}
> e:=x^2+y^2=r^2: rhs(e);
\end{verbatim}

\texttt{seq} Creates a sequence
SYNTAX: \texttt{seq(f(i), i=a..b)}
This creates the sequence \(f(a), f(a+1), \ldots, f(b) \).
EXAMPLE:
\begin{verbatim}
> seq(x+(y-x)*i/4, i=0..4);
\end{verbatim}

\texttt{simplify} Simplify an expression
SYNTAX: \texttt{simplify(expr)}
Simplifies the expression.
EXAMPLE:
\begin{verbatim}
> simplify((sin(x)+cos(x))^2);
\end{verbatim}

\texttt{solve} Solve equations
SYNTAX: \texttt{solve(eqns, var)}
Finds solutions to the given set of equations (if they exist).
EXAMPLE:
\begin{verbatim}
> solve({x^2+y+y-y=17,y^2-x-y=9},\{x,y\});
\end{verbatim}

\texttt{spacecurve} Plot spacecurve
[plots]
SYNTAX: \texttt{spacecurve([f(t),g(t),h(t)], t=a..b)};
Plots the space-curve parametrized by \(x = f(t), y = g(t), z = h(t), a \leq t \leq b \).
EXAMPLE:
\begin{verbatim}
> with(plots):
spacecurve([[sin(t),cos(t),t,t=0..2*Pi]]);
\end{verbatim}

\texttt{subs} Substitute into an expression
SYNTAX: \texttt{subs(x=a, expr)}
Replaces \(x \) by \(a \) in the expression.
EXAMPLE:
\begin{verbatim}
> t^2+t+1: subs(t=1+sqrt(5),');
\end{verbatim}

\texttt{sum} Summation
SYNTAX: \texttt{sum(f(i), i=a..b)}
Computes the sum \(\sum_{i=a}^{b} f(i) \).
EXAMPLE:
\begin{verbatim}
> sum(i^2, i=1..100);
\end{verbatim}
13. FURTHER READING

Below is a list of recent books on MAPLE V.

Introductory books

Reference books

Maple and Calculus

Maple and Differential Equations

Maple and Linear Algebra

Maple, Science and Engineering

colon, 3
coloring, 81
column operations, swapcol, mulcol, addcol, 91
column space, colspace, 94
combinatorial function package, combinat, 117
combinatorial structures, 120
combine, 13, 123
complex numbers, 11, 96
composition of functions, 42-43
concatenation of
 lists, 36
 sequences, 32
conditional statement, 99
constants, 11
constrained, 69
context bar, 2
contour style, 75
contourplot, contourplot3d, 80-81, 123
convert to
 list, 40
 partial fraction, 59
 polynomial, 124
 radical, 108
 rational, 10
 set, 40
cross product, crossprod, 97
data analysis, 119
data conversions, 39-40
data manipulation, 119
data types, 31
degree, 21, 124
denominator, denom, 19, 124
derivative, see differentiation,
 higher order, 48
 partial, 49
determinant, det, 92
differential operator, D, 50
differentiation, Diff, diff, 48-50, 57, 61-62, 124
Digits, 10
discont plot option, 72
display, 67, 70-71, 79, 83, 124
distribution functions,
 numerical evaluation of, 119
do, 99-100
double integral, 55, 120
dsolve, 60-62, 124-125
double integral, 55, 120
dsolve, 60-62, 124-125
ing, 5
eigenspace, 95
eigenvalues, eigenvals, 94
eigenvectors, eigenvects, 95-96
elementary row and column operations, 90-91
elliptic integrals, EllipticE, 9
else, 99
entermatrix, 88
equations, 23-27
error in summation variable, 46
Euclidean geometry, 120
eval, 87
evalf, 9-10, 56, 125
evalm, 89, 93
expand, 12-13, 125
exponential function, exp, 8
extract operands, see ep
extrema, 50-54
factorial, !, 8
factoring a
 polynomial, factor, 11-12, 19, 125
 rational function, factor, 19
factorization of integers, ifactor, 28
fl, 99
filled, 81
financial math, 120
floating-point evaluation, see evalf
floor, 29, 125
fonts in plot text, 72, 83
for, 99–100
fractional part, frac, 29
frames, 85
functions,
 defining, 40–41
Galois fields, 120
gamma function, GAMMA, 9, 122
Gauss-Jordan elimination, gaussjord, 92
Gaussian elimination, gausselim, 92
gcd, 29
global, 101, 103
graph networks, 120
graph of a function, 63–65, 69, 73–74
graphical objects, 120
grid plot option, 77
help, 6
hidden line removal style, 75
hypertext, 115–116
I, 11
if, 99
implicitplot, 69, 126
implicitplot3d, 82, 126–127
improper integral, 55
index, 6
infinity, 48, 55
inline, 73
integer solutions, see isolate
integration, int, Int, 54–59, 127
 by parts, intparts, 58
 by substitution, see changevar
interface, 73, 105
interrupt a computation, 2
intersection, 34
inverse function, 43
inverse of a matrix, inverse, 89, 92
inverse trig functions, 9
iquo, 28
irem, 28
isolve, 31, 127
isprime, 30
ithprime, 30
Jordan form, jordan, 96
latex, 107, 127
lcm, 30
left-hand side of an equation, lhs, 23
Limit, limit, 47–48, 128
linalg package, 86
line style, 64
linear optimization, 120
linear regression, 119
lists, 35–36
local, 101, 103
logarithmic function, log, 8
loops, 99–100
magnification, 2
map, 42
matrix operations, 89
matrix, 86
maximize, 50–51,
member, 35
menu bar, 64, 74
minimize, 50–52,
minus, 34
mulrow, 90–91
multiple plots, 67, 78–79
multiply matrices, 89–90
nops, 33
normal, 18, 128
null space, nullspace, 94
number theory package, numtheory, 117-118
numerator, numerator, 19, 128
numerical approximation package, numapprox, 116-117
numerical integration, 55-56
numpoints, plot option, 67, 79
od, 100
op, 33, 35, 37-39, 87, 128
orientation, 75-77
orthogonal polynomial package, orthopoly, 118
packages,
other, 120
parametric plots, 65-66
3-dimensional, 77
partial derivative, 49
partial fractions, 59
patch style, 75, 85
Pi, 11
plot buttons, 64-65, 75
plot, 63-67, 70, 129
plot3d, 73-74, 77, 79, 83, 129
plotdevice, 72-73
plotoptions, 73
plots, package, 67-69, 79-80, 82-85
plotsetup, 72-73
plotting
discontinuous functions, 72
functions defined implicitly, see implicitplot
level curves, see contourplot
more than one function, see multiple plots
options, 72
points, 70
polar curves, see polarplot
spacecurves, see spacecurve
statistical data, 119
surfaces defined implicitly, see implicitplot3d
point style, 64, 70, 75
polarplot, 68-69
polynomial division, 20
postscript file, 73
primes, see isprime, ithprime
print, 87, 100
printing a plot, 72-73
procedures, proc, 101
Product, product, 45, 60, 129
programming, 98-104
projection, 69
prompt, 1, 3
quitting, 7
radsimp, 15-16, 129-130
random matrices, randmatrix, 96-97
rank, 93
rationalize, 16-18, 130
rationalizing the denominator, see rationalize
reading a file, read, 104-107
readlib, 16-17, 52
reference books, 132-133
remainder, 20-21, 28-29
restoring variable status, 22
restricting domain and range, 65
RETURN, 101
RootOf, 25
rotation of a surface, 85
row echelon form, 91
row operations, swaprow, mulrow, addrow, 90-91
row space, rowspace, 94
same scale, 65, 75, see constrained
saving a maple session, 105-106
saving a plot, 72–73
saving variables, save, 106
semi-colon, 3
seq, 32, 36, 42, 130
sequences, 31–33
series, 60, see Taylor series
set operations, 34
sets, 33–35
simplifying
expressions, simplify, 14–15, 130
radicals, see radsimp, rationalize
rational functions, see normal, simplify
solving
equations, solve, 23–25, 131, see fsolve, isolve,
differential equations, see dsolve
space curve, spacecurve, 79
square root function, sqrt, 8, 13
starting a session, 1
statistical plotting, 119
statistics package, stats, 119
student calculus package, student, 119–120
substituting into an expression, subs, 22, 26, 53, 131
Sum, sum, 43–44, 131

Tables, table, 36–37
Taylor series, taylor, 59–60, 132
text in a plot, textplot, 70–71
title in a plot, 70, 82–83
toolbar, 1
trace of a matrix, 89
transpose of a matrix, 89
type, 39–40
unapply, 41
union, 34
value, 44, 46–48, 54–58, 132
vector, 86

verboseproc, 105
whattype, 40
wireframe style, 75
with, 17, 57, 67, 79, 86
worksheets, 1–3
adding text, 109
bookmarks, 115–116
headings, 111
hyperlinks, 115–116
inserting math in text, 110, 112–113
subsections, 111
titles, 110–111
underlining text, 111
zeta function, Zeta, 9