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PREFACE

maple� is a very powerful interactive computer algebra system. It is used
by students, educators, mathematicians, statisticians, scientists, and engineers
for doing numerical and symbolic computation. maple has many strengths: (1)
it can do exact integer computation, (2) it can do numerical computation to any
(well, almost) number of specified digits, (3) it can do symbolic computation,
(4) it comes with many built-in functions and packages for doing a wide variety
of mathematical tasks, (5) it has facilities for doing two- and three-dimensional
plotting and animation, (6) it has a worksheet-based interface, (7) it has facil-
ities for making technical documents, and (8) maple is a simple programming
language, which means that users can easily write their own functions and pack-
ages.

The present book is a greatly expanded version of an earlier book, The
MAPLE V Primer, by the author. A lot has happened to maple since. This
book covers maple 7, the latest version of maple. The book is quite compre-
hensive. It should serve both as an introduction to maple and as a reference.
If you are learning maple for the first time, it is advised that you work slowly
through the book until at least Chapter 7. Keep the book open with you at
the computer as you try the commands. All the examples of maple commands
used in the book, as well as supplementary files are available for download-
ing from www.crcpress.com. The files are also available from the author’s site
http://www.math.ufl.edu/∼frank/maple-book/mbook.html
See Section 12.3.

maple is both an interactive computer algebra system and a programming
language. An important goal of this book is to show you how to write sim-
ple maple programs (or procedures). Chapter 7 is a tutorial for learning the
maple programming language. There are programming exercises for the reader
to tackle. Their solution is given at the end of the chapter. Once the reader
has learned how to program, he or she will appreciate the real power of maple.
Hopefully readers will learn to write their own programs and packages to suit
their needs.

As you progress further into the book you will learn how to use maple

� Maple is a registered trademark of

Waterloo Maple Inc.,

57 Erb Street West,

Waterloo, Ontario,

Canada N2L 5J2,

Phone: 1-800-267-6583, (519) 747-2373,

Fax: (519) 747-5284,

E-mail: info@maplesoft.com,

Web site: http://www.maplesoft.com.

© 2002 by Chapman & Hall/CRC

http://www.crcpress.com
http://www.math.ufl.edu
http://www.maplesoft.com
mailto:info@maplesoft.com


for more advanced mathematics: differential equations, linear algebra, vector
calculus, complex analysis, special functions, statistics, finite fields, group theory,
combinatorics, and number theory. maple has many packages that are not
automatically loaded when a maple session is begun. To load a package, one
needs to use the with(package) function. One of the big changes in maple 6
was the new LinearAlgebra package. All of maple’s packages are covered in the
book to some degree. Some are covered in great depth, such as the LinearAlgebra
package in Chapter 9 and the stats package in Chapter 16.

Additional maple packages and worksheets are available free at The Maple
Application Center page on the Web at http://www.mapleapps.com. See Ap-
pendix A for more information.

maple has fabulous built-in help facilities. Help can be found either through
the interactive Help menu or by using the ? command. For instance, a very short
introduction to maple can be found by typing ?intro.

maple is available on Windows, Macintosh, UNIX, and Linux systems. The
author would like to thank Waterloo Maple, Inc., for permission to include pic-
tures of the maple icons and buttons, and some portions of the text from the
on-line help system. Special thanks go to Cynthia Wilson Garvan and Weir Hou,
who helped a lot with Chapter 16, the chapter on statistics. The author thanks
Bob Stern at CRC Press, for his encouragement and patience.

Frank Garvan (frank@math.ufl.edu)
Department of Mathematics
University of Florida
Gainesville, Florida
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1. GETTING STARTED

1.1 Starting a MAPLE session
On most systems a maple session is started by double clicking on the maple

icon . In the UNIX X Windows version, maple is started by entering the
command xmaple. In the command-line (tty) version, the Maple logo appears
followed by the > prompt.

In most versions a window with menus will appear. See Figure 1.1 below. At
the top are the menus File, Edit, View, Insert, Format, Spreadsheet, Options,
Window and Help. Beneath are two rows of buttons. The first row of buttons
is called the tool bar and contains 24 buttons:

Create a new worksheet.

Open an existing worksheet.

Open a specified URL.

Save the active worksheet.

Print the active worksheet.

Cut the selection to the clipboard.

Copy the selection to the clipboard.

Paste the clipboard contents into the current work-
sheet.

Undo the last operation.

Undo the last “undo.”

Insert maple commands.

Insert text.

Insert a new maple input region after the cursor.

Remove any section enclosing the selection.

1
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2 The Maple Book

Enclose the selection in a subsection.

Go back in the hyperlink history.

Go forward in the hyperlink history.

Interrupt the current computation.

Set magnification to 100%.

Set magnification to 150%.

Set magnification to 200%.

Display nonprinting characters.

Resize the active window to fill the available space.

Restart.

The next row is called the context bar and contains five buttons:

Toggle the expression display between mathematical
and maple notation.
Toggle the expression display between inert text and
executable maple command.

Auto-correct the expression for syntax.

Execute the current expression.

Execute the worksheet.

The > prompt will be in the worksheet window. Don’t worry about the buttons
too much at this stage.
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Getting Started 3

Figure 1.1 maple worksheet window.

1.2 Different versions of MAPLE

The current version of maple is maple 7 . The previous version was

maple 6 . Before that, there was maple v Release 5 , maple v
Release 4, and way back in 1994, we had maple v Release 3. This book covers
maple 7. The change from maple 6 to maple 7 was not a big one so most of
the book applies to maple 6. Occasionally we will point out differences between
the earlier versions.

1.3 Basic syntax

In maple the prompt is the symbol >. maple commands are entered to
the right of the prompt. Each command ends with either “:” or “;”. If the
colon is used, the command is executed but the output is not printed. When
the semicolon is used, the output is printed. Try typing 105/25: followed by a
Return (or Enter).

> 105/25:

Observe that the output was not printed. Now type 105/25;

> 105/25;

21
5

Below in Figure 1.2 is a rendering of how this looks in the worksheet window.
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Figure 1.2 maple commands with output.

Try these

> 105/25-1/5;

4

> %+1/5;
21
5

> %%;

4

Observe that maple uses exact arithmetic. The percent sign % refers to the
previous result. The double percent %% refers to the result before the previous
result. It is possible to refer back 3 lines using %%%, but one cannot refer back
any further. The percent sign % is called the ditto operator.

Warning: In maple v Release 4 (and earlier versions), the ditto operator was
the double quote character ". The two double quotes "" were used to refer to
the result before the previous result, and to refer back 3 lines one used triple
double quotes """.

One of the most common mistakes is to omit the semicolon or colon.

> 105/25
Warning, incomplete statement or missing semicolon
> 105/25;
syntax error, unexpected number

Don’t panic! maple has interpreted this to mean 105/25 105/25, hence the
syntax error. maple also gave a warning about the missing semicolon! If you
forget the semicolon, simply type it on the next line.

> 105/25
> ;

21/5

See Section 1.3 for a method for editing mistakes.

Results can be assigned to variables using the colon-equals “:=”.
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> f:=%;

f := 21/5

> G:= -1/5;

G := −1/5

> f+g;

21/5 + g

> # Observe that Maple is case sensitive.
> f+G;

4

Note that comment lines begin with #. In the first line of our session we used
the ditto operator %. Remember, if you are using maple v Release 4 (or an
earlier version), use " as the ditto operator.

1.4 Editing mistakes

maple has built-in editing facilities. On most platforms, lines of input can be
edited using the arrow keys and the mouse. Cutting and pasting is also possible
with the mouse. In the Windows version, you can select input by highlighting
with the mouse, then you can copy, cut, and paste by using Control C, x, and v
as usual. In the command-line (or tty) version, maple has two built-in editors:
emacs and vi. Use the help command ?editing for more information.

> 105/25
> 105/25;
syntax error, unexpected number

Just click the mouse after 105/25, enter a semicolon, and press enter.

> 105/25;

21/5

The vi editor can be invoked using the Esc key.

1.5 Help

Ever since maple v (Release 4) came out, maple has had a fabulous
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6 The Maple Book

interactive help facility. Click on Help and a menu should appear:

Introduction
Help on Context Ctrl+F1
New User’s Tour
What’s New
Using Help
Glossary
Topic Search . . .
Full Text Search . . .
History . . .
Save to Database . . .
Remove Topic . . .
Balloon Help . . .
Register Maple 7 . . .
About Maple 7 . . .

Select Full Text Search. A little window should appear. In the Word(s) box,
type floating point arithmetic then click on Search . A search is then
made of the interactive help manual. A list of topics should appear in the
Matching Topics box. See Figure 1.3.

Figure 1.3 Full Text Search window.

Select evalf with the mouse, then click on Apply . A help window should

appear with information on the evalf command. Click on OK .
Now go back to the Help menu and select Introduction. A new window

should appear offering you a list of topics to explore.
If you know the name of a command, then you can select Topic Search in

the Help menu.
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To return to our original worksheet window, click on Window and select
Untitled(1)-Server(1).

Help can also be accessed directly from the worksheet. Try

> ?evalf

The evalf help window should appear. In the command-line version, this infor-
mation will appear below the cursor.

Now try selecting Balloon Help in the Help menu. Next move the cursor onto
a button and a little bubble should appear, giving a brief description. Keep this
option until you are familiar with the buttons and menus.

The command ?index provides a list of categories: expression, function,
misc, module, etc. For instance, ?index[function] gives a list of maple’s
standard library functions. For more information on navigating through the
worksheet environment, see ?worksheet.

1.6 A sample session and context menus

Open a new worksheet by pressing . Enter the following into the work-
sheet:

> Int(x/sqrt(1+x∧4),x);

and hit return after you type “;”. You should have something like this:

> Int(x/sqrt(1+x∧4),x); ∫
x√

1 + x4
dx

The Int function is for calculating integrals. More information can be found in
Section 5.7. Now click on the integral (above) with the right mouse button. A
menu should appear:

Copy
Differentiate �
Integrate �
Evaluate
Complex Maps �
Integer Functions �
Simplications �
Conversions �
Plots �

This menu is called a context menu. When you click on maple output, such
a menu will appear. It won’t always be the same menu. The menu depends
on the type of object you click, hence the name context menu. Now select
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Differentiate and click on . Magically maple has taken the deriva-
tive with respect to x:

> Int(x/sqrt(1+x∧4),x);

∫
x√

1 + x4
dx

> R0 := diff(Int(x/sqrt(1+x∧4),x),x);

R0 :=
x√

1 + x4

Naturally, maple found that

d

dx

∫
x√

1 + x4
dx =

x√
1 + x4

.

Now, click on the integral again and this time select Evaluate in the contex
menu. This time maple evaluates the integral:

> Int(x/sqrt(1+x∧4),x);

∫
x√

1 + x4
dx

> R1 := value(Int(x/sqrt(1+x∧4),x));

R1 :=
1
2

arcsinh(x2)

> R0 := diff(Int(x/sqrt(1+x∧4),x),x);

R0 :=
x√

1 + x4

maple found that ∫
x√

1 + x4
dx =

1
2

sinh−1 x2.
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Click on the output with name R0, and a different context menu will appear:

Copy
Differentiate �
Integrate �
Factor
Simplify
Expand
Approximate �
Solve
Numerical Solve
Rationalize
Combine �
Collect �
Complex Maps �
Integer Functions �
Constructions �
Simplifications �
Conversions �
Plots �

Select Plots and press . maple produces a graph of the
function y = x√

1+x4 . See Figure 1.4.

> smartplot(R0);

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–10 –8 –6 –4 –2 2 4 6 8 10

Figure 1.4 A smartplot.

We will learn a lot more about plotting in Chapter 6.

© 2002 by Chapman & Hall/CRC
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Before going on we should save our work. Click on File and a menu appears:

New Ctrl+o
Open . . .
Save Ctrl+s
Save As . . .
Export As �
Close Ctrl+F4
Save Setttings

� AutoSave Settings
Print . . . Ctrl+P
Print Preview . . .
Print Setup . . .
Exit Alt+F4

Click on Save. A Save As window appears. In the File name box type ch1a.mws.
Then click on OK . The worksheet has been saved as the file ch1a.mws. Here
mws is a file type which stands for maple worksheet.

1.7 Palettes

So far we have seen how to enter maple commands by typing after the
maple prompt >, and by using a context menu. Another method is to use

palettes. Open a new worksheet by pressing . Now click on View and a
menu appears:

� Toolbar
� Context Bar
� Status Bar

Palettes �
Zoom Factor �
Bookmarks �
Back
Forward
Hide Content �
Show Invisible Characters

� Show Section Ranges Shift+F9
� Show Group Ranges F9

Show Object type
Expand All Sections
Collapse All Sections
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Select Palettes, slide to the right, and another menu appears:

Symbol Palette
Expression Palette
Matrix Palette
Vector Palette
Show All Palettes
Hide All Palettes

In maple 7 there are four palettes: the Symbol palette, the Expression
palette, the Matrix palette, and the Vector palette. In Chapter 9 we
will use the Matrix and Vector palettes. For the time being let’s select
Expression Palette . A window should appear. See Figure 1.5.

Figure 1.5 The Expression palette.

Let’s start with something simple. In the Expression palette press .

> ( - %?);

maple has produced a template for an expression of the form (a − b). Notice
. Now type 105/25.

> (105/25 - %?);

Notice that 105/25 has been entered where was. Now hit the Tab key.

> (105/25 - );

maple is now waiting for us to type the second number. We type 1/5.

> (105/25 - 1/5);

We hit Return ( or Enter):

> (105/25 - 1/5);
4

Do you see how the Expression palette works? Many other types of expressions
can be entered in this way. You should be able to figure out the possible expres-
sions by looking at the buttons in the palette. Try each button and experiment.
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To open the Symbol palette, click on View, select Palettes, slide right, and
select Symbol Palette . See Figure 1.6.

Figure 1.6 The Symbol palette.

The Symbol palette is used for entering Greek letters and some mathematical
constants such as e and π. Try out some of the buttons.

1.8 Spreadsheets
Click on Insert. A menu should appear:

Text Ctrl+T
Standard Math Ctrl+R
Maple Input Ctrl+M
Standard Math Input Ctrl+G
Execution Group �
Plot �
Spreadsheet
Paragraph �
Section
Subsection
Hyperlink...
Object...
Page Break Ctrl+Enter

Select Spreadsheet. A spreadsheet appears in the worksheet:

Figure 1.7 A MAPLE spreadsheet.
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Notice that the upper left-most cell (A1) is highlighted. There are four new
buttons in the context bar:

Fill a range of cells.

Evaluate all stale cells.

Accept the input and evaluate it.

Restore input to the previous value.

Type n and press enter. The symbol n should appear in cell A1. In cell A2 type
1 and press enter. Now click on cell A2 and select the first column of cells up to

cell A9 by holding the mouse button down. Now click on . A Fill window

should appear. Enter 1 for Step Size and press OK . The numbers 2, 3, . . . , 8
should appear in cells A3, A4, . . . , A9. Type x∧n-1 in cell B1. We now have
xn − 1 in cell B1. This is good, but we want to change it. Click on cell B1.
Notice that x∧n-1 is in the edit field (the box to the right of the new buttons).
Backspace over it and type x∧(∼A1) - 1. We still get xn − 1 in cell B1. What
is going on? Here ∼A1 refers to value in cell A1 which is n, so that the value of
cell B1 is linked to that of A1. We want to put xn − 1 with n = 1, 2, . . . 8 in
the second column. Click on Spreadsheet. A menu should appear:

Evaluate Selection
Evaluate Spreadsheet
Row �
Column �
Fill �
Import Data �
Export Data �
Properties...

� Show Border
Resize To Grid

Select Fill, slide right, and select Down. Did you get the polynomials x−1, x2−1,
. . . , x8 − 1 in column B? You will probably want to resize the spreadsheet.
Click in the bottom right corner, hold the mouse button down, and stretch
the spreadsheet so you can see all the entries. Now we want to factor the
polynomials in column B. Enter factored polynomial in cell C1. In cell C2
enter factor(∼B2). Select the column of cells C2, C3, . . . , C9. From the
Sreadsheet menu select Fill and then Down. Did you get the desired effect? You
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should now have a table:

n xn − 1 factored polynomial
1 x − 1 x − 1
2 x2 − 1 (x − 1)(x + 1)
3 x3 − 1 (x − 1)(x2 + x + 1)
4 x4 − 1 (x − 1)(x + 1)(x2 + 1)
5 x5 − 1 (x − 1)(x4 + x3 + x2 + x + 1)
6 x6 − 1 (x − 1)(x + 1)(x2 + x + 1)(x2 − x + 1)
7 x7 − 1 (x − 1)(x6 + x5 + x4 + x3 + x2 + x + 1)
8 x8 − 1 (x − 1)(x + 1)(x2 + 1)(x4 + 1)

For more information on maple spreadsheets see ?worksheet,spreadsheet.
For programmers there is a spreadsheet package called Spread. See Section
17.7.19.

1.9 Quitting MAPLE

If you are done with your maple session, click on . The Save As
window should appear. In the File name box type ch1.mws and click on OK.
Your worksheet has now been saved. To quit maple, go to the File menu and

select Exit. Later you can reopen your worksheet by clicking on .
In the command-line version, the easiest way to quit a Maple session is to

use quit.

> quit
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2. MAPLE AS A CALCULATOR

2.1 Exact arithmetic and basic functions
As we noted in Section 1.3, maple does exact arithmetic. Also, maple does

integer arithmetic to infinite precision. Try the following examples:

> 2/3 + 3/5;
19
15

> 7 - 11/15;
94
15

> 12∧20;
3833759992447475122176

The basic arithmetic operations in maple are

+ addition
− subtraction
∗ multiplication
∧or ∗∗ exponentiation
/ division

maple also has the basic mathematical functions (and much more) that are
available on a scientific calculator.

abs(x) absolute value |x|
sqrt(x) square root

√
x

n! factorial
sin(x) sine
cos(x) cosine
tan(x) tangent
sec(x) secant
csc(x) cosecant
cot(x) cotangent
log(x) natural logarithm
also ln(x)
exp(x) exponential function ex

sinh(x) hyperbolic sine
cosh(x) hyperbolic cosine
tanh(x) hyperbolic tan

maple has many other built-in mathematical functions. For instance, it has the
inverse trig functions (arcsin, arccos, etc.), the Bessel functions (BesselI),

15
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the Riemann zeta function (Zeta), the gamma function (GAMMA), and the com-
plete and incomplete elliptic integrals (EllipticE). For a complete listing, see
?index[functions] or Section 15.1.

2.2 Floating-point arithmetic
maple can do floating-point calculation to any required precision. This is

done using evalf.

> tan(Pi/5); √
5 − 2

√
5

> evalf(%);
0.7265425273

Notice that evalf found tan(π/5) to 10 decimal places, which is the default.
Also, note that in maple, π is represented by Pi. There are two ways to change
the default and increase the number of decimal places.

> E := exp(1);
E := e

> evalf(E,20);
2.7182818284590452354

> Digits := 30;
30

> evalf(E);
2.71828182845904523536028747135

Here E is the mathematical constant e, which is represented in maple by exp(1).
We found e to 20 digits using evalf(E,20). The other method is to use the
global variable Digits (whose default value is 10). After assigning Digits :=
30, we found e correct to 30 digits simply by calling evalf(E).

We can also find an approximation using a context menu (see Section 1.6).
Right-click on e which is the output of E := exp(1). A context menu appears:

Copy
Approximate �
Complex Maps �
Integer Functions �
Conversions �
Plots �

Select Approximate and press 20 .

> E := exp(1);
E := e
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> R0 := evalf(E,20);

R0 := 2.7182818284590452354

Under this context menu the number of digits can be 5, 10, 20, 50, or 100.
We reset the default and calculate sin(π/6).

> Digits := 10:

> evalf(sin(Pi/6));
0.5000000000

> convert(%,rational);
1
2

Notice that after we found the decimal approximation, we were able to convert
it into an exact rational using convert(%,rational). The convert function
is used to convert expressions from one type to another. More on the convert
function is to be found in section 4.6. The interested reader can find more using
?convert. Below is a table of maple’s built-in mathematical constants.

Catalan Catalan’s constant (about .9159655942)
gamma Euler’s constant (about 0.5772156649)
I complex number i (i2 = −1)
Pi π (about 3.141592654)
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3. HIGH SCHOOL ALGEBRA

3.1 Polynomials and rational functions

3.1.1 Factoring a polynomial

maple can do high school algebra. It can manipulate polynomials and ra-
tional functions of one or more variables quite easily.

> p := x∧2+5*x+6;
p := x2 + 5x + 6

> factor(p);
(x + 3)(x + 2)

> b := 1 - q∧7 - q∧8 - q∧9 + q∧15 + q∧16 + q∧17 - q∧24;

b := 1 − q7 − q8 − q9 + q15 + q16 + q17 − q24

> factor(b);

− (q + 1)(q2 + 1)(q2 + q + 1)(q6 + q3 + 1)(q4 + 1)
(q6 + q5 + q4 + q3 + q2 + q + 1)(q − 1)3

To factor a polynomial or rational function, we use factor. We let p = x2+5x+6
and found the factorization using factor(p). This could have easily been done
by hand. Factoring b = 1 − q7 − q8 − q9 + q15 + q16 + q17 − q24 is not so easy,
but child’s play for maple.

We can also use a context menu to factor a polynomial.

> p;
x2 + 5x + 6

Use the right mouse button to click on the polynomial. A context menu should
appear. Select Factor .

> R0 := factor(x∧2+5*x+6);

R0 := (x + 3)(x + 2)

3.1.2 Expanding an expression

To expand a polynomial use expand. The command combine is also useful
for expanding certain expressions.

19
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> p := (x+2)*(x+3);
(x + 2) (x + 3)

> expand(%);
x2 + 5x + 6

> (1-q∧8)*(1-q∧7)*(1-q∧6);(
1 − q8

) (
1 − q7

) (
1 − q6

)
> expand(%);

1 − q6 − q7 + q13 − q8 + q14 + q15 − q21

> y := sqrt(x+2)*sqrt(x+3);

√
x + 2

√
x + 3

> expand(y); √
x + 2

√
x + 3

> combine(y); √
x + 2

√
x + 3

> combine(y,radical); √
x + 2

√
x + 3

> combine(y,radical,symbolic);√
x2 + 5x + 6

Notice we were not able to expand the expression (x + 2)1/2(x + 3)1/2 with
expand and had to use combine, using two additional arguments, radical and
symbolic.

3.1.3 Collecting like terms
In the last section y had the value

√
x + 2

√
x + 3.

> y; √
x + 2

√
x + 3

To start over we use the restart function.

> restart:
> y;

y

Now y is just y. See Section 3.1.10 for another way to restore y to its variable

status. One can also restart by pressing the restart button in the tool bar.
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The collect function is useful when looking at a polynomial in more than
one variable.

> (x+y+1)*(x-y+1)*(x-y-1);

(x + y + 1)(x − y + 1)(x − y − 1)

> p := expand(%);

p := x3 − x2y + x2 − 2xy − x − y2x + y3 + y2 − y − 1

> collect(p,x);

x3 + (1 − y)x2 +
(
−1 − y2 − 2 y

)
x − y − 1 + y3 + y2

We let p = (x + y + 1)(x − y + 1)(x − y − 1) = x3 − x2y + x2 − 2xy − x −
y2x + y3 + y2 − y − 1. We used collect(p,x) to write p as a polynomial in x
with coefficients that were polynomials in the remaining variable y. Similarly,
try collect(p,y) to get p as a polynomial in y.

3.1.4 Simplifying an expression

The first thing you should try when presented with a complicated expression
is simplify.

> 3*4∧(1/2)+5;
3
√

4 + 5

> simplify(%);
11

> x∧2;
x2

> %∧(1/2); √
x2

> simplify(%);
csgn(x)x

Notice we were able to simplify 3
√

4 + 5 to 11. Of course, the value of (x2)1/2

depends on the sign of x. Here csgn is a function that returns 1 if x is posi-
tive and −1 otherwise. It is also defined for complex numbers. See ?csgn for
more information. If we know that x > 0, we can use assume to do further
simplification (x∼ replaces x).

> y:=((x-2)∧2)∧(1/2);

y :=
√

(x − 2)2
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> assume(x>2);
> simplify(y);

x∼ − 2

To show the assumptions placed on a variable, we use the about function.

> about(x);
Originally x, renamed x∼:

is assumed to be: RealRange(Open(2),infinity)

The output RealRange(Open(2),infinity) means the interval (2,∞). This
translates into the assumption that x > 2.

To remove the assumption on x, we could use the restart function, but
then we would lose the value of y. Instead we do the following.

> x :=’x’;
x := x

This restores x to its original status. See Section 3.1.9.
maple 7 has a nifty new command called assuming. This allows us to do

simplifications with temporary assumptions.

> y; √
(x − 2)2

> simplify(y) assuming x>2;

x − 2

The last command simplified y under the assumption that x > 2. Notice that
the output is in terms of x and not x∼.

3.1.5 Simplifying radicals
To simplify expressions using radicals, we can use simplify and radsimp.

> y := x∧3 + 3*x∧2 + 3*x + 1;

y := x3 + 3x2 + 3x + 1

> simplify(y∧(1/3));
((1 + x)3)1/3

> radsimp(y∧(1/3));
1 + x

> assume(x>-1);

> simplify(y∧(1/3));
1 + x∼

> assume(x<-1);
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> simplify(y∧(1/3));

−1
2

(x∼ + 1) (1 + I 31/2)

> x := ’x’:

Notice that simplify recognized y as a cube but failed to simplify y1/3. The
command radsimp, on the other hand, was able to simplify y1/3 to 1 + x. If
assumptions are given for x, then simplify is able to simplify the radical further.
However, it should be noted that the value of the cube root depends on these
assumptions, so care needs to be taken.

A cute maple command is rationalize.

> 1/(1+sqrt(2));
1√

2 + 1

> rationalize(%); √
2 − 1

> (1-2∧(2/3))/(1+2∧(1/3));

1 − 22/3

1 + 21/3

> rationalize(%);
−21/3 + 1

> y:= z/(1 + sqrt(x));

y :=
z

1 +
√

x

> rationalize(y);
z (−1 +

√
x)

−1 + x

Notice that rationalize does a great job rationalizing a denominator not only
for expressions involving square roots but for more complicated radicals as well.
It can also handle symbolic expressions.

3.1.6 Working in the real domain
Sometimes maple will return an expected complex number. We saw an

instance of this in the last section. We reexamine the example.

> restart:
> y := (1+x)∧3:
> simplify(y∧(1/3)) assuming x<-1;

−1
2

(x∼ + 1) (1 + I 31/2)
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Here I is maple’s notation for the complex number i =
√
−1. The unsuspecting

precalculus or calculus student may not be expecting this complex cube root
of y and would prefer to work in the real domain. Fortunately, there is a new
package in maple 7 for working in the real domain. Funnily enough the package
is called RealDomain. To load this package we must use the with function.

> with(RealDomain):
Warning,
these protected names have been redefined and unprotected:
Im, Re, ∧, arccos, arccosh, arccot, arccoth, arccsc, arccsch,
arcsec, arcsech, arcsin, arcsinh, arctan, arctanh, cos, cosh, cot,
coth, csc, csch, eval, exp, expand, limit, ln, log, sec, sech,
signum, simplify, sin, sinh, solve, sqrt, surd, tan, tanh

We redo the calculation of y1/3:

> y := (1+x)∧3:
> simplify(y∧(1/3)) assuming x<-1;

1 + x

> simplify(y∧(1/3));
1 + x

This time y1/3 simplified to 1+x. This is the only real cube root of y, assuming
x is real.

Let’s redo some calculations from Section 3.1.4, but this time in the real
domain.

> with(RealDomain):
> x∧2;

x2

> %∧(1/2); √
x2

> simplify(%);
|x|

> y:=x∧3+3*x∧2+3*x+1;

x3 + 3x2 + 3x + 1

> simplify(y∧(1/3));

signum(x3 + 3x2 + 3x + 1)2/3 ((x + 1)3)1/3

This time in the real domain we found
√

x2 = |x|, which is more palatable than
csgn(x)x. Here y1/3 should have simplified to x + 1, so I guess maple still is
not perfect.
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> restart:
> sqrt(-1);

I

> with(RealDomain):
> sqrt(-1);

undefined

After restarting, maple recognizes
√
−1 as the complex number i. When Real-

Domain is loaded, maple considers
√
−1 as being undefined.

3.1.7 Simplifying rational functions
To simplify a rational function (i.e., a function that can be written as a

quotient of two polynomials) we use the command normal. This has the effect
of canceling any common factors between numerator and denominator. First we
restore x and y’s variable status.

> y:=’y’: z:=’z’:
> a:= (x-y-z)*(x+y+z);

a := (x − y − z)(x + y + z);

> b :=(x∧2-2*x*y-2*x*z+y∧2+2*y*z+z∧2)*(x∧2-x*y+x*z-y*z);

b := (x2 − 2xy − 2xz + y2 + 2yz + z2)(x2 − xy + xz − yz)

> c:=a/b;

c :=
(x − y − z)(x + y + z)

(x2 − 2xy − 2xz + y2 + 2yz + z2)(x2 − xy + xz − yz)

> normal(c);

− (x + y + z)
(x2 − yx + xz − yz)(−x + y + z)

> simplify(c);

− (x + y + z)
(x2 − yx + xz − yz)(−x + y + z)

> factor(c);
(x + y + z)

(x − y)(x + z)(x − y − z)

Observe that normal and simplify had the same effect on the rational function
c. We use normal for rational functions if we can do without the more expensive
simplify. Also, we could have used factor to simplify c and get it into a nice
form. It should be noted that normal is able to do this simplification without
factoring, which is more expensive in terms of memory.
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Some useful functions for manipulating rational functions are: numer, denom,
rem, and quo. We let c be as above.

> numer(c);
−(−x + y + z)(x + y + z)

> denom(c);

(x2 − 2xy − 2xz + y2 + 2yz + z2)(x2 − xy + xz − yz)

> factor(%);
(−x + y + z)2(x − y)(x + z)

The functions numer and denom select the numerator and denominator, respec-
tively, of a rational function. After factoring the denominator of c, we see that
there was simplification because of the common factor (−x + y + z).

Many operations on rational functions can also be performed through a con-
text menu.

> c;
(x − y − z)(x + y + z)

(x2 − 2xy − 2xz + y2 + 2yz + z2)(x2 − xy + xz − yz)

Click the right mouse button on our rational function above. A context menu
should appear. Now try clicking on Factor , Simplify , Expand , Normal ,

Numerator , and Denominator .
The functions quo and rem give the quotient and remainder upon polynomial

division.

> a:= 2*x∧3+x∧2+12;
a := 2x3 + x2 + 12

> b := x∧2 - 4;
b := x2 − 4

> q := quo(a,b,x);
q := 2x + 1

> r := rem(a,b,x);
r := 16 + 8x

> expand( a - (b*q + r) );
0

The command quo(a,b,x) gives the quotient q when a is divided by b as poly-
nomials in x. The command rem(a,b,x) gives the remainder r so that

a = bq + r,

and the degree of r (as a polynomial in x) is less than the degree of b.
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3.1.8 Degree and coefficients of a polynomial

In Section 3.1.3 the collect command was introduced to view polynomials.
Two other useful functions are coeff and degree. Let p be as before.

> p:= y*(x+y+1)*(x-y+1)*(x-y-1):
> q := expand(%);

yx3 − x2y2 + x2y − 2 y2x − xy − y3x + y4 + y3 − y2 − y

> coeff(q,x,2);
−y2 + y

> coeff(p,x,2);

y (y + 1) + y (−y + 1) + y (−y − 1)

> expand(%);
−y2 + y

> degree(q,x);
3

The command coeff(q,x,2) found the coefficient of x2 in the polynomial q. The
command degree(q,x) gave the degree of q as a polynomial in x. Observe also
that when coeff was applied to the unexpanded form p, maple still returned
the correct value for the coefficient but in an unexpanded form.
Warning: In maple v Release 4 (and earlier versions), coeff will either return
an “incorrect” result or an error message, if it is applied to an unexpanded
polynomial like p. So be careful when using coeff in these earlier versions of
maple.

Another useful and related function is ldegree.

> q := q - 2*x/y;

q := yx3 − x2y2 + x2y − 2 y2x − xy − y3x + y4 + y3 − y2 − y − 2
x

y

> ldegree(q,x);
0

> ldegree(q,y);
−1

> c1:=1;
1

> c2:=0;
0
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> degree(c1,x);
0

> degree(c2,x);
−∞

The assignment q := q - 2*x/y subtracted 2x/y from q and assigned the result
to q. ldegree(q,x) returns the degree of the lowest power of x in the polynomial
q, which in our session was 0. Because of the term 2x/y, ldegree(q,y) returned
−1 as the lowest degree in the variable y. Also, observe that maple returns 0
for the degree of a nonzero constant but returns −∞ for the degree of the zero
polynomial.
Warning: In maple v Release 4 (and earlier versions), degree will return 0
for the zero polynomial.

3.1.9 Substituting into an expression
We can substitute into an expression using the command subs.

> p := (x+y+z)*(x-y+z)*(x-y-z);

p := (x + y + z)(x − y + z)(x − y − z)

> subs(x=1,p);

(1 + y + z)(1 − y + z)(1 − y − z)

To substitute x = 1 into p, we used the command subs(x=1,p). Try substituting
x = 1 and y = 2 into p using the command subs(x=1,y=2,p).

3.1.10 Restoring variable status
In the last section we saw how subs is used to do substitution. There is

another way to do this. We let p be as Section 3.1.8.

> p;

(x + y + z)(x − y + z)(x − y − z)

> x:=1: y:=2:
> p;

(3 + z)(−1 + z)(−1 − z)

We are able to do the substitution by assigning x := 1 and y := 2. However,
now p has changed. There is a way to restore x and y’s variable status.

> x := ’x’: y := ’y’:
> p;

(x + y + z)(x − y + z)(x − y − z)

The assignments x := ’x’ and y := ’y’ restored x and y to their variable
status. It is neat that p was also restored to its original status.
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3.2 Equations

3.2.1 Left- and right-hand sides

To assign a value to a variable, we use :=. The symbol = has a different
meaning and is reserved for equations.

> eqn := x∧2 - x = 1;

eqn := x2 − x = 1

> R := solve(eqn,x);

R :=
1
2

√
5 +

1
2
,

1
2
− 1

2
51/2

> simplify(R[1]*R[2]);

−1
4

(
√

5 + 1) (
√

5 − 1)

> expand(%);
−1

We assigned to equation x2 −x = 1 the name eqn. We solved the equation for x
by typing solve(eqn,x). We named the list of solutions R. The two solutions
were R[1] and R[2]. In this way we can manipulate the solutions. Observe that
we computed the product of the roots to be −1 as expected.

The left and right sides of an equation can be manipulated using lhs and
rhs.

> eqn;
x2 − x = 1

> lhs(eqn);
x2 − x

> subs(x=R[1],lhs(eqn));(
1
2

+
1
2

√
5
)2

− 1
2

√
5 − 1

2

> expand(%);
1

The command lhs(eqn) gave us the left side of the equation. Then we were
able to substitute x = R[1] (the first root) into the left side of the equation,
which simplified to 1 (as expected) using expand.
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3.2.2 Finding exact solutions
maple has the capability of solving systems of equations.

> restart:
> eqn1 := x∧3+a*x=14;

eqn1 := x3 + ax = 14

> eqn2 := a∧2-x=7;
eqn2 := a2 − x = 7

> solve({eqn1,eqn2},{x,a});

{a = 3, x = 2} ,{
a = RootOf ( Z 5 + 3 Z 4 − 12 Z 3 − 35 Z 2 + 42 Z + 119, label = L1 ),

x =
(
RootOf ( Z 5 + 3 Z 4 − 12 Z 3 − 35 Z 2 + 42 Z + 119, label = L1 )

)2 − 7
}

The syntax for solving systems of equations is solve(S,X) where S is a set of
equations and X is the required set of variables. Observe that maple was able
to find the solution x = 2, a = 3. It also found that a = z, x = z2 − 7 are
solutions where z is any root of the following polynomial equation:

Z5 + 3Z4 − 12Z3 − 35Z2 + 42Z + 119 = 0.

The argument label = L1 gives the root a label. This is a way of distinguish-
ing roots when using the RootOf function. As in the previous section, we can
manipulate solutions. We select the first set of solutions and substitute them
into the first equation.

> %[1];
{a = 3, x = 2}

> subs(%,eqn1);
14 = 14

3.2.3 Finding approximate solutions
In the last section we came upon the following quintic:

Z5 + 3Z4 − 12Z3 − 35Z2 + 42Z + 119 = 0.

Although naturally enough maple is unable to find an exact explicit solution,
it is able to find approximate solutions using fsolve.

> polyeqn := Z∧5+3*Z∧4-12*Z∧3-35*Z∧2+42*Z+119=0:
> a1 := fsolve(polyeqn,Z);

a1 := −3.136896207
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> x1:= a1∧2 -7;
x1 := 2.840117813

> subs({x=x1,a=a1},{eqn1,eqn2});

{14.00000003 = 14, 7.0000000000 = 7}

We used the command fsolve(polyeqn,Z) to find the approximate solution
Z ≈ −3.136896207. This implied that a = −3.136896207 and x = a2 − 7 =
2.840117813 are approximate solutions to our system of equations in the previous
section. We were able to check this using subs.

3.2.4 Assigning solutions
Once an equation or system of equations has been solved, we can use assign

to assign a particular solution to the variable(s). We use the example given in
Section 3.2.2.

> solve({x∧3+a*x=14,a∧2-x=7},{a,x}):
> %[1];

{a = 3, x = 2}
> assign(%);
> a; x;

3
2

To restore a and x to variable status we could use the method of Section 3.1.9
or use the unassign function.

> unassign(’a’,’x’);
> a,x;

a, x

3.3 Fun with integers

3.3.1 Complete integer factorization
The command ifactor gives the prime factorization of an integer.

> 2∧(2∧5)+1;
4294967297

> ifactor(%);
(641) (6700417)

> ifactor(5003266235067621177579);

(3)2 (13) (31)3 (67) (139) (320057) (481577)
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3.3.2 Quotient and remainder

The integer analogs of quo and rem, the functions for finding the quotient and
the remainder in polynomial division, are the functions iquo and irem. They
work in the same way.

> a := 23; b := 5;

a := 23
b := 5

> q := iquo(a,b); r := irem(a,b);

q := 4
r := 3

> b*q+r;
23

We observe that if q = iquo(a,b) and r = irem(a,b), then

a = bq + r,

where 0 ≤ r < b if a and b are positive.
Two related functions are floor and frac. The function floor(x) gives the

greatest integer less than or equal to x and frac(x) gives the fractional part of
x. Try

> x := 22/7;
> floor(x);
> frac(x);
> floor(-x);
> frac(-x);

3.3.3 Gcd and lcm

The greatest common divisor and the lowest common multiple of a set of
numbers can be found using gcd and lcm.

> gcd(28743,552805);
11

> ifactor(28743); ifactor(552805);

(3) (11) (13) (67)
(5) (11) (19) (23)2
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> lcm(21,35,99);
3465

We find that the gcd of 28743 and 552805 is 11. This can also be seen from the
prime factorizations. The lcm of 21, 35, and 99 is 3465.

3.3.4 Primes

The ith prime can be computed with ithprime. The function isprime tests
whether a given integer is prime or composite.

> ithprime(100);
541

> isprime(2∧101-1);
false

> 7*3∧10 + 10;
413353

> isprime(%);
true

We found that the 100th prime is 541, that 2101 − 1 is composite, and that
7 · 310 + 10 = 413353 is prime. Try making a table of the first 200 primes:

> matrix(20,10,[seq(ithprime(k),k=1..200)]);

For a positive integer n, nextprime(n) gives the smallest prime larger than
n, and prevprime(n) gives the largest prime smaller than n.

> nextprime(1000);
1009

> prevprime(1000);
997

The next prime past 1000 is 1009 and the previous prime is 997.

3.3.5 Integer solutions

In Sections 3.2.1 and 3.2.2 we saw how to solve equations in maple using
solve. The integer analog of solve is isolve. We use this function if we are
only interested in integer solutions. We use the example from Section 3.2.2.
Remember to restore variable status to x and a first.

> x:=’x’: a:=’a’:
> eqn1:= x∧3+a*x=14: eqn2 := a∧2-x=7:
> isolve({eqn1,eqn2},{x,a});

{a = 3, x = 2}
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This time we found the unique integer solution a = 3 , x = 2 to the given system
of equations.

3.3.6 Reduction mod p

maple can do computations with integers modulo m.

> modp(117,13);

0

> modp(129,13);

12

> ifactor(129-12);

(3)2 (13)

> 117 mod 13;

0

> 129 mod 13;

12

> 1/17 mod 257;

121

> modp(121*17,257);

1

The functions for reduction modulo m are modp and mod. Given an integer a and
a positive integer m, modp(a,m) reduces a modulo m. The syntax using mod is
a mod m. In our maple session, modp(129,13) returned 12, which means

129 ≡ 12 (mod 13),

and this is indeed the case in as much as 13 divides the difference 129− 12. The
call 129 mod 13 also reduced 129 modulo 13. When a and m are relatively prime,
i.e., 1 is their greatest common divisor, modp(1/a,m) or 1/a mod m returns the
multiplicative inverse of a modulo m. We see that 121 is the inverse of 17 modulo
257, and indeed

(121)(17) ≡ 1 (mod 257).

3.4 Unit conversion
maple 7 has new facilities for converting from one system of units to another.

There are both command line and menu-driven facilities. In the tool bar click
on Edit and then on Unit Converter. A Unit Converter window should open.
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Figure 3.1 Menu-driven unit converter.

The window is already set up to do a simple example. Notice that 1.0 (Fig.
3.1) is in the Value box, Dimension is set to length, and we are ready to do a
conversion from feet to meters. Click on Insert .

> convert( 1.0, ’units’, ’ft’, ’m’ );

.3048000000

This means that
1.0 ft = 0.3048m.

Let’s try another conversion. Click on in the Dimension box and select
temperature. Notice that the units have changed in the From and To boxes.
Let’s convert 100 degrees Fahrenheit to degrees Celsius. In the Value box type
100.0, select degrees Celsius (degC) in the To box, and press Insert .

> convert( 100.0, ’temperature’, ’degF’, ’degC’ );

37.7777778

This means that
100.0oF ≈ 37.778oC.

We have seen two types of dimensions: length and temperature. There are
many other dimensions available, including acceleration, angle, area, electric
capacitance, force, magnetic flux, mass, power, pressure, speed, time, torque,
volume, and work. A list of all dimensions can be obtained by loading the Units
package and calling the GetDimensions function. Try

> with(Units):
> GetDimensions();

maple 7 knows many systems of units, including SI, FPS, MKS, and CGS. See
?Units[System] for more information.
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The convert function can also be used to make conversion tables. We make
a conversion table for meters, yards, kilometers, and miles:

> convert([m,yd,km,mile],conversion table,output=grid,
filter=evalf[6]);⎡⎢⎢⎢⎢⎢⎣

To : m yd km mi
Unit Name Symbol
meters m 1. 1.09361 0.001 0.000621371
yards yd 0.9144 1. 0.0009144 0.000568182

kilometers km 1000. 1093.61 1. .621371
miles mi 1609.34 1760. 1.60934 1.

⎤⎥⎥⎥⎥⎥⎦
Here evalf[6] means to use evalf with 6 digits. From the table we see that to
convert from miles to kilometers just multiply by 1.60934. For other examples
see ?conversion,conversion table.

We can do maple calculations using units. As an example we sum 12.1 feet
and 4 meters.

> 12.1*Unit(ft)+4*Unit(m);

12.1 [ft] + 4 [m]

We can simplify this by loading the Standard function in the Units package:

> with(Units[Standard]):
> 12.1*Unit(ft)+4*Unit(m);

7.688080000 [m]

This means that the sum of 12.1 feet and 4 meters is 7.68808 meters. Other
maple functions recognize these units.

> max(12.1*Unit(ft),4*Unit(m));

4 [m]

This means that 4 meters is bigger than 12.1 feet. A different style of representing
units can be used by loading the Natural function in the Units package. Try

> with(Units[Natural]):
> max(12.1*ft,4*m);

3.5 Trigonometry

3.5.1 Degrees and radians
To convert between degrees and radians we use convert.
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> convert(72*degrees,radians);

2/5π

> convert(2/5*Pi,degrees);

72 degrees

To convert d degrees to radians we use convert(d*degrees,radians). To con-
vert r (in radians) to degrees we use convert(r,degrees). We see that 72
degrees is 2π/5 radians. Remember, we use Pi for π in maple. Alternatively,
we could convert degrees to radians by multiplying by π/180.

> 72*Pi/180;
2/5π

In maple 7 we can use the convert function with the units option as we
did in Section 3.4. Try

> convert(72,units,degrees,radians);
> convert(2*Pi/5,units,radians,degrees);

3.5.2 Trigonometric functions
In maple, the trigonometric functions are sin, cos, tan, sec, csc, and cot.

The arguments for all the trigonometric functions are in radians.

> sin(0);
0

> cos(0);
1

> tan(0);
0

> sin(Pi/2);
1

> cos(Pi/2);
0

> tan(Pi/2);
Error, (in tan) singularity encountered
> cot(Pi/2);

0

Remember, tan(π/2) is not defined.
The inverse trigonometric functions are arcsin arccos, arctan, arcsec,

arccsc, and arccot.
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> arcsin(1/2);
1/6π

> arcsec(-2);
2/3π

> arctan(1);
1/4π

> arcsin(sin(Pi/12));
1/12π

> arcsin(sin(Pi/12+Pi));
−1/12π

We found that

sin−1(1/2) = π/6, sec−1(−2) = 2π/3
tan−1(1/2) = π/4, sin−1(sin(π/12)) = π/12

sin−1(sin(13π/12)) = −π/12

3.5.3 Simplifying trigonometric functions

Ever have trouble remembering the addition formulas for the trigonometric
functions? Try the following:

> expand(sin(a+b));

sin(a) cos(b) + cos(a) sin(b)

> expand(cos(a+b));

cos(a) cos(b) − sin(a) sin(b)

> expand(tan(a+b));
tan(a) + tan(b)
1 − tan(a) tan(b)

Now it all comes back to us:

sin(a + b) = sin(a) cos(b) + cos(a) sin(b)
cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

tan(a + b) =
tan(a) + tan(b)

1 − tan(a) tan(b)

To simplify a trigonometric expression, use simplify.
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> y:=(1+sin(x)+cos(x))/(1+sin(x)-cos(x));

1 + sin(x) + cos(x)
1 + sin(x) − cos(x)

> simplify(y);

− sin(x)
cos(x) − 1

We found that
1 + sin(x) + cos(x)
1 + sin(x) − cos(x)

=
sin(x)

1 − cos(x)
.

Can you show this result by hand?
Now try the following:

> expand(sin(5*x));

16 sin(x) (cos(x))4 − 12 sin(x) (cos(x))2 + sin(x)

> factor(%);

sin(x)
(
4 (cos(x))2 + 2 cos(x) − 1

)(
4 (cos(x))2 − 2 cos(x) − 1

)
This means that

sin 5x = sin x (4 cos2 x + 2 cos x − 1)(4 cos2 x − 2 cos x − 1).

By letting x = 2π
5 = 72o, derive a nice value for cos 72o.
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4.1 Sequences
In maple, sequences take the form

expr1, expr2, expr3, . . . , exprn.

> x := 1,2,3;
x := 1, 2, 3

> y := 4,5,6;
y := 4, 5, 6

> x,y;
1, 2, 3, 4, 5, 6

We observe that in maple, x,y concatenates the two sequences x and y. There
are two important functions used to construct sequences: seq and the repetition
operator $.

> f:=’f’: seq(f(i), i=1..6);

f(1), f(2), f(3), f(4), f(5), f(6)

> seq(i∧2, i=1..5);
1, 4, 9, 16, 25

> x:= ’x’:
> x$4;

x, x, x, x

In general, seq(f(i), i=1..n) produces the sequence

f(1), f(2), . . . , f(n)

and x$n produces a sequence of length n

x, x, . . . , x

The op function can be used to create sequences.

> b:=’b’: c:=’c’:
> L := a+b+2*c+3*d;

L := a + b + 2c + 3d

> op(%);
a, b, 2c, 3d

41
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op(expr) produces a sequence whose elements are the operands in expr.

> nops(L);
4

> op(3,L);
2c

nops(expr) gives the length of the sequence op(expr) and op(j,expr) gives
the jth term in the sequence op(expr).

If s is a sequence, then the jth term of the sequence is s[j].

> s := 1, 8, 27, 64, 125;

s := 1, 8, 27, 64, 125

> s[3];
27

4.2 Sets
We have already seen the set data type in Section 3.2.2 when solving systems

of equations. In maple, a set takes the form

{expr1, expr2, expr3, . . . , exprn}.

In other words, a set has the form {S} where S is a sequence. A set is a set in
the mathematical sense — order is not important.

> y := ’y’: {x,y,z,y};
{x, y, z}

Observe that {x, y, z, y} = {x, y, z}. maple can perform the usual set opera-
tions: union, intersection, and difference.

> a := {1,2,3,4}; b := {2,4,6,8};

a := {1, 2, 3, 4}
b := {2, 4, 6, 8}

> a union b;
{1, 2, 3, 4, 6, 8}

> a intersect b;
{2, 4}

> a minus b;
{1, 3}
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We can also determine whether a given expression is an element of a set using
the function member.

> member(2,a);
true

> member(5,a);
false

> a[3];
3

So member(x,A) returns the value true if x is an element of A and false
otherwise. Also, the jth element of the set A is A[j].

4.3 Lists
In maple, a list takes the form

[expr1, expr2, expr3, . . . , exprn].

Here order is important.

> a:=’a’: b:=’b’:
> L1 := [x,y,z,y]; L2 := [a,b,c];

L1 := [x, y, z, y]
L2 := [a, b, c]

> L := [op(L1),op(L2)];

L := [x, y, z, y, a, b, c]

> L[5];
a

We observe that the lists L1 and L2 can be concatenated by the command
[op(L1),op(L2)] and that L[j] gives the jth item in the list L. Lists can be
created from sequences:

> s := seq( i/(i+1), i=1..6);

s := 1/2, 2/3, 3/4, 4/5, 5/6, 6/7

> M := [s];
M := [1/2, 2/3, 3/4, 4/5, 5/6, 6/7]

> M[2..5];
[2/3, 3/4, 4/5, 5/6]

So, M[i..j] gives the ith through jth elements of the list M .
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4.4 Tables
In maple, a table is an array of expressions whose indexing set is not nec-

essarily a set of integers. Sounds bizarre? Let’s look at some examples. Tables
are created by the table function.

> T := table([a,b]);

T := table([
1 = a

2 = b

])

> T[2];
b

So, if L is a list, then table(L) converts L into a table. The jth element of this
table T is given by T[j]. Try

> S := table([(1)=A,(3)=B+C,(5)=A*B*C]);
> S[3];
> S;
> op(S);

For the table S, the indexing set is {1, 3, 5} and thus does not necessarily have
to be a set of consecutive integers. See ?table for more bizarre examples. In
your session you should have found that S did not return the table, but that
op(S) did.

4.5 Arrays
In maple, an array is a special kind of a table. It most resembles a matrix.

Let’s look at some examples.

> A := array(1..2,1..3);

A := array(1..2, 1..3, [ ])

> op(A); [
?1,1 ?1,2 ?1,3

?2,1 ?2,2 ?2,3

]
> B := array(1..2,1..2,1..2);

B := array(1..2, 1..2, 1..2, [ ])

> op(B);

array(1..2, 1..2, 1..2, [
(1, 1, 1) =?1,1,1
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(1, 1, 2) =?1,1,2

(1, 2, 2) =?1,2,2

(2, 1, 1) =?2,1,1

(2, 1, 2) =?2,1,2

(2, 2, 1) =?2,2,1

(2, 2, 2) =?2,2,2

])

We see that the array A corresponds to a 2×3 matrix. The array B corresponds
to 2 × 2 × 2 matrix or, if you like, a table with indexing set

{(1, 1, 1), (1, 1, 2), . . . , (2, 2, 2)}.

We can insert entries into an array by using subscripts (or indices).

> C:=array(1..2,1..2):
> C[1,1]:=1: C[1,2]:=2: C[2,1]:=3: C[2,2]:=7:
> op(C); [

1 2
3 7

]
> print(C); [

1 2
3 7

]
Observe that we can print out an array using the print command. An alterna-
tive method for entering arrray entries is given below.

> F:=array(1..2,1..3,[[1,2,3],[5,9,7]]);

F :=
[

1 2 3
5 9 7

]

4.6 Data conversions
The function type checks the data type of an object.

> A := {1,2,3}:
> s := 1,2,3:
> L := [1,2,3]:
> T := table([1,2,3]):
> M := array(1..3,[1,2,3]):
> type(L,list);

true

> type(T,set);
false
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The function convert can be used to convert from one data type to the other.

> convert(A,list);
[1, 2, 3]

> convert(L,set);
{1, 2, 3}

The whattype function is used find the type of an expression.

> whattype(A);
set

> whattype(s);
exprseq

> whattype(L);
list

> whattype(T);
symbol

> whattype(op(T));
table

> whattype(M);
symbol

> whattype(op(M));
array

See ?whattype for more information.

4.7 Other data types
In this chapter we have seen a small sample of maple’s data types. To see

a complete list, try

> ?type

© 2002 by Chapman & Hall/CRC



5. CALCULUS

5.1 Defining functions
To enter the function f(x) = x2 − 3x + 5, type

> f:= x -> x∧2 - 3*x + 5;

f := x → x2 − 3x + 5

The arrow symbol is entered by typing the minus key, “−” immediately followed
by the greater than key, “>”. We compute f(2).

> f(2);
3

Thus, in maple the syntax for creating a function f(x) is f := x -> expr,
where expr is some expression involving x. Functions in more than one variable
are defined in the same way.

> g := (x,y) -> x*y/(1+x∧2+y∧2);

g := (x, y) → xy

1 + x2 + y2

We defined the function
g(x, y) =

xy

1 + x2 + y2
.

Try simplifying g(sin t, cos t)

> g(sin(t),cos(t));
> simplify(%);

To convert an expression into a function, we use the unapply function.

> q := Z∧5+3*Z∧4-12*Z∧3-35*Z∧2
+42*Z+119:

> h := unapply(q,Z);

h := Z → Z5 + 3Z4 − 12Z3 − 35Z2 + 42Z + 119

In Sections 3.2 and 3.3 we came across the quintic polynomial q above. Here q
is an expression involving Z. To convert q into the function h(Z), we used the
command unapply(q,Z). Now we are free to play with the function h.

> H := x -> evalf( h(x), 4):

H := x → evalf(h(x), 4)

47
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> X := [seq(evalf(-4+i/10,4),i=0..10)];

X := [−4., −3.900, −3.800, −3.700,−3.600,
− 3.500, −3.400, −3.300, −3.200, −3.100, −3.]

> Y := map(H,X);

Y := [−97., −73.7, −54.5, −39.0, −26.6, −17.1,

− 10.4, −5.1, −1.4, .6, 2.]

The function H(x) computes h(x) to 4 digits. Then we used seq and map to
produce the lists X and Y , which give a table of x and y values for the function
y = h(x).

5.2 Composition of functions
In maple, @ is the function composition operator. If f and g are functions,

then the composition of f and g, f ◦ g(x) = f(g(x)), is given by (f@g)(x).

> (sin@cos)(x);
sin(cos(x));

> f := x -> x∧2:
> g := x -> sqrt(1-x):
> (f@g)(x);

1 − x

> (g@f)(x); √
1 − x2

@@ gives repeated composition, so that (f@@2)(x) gives f(f(x)) and (f@@3)(x)
gives f(f(f(x))). For certain functions known to maple, f@@(-1)(x) gives the
inverse function f−1(x).

5.3 Summation and product
In maple, the syntax for the sum

n∑
i=1

f(i) = f(1) + f(2) + · · · + f(n)

is Sum(f(i),i=1..n) and sum(f(i),i=1..n).

> f := ’f’:
> Sum(f(i),i=1..n);

n∑
i=1

f(i)
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> Sum(i∧2,i=1..10);
10∑

i=1

i2

> sum(i∧2,i=1..10);
385

Notice that the difference between sum and Sum is that in sum, the sum is eval-
uated, but that in Sum, it is not. It is recommended that you get into the habit
of using Sum to first check for typos and then use value to evaluate the sum. In
our previous session we found

10∑
i=1

i2 = 1 + 4 + 9 + · · · + 100 = 385.

This time we will use Sum and value.

> Sum(i∧2,i=1..10);
10∑

i=1

i2

> value(%);
385

> sum(i∧2,i=1..n);

1/3 (n + 1)3 − 1/2 (n + 1)2 + 1/6n + 1/6

> factor(%);
1/6n (n + 1) (2n + 1)

Notice that maple knows certain summation formulas such as
n∑

i=1

i2 =
1
6
n(n + 1)(2n + 1).

In maple, the syntax for the product

n∏
i=1

f(i) = f(1) · f(2) · · · f(n)

is Product(f(i),i=1..n).

> f := ’f’: q := ’q’:
> Product(f(i),i=1..n);

n∏
i=1

f(i)
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> Product(1-q∧i,i=1..5);

5∏
i=1

1 − qi

> value(%);
(1 − q)(1 − q2)(1 − q3)(1 − q4)(1 − q5)

> expand(%);

−q15 + q14 + q13 − q10 − q9 − q8 + q7 + q6 + q5 − q2 − q + 1

As with sum and Sum, for product, the product is evaluated, but with Product,
it is not. Note that we could have evaluated the product

∏5
i=1 1 − qi using

product(1-q∧i,i=1..5).
A common problem with sum and product is the following:

> i:=2;
i := 2

> sum(i∧3,i=1..5);
Error, (in sum) summation variable previously assigned,
second argument evaluates to, 2=1 .. 5

The problem occurred in sum since i had already been assigned the value 2.
There are two ways around this problem. One way is to restore the variable
status of i by typing i := ’i’. The second way is to replace i by ’i’ in the
sum.

> sum(’i’∧3,’i’=1..5);
225

5.4 Limits
Naturally, there are two forms of the maple limit function: Limit and limit.

These are analogous to sum and Sum, etc.
The syntax for computing the limit of f(x) as x → a is Limit(f(x), x=a);

value(%). The Limit command displays the limit so that it can be checked for
typos and then the value command computes the limit. To compute the limit

lim
x→2

x2 − 4
x − 2

we type

> Limit((x∧2-4)/(x-2),x=2); value(%);

lim
x→2

x2 − 4
x − 2
4
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Thus, we see that

lim
x→2

x2 − 4
x − 2

= 4,

which can be verified easily with paper and pencil. Alternatively, by typing
limit((x∧2-4)/(x-2),x=2), we could have found the limit in one step.

Left and right limits can also be calculated as well as limits where x ap-
proaches infinity. Try

> f:=(x∧2-4)/(x∧2-5*x+6);
> Limit(f,x=3,right); value(%);
> Limit(f,x=infinity); value(%);

5.5 Differentiation
maple can easily find the derivatives of functions of one or several variables.

The syntax for differentiating f(x) is diff(f(x),x).

> f := sqrt(1 - x∧2);

f :=
√

1 − x2

> diff(f,x);

− x√
1 − x2

> g := z -> z∧2*exp(z) + sin(log(z)):
> diff(g(x),x);

2x ex + x2 ex +
cos(ln(x))

x

The second derivative is given by typing diff(f(x),x,x). For the nth deriva-
tive, use diff(f(x),x$n). Use maple to show that

d5 tan x

dx5
= 136 tan2 x + 240 tan4 x

+ 120 tan6 x + 16.

In maple, partial derivatives are computed using diff.

> z := exp(x*y)*(1+sqrt(x∧2+3*y∧2-x));

z := exy
(
1 +

√
x2 + 3 y2 − x

)
> diff(z,x);

yexy
(
1 +

√
x2 + 3 y2 − x

)
+

exy (2x − 1)

2
√

x2 + 3 y2 − x

> normal(diff(z,x,y)-diff(z,y,x));

0
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The syntax for ∂z
∂x is diff(z,x) and for ∂2z

∂y∂x is diff(z,x,y). For

z = exy
(
1 +

√
x2 + 3 y2 − x

)
we found that

∂z

∂x
= yexy

(
1 +

√
x2 + 3 y2 − x

)
+

exy (2x − 1)

2
√

x2 + 3 y2 − x
,

and
∂2z

∂y∂x
=

∂2z

∂x∂x
.

maple also has the differential operator D. If f is a differentiable function
of one variable, then Df is the derivative f ′. We calculate g′(x) for our function
g above.

> g := z -> z∧2*exp(z) + sin(z);

g := z → z2 ez + sin(z)

> D(g);
z → 2z ez + z2ez + cos(z)

5.6 Extrema
maple is able to find the minimum and maximum values of certain functions

of one or several variables with zero or more constraints. There are three possible
approaches: (1) using the built-in functions maximize and minimize, (2) using
the extrema function, and (3) using the simplex package (for linear functions).
Here we will describe (1) and (2). See ?simplex for (3).

The functions maximize and minimize can find the maximum and minimum
values of a function of one or several variables. There is also an option for
restricting some of the variables to certain intervals. It is advised that this
facility be used with care, especially in earlier versions of maple.

We can find the maximum value of the function f(x) using maximize(f(x)).
The command maximize(f(x), x=a..b) gives the maximum of the function,
with x restricted to the interval [a, b].

> maximize(sin(x));
1

> maximize(sin(x)+cos(x));

maximize(sin(x) + cos(x))
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> maximize(x∧2-5*x+1,x=0..3);

1

> maximize(sin(x),x=0..1);

sin(1)

> maximize(sin(x)+cos(x),x=0..1);

√
2

> maximize(sin(x)+cos(x),x=0..1/2);

sin(1/2) + cos(1/2)

maple was able to find the correct maximum value of sin x, but was unable to
compute the maximum for the function sinx + cos x, although it was able to do
so correctly when x was restricted to an interval. For 0 ≤ x ≤ 3, the maximum
value of x2 − 5x + 1 was found to be 1.
Warning: In maple v Release 5 (and earlier versions), the maximize func-
tion has a different syntax. In these earlier versions, the correct syntax has the
form maximize(f(x), {x},{x=a..b}). Bugs in earlier versions have been elim-
inated in maple 6. For instance, in maple v, the call maximize(sin(x), {x},
{x=0..1}) will return a value of 1 when the correct value for the maximum of
sin x on the interval [0, 1] is sin 1. In maple 6, the correct value is returned.

To find the minimum value of a function, use the command minimize whose
syntax is analogous to that of maximize. maple can also handle functions of
more than one variable.

> minimize(x∧2+y∧2);
0

> minimize(x∧2+y∧2,x);
y2

We found the minimum value of x2 + y2 to be 0. The function minimize(x∧2
+ y∧2,x) found the minimum value of the function x2 + y2, considered as a
function of x with y fixed.

The second method involves using the function extrema, which is able to
find the minimum and maximum values of algebraic functions of one or several
variables, subject to 0 or more constraints. It returns a set of possible maxi-
mum and minimum values, with the option of returning a possible set of points
where these values occur. The syntax for the function is extrema(f,{g1,g2,
. . . ,gn},{x1,x2, . . . ,xm},’s’). Here, f is the function. The constraints are
g1 = 0, g2 = 0,. . . , gn = 0. The variables are x1, x2, . . . , xm, and s is the
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unevaluated variable for holding the set of possible points where the extrema
occur.
Warning: In maple v Release 5 (and earlier versions), extrema is a misc library
function, which must be read into our maple session with readlib(extrema).

> readlib(extrema):

The readlib function is obsolete in maple 6 and can be omitted.

> f := 2*x∧2 + y + y∧2;

f := 2x2 + y + y2

> g := x∧2 + y∧2 - 1;

g := x2 + y2 − 1

> extrema(f,{g},{x,y},’s’);

{0, 9/4}

> s;

{{x = 0, y = 1}, {x = 0, y = −1}},
{{y = 1/2, x = 1/2RootOf( Z2 − 3)}}

> simplify(subs(s[1],f));
0

> simplify(subs(s[2],f));
2

> simplify(subs(s[3],f));
9/4

By using the command extrema(f,{g},{x,y}, ’s’), we found that the extreme
values of f(x, y) = 2x2 + y + y2 (subject to the constraint x2 + y2 = 1) are 0
and 9/4. The set of possible points where the extrema occured was assigned to
the variable s. Using simplify and subs, we substituted each set of points into
f . In this way, we found that the minimum value 0 occurs at x = 0, y = −1 and
the maximum value 9/4 occurs at x = ±

√
3/2, y = 1/2.

5.7 Integration
If f is an expression involving x, then the syntax for finding the integral∫ b

a
f(x) dx is int(f,x=a..b). For the indefinite integral we use int(f,x). There

are also the unevaluated forms Int(f,x=a..b) and Int(f,x).

> Int(x∧2/sqrt(1-x∧3),x); ∫
x2

√
1 − x3

dx
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> value(%);

−2/3
√

1 − x3

> Int(1/x/sqrt(x∧2 - 1),x=1..2/sqrt(3));

∫ 2/
√

3

1

1
x
√

x2 − 1
dx

> value(%);
1
6

π

maple easily found that ∫
x2

√
1 − x3

dx = −2
3

√
1 − x3

∫ 2/
√

3

1

1
x
√

x2 − 1
dx =

π

6
.and

maple can do improper integrals and multiple integrals in the obvious way. Try
finding ∫ ∞

0

re−r2
dr

by typing int(r*exp(-r∧2),r=0..infinity). Try evaluating the double inte-
gral ∫ ∫

y sin(2x + 3y2) dx dy

by first integrating with respect to x and then with respect to y.
If maple does not know the value of a definite integral, try evalf.

> Int(sqrt(1+x∧6),x=0..1);∫ 1

0

√
1 + x6 dx

> value(%); ∫ 1

0

√
1 + x6 dx

> evalf(%);
1.064088379

Although maple was unable to evaluate the integral, it was able to find the
approximation ∫ 1

0

√
1 + x6 dx ≈ 1.064088379.
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5.7.1 Techniques of integration

maple knows some standard techniques of integration. These are in the
student package and are loaded with the command with(student).

5.7.1.1 Substitution

In maple, to do integration by substitution, we use the changevar com-
mand. The syntax is changevar(f(u)=h(x),integral,u) where integral is an
integral in the variable x, f(u) = h(x) is the substitution, and u is the new
variable in the integral.

> with(student):
> G:=Int(x∧4/sqrt(1-x∧10),x);∫

x4

√
1 − x10

dx

> changevar(u=x∧5,G,u); ∫
1/5

1√
1 − u2

du

> G2 := value(%);
1/5 arcsin(u)

> subs(u=x∧5,G2);
1/5 arcsin(x5)

> diff(%,x);
x4

√
1 − x10

Using changevar with the substitution u = x5, we found∫
x4

√
1 − x10

dx =
1
5

∫
1√

1 − u2
du

= sin−1 u

= sin−1(x5)

> G:=Int((3*x∧2+1)/sqrt((1-x-x∧3)*(1+x+x∧3)),x);

G :=
∫

3x2 + 1√
(1 − x − x3) (1 + x + x3)

dx

> value(G); ∫
3x2 + 1√

(1 − x − x3) (1 + x + x3)
dx

© 2002 by Chapman & Hall/CRC



Calculus 57

Although maple was unable to evaluate the integral above, you should be able
to help it along by using changevar and the substitution u = x + x3.

> radsimp(changevar(u=x+x∧3,G,u));

5.7.1.2 Integration by parts
To do integration by parts, we use the command intparts. The syntax is

intparts(integral, u) where u is as usual in the formula∫
u dv = uv −

∫
v du.

> with(student):
> Int(x*cos(3*x),x); ∫

x cos 3x dx

> intparts(%,x);

1/3x sin(3x) −
∫

1/3 sin(3x) dx

> value(%);
1/3x sin(3x) + 1/9 cos(3x)

Thus maple has helped us by providing the details of the evaluation of the
integral by parts:∫

x cos 3x dx = 1/3x sin 3x −
∫

1/3 sin 3x dx

= 1/3x sin 3x + 1/9 cos 3x.

5.7.1.3 Partial fractions
The command for finding the partial fraction decomposition of a rational

function ratfunc (in the variable x) is convert(ratfunc,parfrac,x). As an
example, we use maple to find the integral∫

4x4 + 9x3 + 12x2 + 9x + 4
(x + 1)(x2 + x + 1)2

dx.

> rat := (4*x∧4+9*x∧3+12*x∧2+9*x+4)
/(x + 1)/(x∧2 + x + 1)∧2:

> convert(rat,parfrac,x);

2
x + 1

+
1 + 2x

x2 + x + 1
+

1
(x2 + x + 1)2
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> int(%,x);

2 ln(x + 1) + ln(x2 + x + 1) +
1
3

2x + 1
x2 + x + 1

+
4
9

√
3 arctan

(
1
3
(2x + 1)

√
3
)

5.8 Taylor and series expansions
The command to find the first n terms of the Taylor series expansion for

f(x) about the point x = c is taylor(f(x),x=c,n). We compute the first five
terms of the Taylor series expansion of y = (1 − x)−1/2 about x = 0.

> y := 1/sqrt(1-x);

y :=
1√

1 − x

> taylor(y,x=0,5);

1 +
1
2
x +

3
8
x2 +

5
16

x3 +
35
128

x4 + O
(
x5
)

To find a specific coefficient in a Taylor series expansion, use coeff.

> J := product(1-x∧’i’,’i’=1..50):
> taylor(J∧3,x=0,20);

1 − 3x + 5x3 − 7x6 + 9x11 − 11x15 + O(x20)

> coeff(%,x,15);
−11

To convert a series into a polynomial, try convert(series, polynom). Also, see
?series.

5.9 The student package
The student package contains many functions to help the calculus student

solve problems step-by-step. In Section 5.7.1 we used the student package func-
tions changevar, intparts to do some integration problems. The package in-
cludes the following functions:

D Diff Doubleint Int Limit
Lineint Point Product Sum Tripleint
changevar combine completesquare distance equate
extrema integrand intercept intparts isolate
leftbox leftsum makeproc maximize middlebox
middlesum midpoint minimize powsubs rightbox
rightsum showtangent simpson slope summand
trapezoid
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We give a brief description of the main functions.

Doubleint

Calculates double integrals. Doubleint(f,x,y) is equivalent to int(int(f,x),
y) and Doubleint(f,x=a..b,y=c..d) is equivalent to int(int(f,x=a..b),
y=c..d). Also see Section 10.6.1.

Lineint

Calculates line integrals. Suppose a curve C is parameterized by x = x(t), y =
y(t) (a ≤ t ≤ b), and f(x, y) is a function defined on C. Let �r(t) = x(t)�i + y(t)�j.
The line integral ∫

C
f(x, y) ds =

∫ b

a

f(x(t), y(t)) ||�r ′(t)|| dt

is given in maple by Lineint(f(x,y),x,y,t=a..b). Also see Section 10.8.

Tripleint

Calculates triple integrals and is analogous to Doubleint. Also see Section
10.6.2.

completesquare

completesquare is used to complete the square.

> with(student):
> p := x∧2 + 6*x + 13;

x2 + 6x + 13

> completesquare(p);
(x + 3)2 + 4

> q := x∧2 + 10*x + 2*y∧2 + 12*y + 12;

x2 + 10x + 2 y2 + 12 y + 12

> completesquare(q);

Error, (in completesquare) unable to choose indeterminate
> completesquare(q,x);

(x + 5)2 − 13 + 2 y2 + 12 y

> completesquare(%,y);

2 (y + 3)2 − 31 + (x + 5)2

We found that

x2 + 6x + 13 = (x + 3)2 + 4,

x2 + 10x + 2 y2 + 12 y + 12 = 2 (y + 3)2 − 31 + (x + 5)2 .
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distance

Finds the distance between two points in one, two, or three dimensions.

> with(student):
> distance(-3,5);

8

> distance([1,2],[-3,4]);
2
√

5

We see that the distance between the two real numbers −3 and 5 is |−3−5| = 8
and that the distance between the points (1, 2) and (−3, 4) is 2

√
5.

equate

Generates a set of equations.

> with(student):
> equate(x,y);

{x = y}

> equate([x+y,x-y],[3,-1]);

{x − y = −1, x + y = 3}

> solve(%);
{y = 2, x = 1}

integrand

Extracts the integrand from an inert maple integral.

> with(student):
> F := Int(sin(x∧3*y),x=0..2*Pi);

F :=
∫ 2 π

0

sin(x3y)dx

> integrand(F);
sin(x3y)

intercept

Computes the x-intercept as well as the intersection point of two curves.

> with(student):
> intercept(y=5*x-3);

{y = −3, x = 0}
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> intercept(y=x∧2+3*x-20,y=2*x∧2+x-23);

{x = −1, y = −22} , {x = 3, y = −2}

We see that the x-intercept of the line y = 5x − 3 is the point (0,−3) and that
the curves y = x2 + 3x − 20, y = 2x2 + x − 23 have two intersection points
(−1,−22) and (3,−2).

leftbox

Gives a graphical representation of a certain Riemann sum. The command
leftbox(f(x), x=a..b, n) graphs f(x) on the interval [a, b] as well as n rect-
angles whose area approximates the definite integral. The left corner of each
rectangle is a point on the graph of y = f(x). We use leftbox to give a graph-
ical approximation for the integral

∫ π

0
sinx2 dx:

> with(student):
> leftbox(sin(x∧2), x=0..Pi, 6, shading=green);

–1

–0.5

0

0.5

1

0.5 1 1.5 2 2.5 3
x

Figure 5.1 Rectangles representing a Riemann sum.

maple’s plotting functions are treated in detail in the next chapter. Related
functions are rightbox and middlebox.

leftsum

leftsum is the Riemann sum that corresponds to leftbox. We compute the
Riemann sum, which corresponds to the areas of the rectangles in our previous
example.

> with(student):
> leftsum(sin(x∧2), x=0..Pi, 6);

1/6π
5∑

i=0

sin(1/36 i2π2)

> value(%);

1/6π

(
sin(1/36π2) + sin(

1
9

π2) + sin(
1
4

π2) + sin(
4
9

π2) + sin(
25
36

π2)
)
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> evalf(%);
0.7212750238

> evalf(int(sin(x∧2),x=0..Pi));

0.7726517130

The required Riemann sum is

π

6

5∑
i=0

sin(i2π2/36) ≈ .7212750238,

which is an approximation of the integral∫ π

0

sin x2 dx = 0.772651713 · · · .

Related functions are rightsum and middlesum.

makeproc

The makeproc is used for defining functions and takes three forms. If expr is
an expression in the variable x, then makeproc converts the expression into a
function of x.

> with(student):
> y := x∧2 + x - 3;

y := x2 + x − 3

> f := makeproc(y,x);

f := x �→ x2 + x − 3

> f(x);
x2 + x − 3

We converted the expression x2 + x− 3 into a function of x. Also see ?unapply.
To find the linear function whose graph passes through the two points (a, b),
(c, d), use the command makeproc([a,b],[c,d]).

> with(student):
> f := makeproc([-1,1],[3,7]);

f := x �→ 3
2

x +
5
2

> f(-1), f(3);
1, 7
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We see that y = 3
2 x + 5

2 is the line that passes through the two points (−1, 1)
and (3, 7). To find the linear function whose graph passes through (a, b) and has
slope m, use the command makeproc([a,b],’slope’=m).

> with(student):
> f := makeproc([2,5],’slope’=3);

f := x �→ 3x − 1

> f(2);

5

> diff(f(x),x);

3

We see that y = 3x − 1 is the line with slope 3 that passes through the point
(2, 5).

midpoint

To find the midpoint of the line segment joining the two points (a, b), (c, d), use
the command midpoint([a,b],[c,d]).

> with(student):
> midpoint([2,3],[5,7]);

[
7
2
, 5]

We see that the midpoint of the segment joining the points (2, 3), (5, 7) is the
point (7/2, 5).

powsubs

The powsubs function behaves like the subs function. See ?powsubs and ?subs
for more information.

showtangent(f(x), x=a)

Produces a graph of the function y = f(x) near x = a together with the tangent
that passes through the point (a, f(a)). We graph the tangent to the curve
y = sinx at x = 2π/5 together with the curve.

> with(student):
> showtangent(sin(x),x=Pi/4);
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Figure 5.2 The function y = sin x and the tangent at x = 2π/5.

simpson

Computes an approximation to a definite integral using Simpson’s rule. The call
simpson(f(x),x,n) finds an approximation to the definite integral

∫ b

a
f(x) dx

using n subdivisions. We use Simpson’s rule with n = 12 to find an approxima-
tion to

∫ 1

0
1√

1+x4 dx:

> with(student):
> simpson(1/sqrt(1+x∧4),x=0..1,12):
> value(%):
> app := evalf(%);

app := 0.9270384891

> xval := evalf(int(1/sqrt(1+x∧4),x=0..1));

xval := 0.9270373385

> abs(app-xval);
.11506 10−5

We found that ∫ 1

0

1√
1 + x4

dx ≈ 0.9270384891,

and the error < 10−5.

slope

Gives the slope of a line.

> with(student):
> slope(y=2*x-5);

2
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> slope(2*y+12=3*x);

Error, (in slope) use slope(y=f(x)), or slope(f(x,y)=g(x,y),y(x))
> slope(2*y+12=3*x,y(x));

3/2

> slope([12,5],[3,7]);

−2
9

We found that the slope of the line y = 2x − 5 is 2. To find the slope of the
line 2y + 12 = 3x, we need to tell maple that y is the dependent variable.
Using the call slope(2*y+12=3*x,y(x)), we found the slope to be 3/2. The
call slope([12,5],[3,7]) gives the slope of the line segment joining the points
(12, 5) and (3, 7).

summand

Gives the summand in a sum.

> with(student):
> z3 := Sum(1/n∧3,n=1..infinity);

z3 :=
∞∑

n=1

1
n3

> summand(z3);
1
n3

trapezoid

Uses the trapezoidal rule to compute an approximation to a definite integral.
The call trapezoid(f(x),x,n) finds an approximation to the definite integral∫ b

a
f(x) dx using n subdivisions. We use the trapezoidal rule with n = 12 to find

an approximation to
∫ 1

0
1√

1+x4 dx:

> with(student):
> trapezoid(1/sqrt(1+x∧4),x=0..1,12):
> value(%):
> app := evalf(%);

0.9266278484

> xval := evalf(int(1/sqrt(1+x∧4),x=0..1));

0.9270373385

> abs(app-xval);
0.0004094901

This time we found that∫ 1

0

1√
1 + x4

dx ≈ 0.9266278484,

and the error < 10−3. The approximation found earlier using Simpson’s rule
was better.
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6. GRAPHICS

maple can plot functions of one variable, planar curves, functions of two
variables, and surfaces in three dimensions. It can also handle parametric plots
and animations. The two main plotting functions are plot and plot3d.

–1

–0.5

0

0.5

1

–6 –4 –2 2 4 6x

Figure 6.1 maple plot of y = sin x.

6.1 Two-dimensional plotting
The syntax for plotting an expression (or function) in x is plot(f(x),

x=a..b). For example, to plot sin(x) for −2π ≤ x ≤ 2π, we type

> plot(sin(x),x=-2*Pi..2*Pi);

The resulting plot appears in Figure 6.1.
Observe that in maple the plot actually appears in the current document.

Click on the maple plot with the left mouse button. A rectangle should now
border the plot. You will notice eight dots: one in each corner and one at the
midpoint of each side. The dots mark positions for resizing the plot. Move
the mouse on the dot in the bottom right corner. A little appears. Try
stretching the plot display into a different shape. Notice also that the menu
bar and the context bar have changed. The menu bar consists of the File, Edit,
View, Format, Style, Legend, Axes, Projection, Animation, Export, Window,
and Help menus. The context bar has changed completely. There should be
a small window containing a pair of coordinates and nine new buttons. Try
clicking on each button to see its effect.

0.53, 0.50
Displays the coordinates of the point un-
der the tracker (i.e., the point clicked).

67
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Render the plot using the usual line style.

Render the plot using the usual point style.

Render the plot using the polygon patch with
gridlines style.

Render the plot using the polygon patch style.

Draw the plot axes as an enclosed box.

Draw the plot axes as an exterior frame.

Draw the plot axes in traditional form.

Suppress the drawing of plot axes.

Use the same scale on both axes.

Now click on the plot with the right mouse button. A context menu should
appear:

Copy
Style �
Legend �
Axes �
Projection �
Animation �
Export As �

Click in Style. A submenu should appear:

Line
Point

� Patch
Patch w/o grid
Default
Symbol As �
Symbol Size...
Line Style �
Line Width �

Select Point. The resulting plot is just a set of points interpolating the curve.
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Figure 6.2 maple point-style plot of y = sin x.

Try some of the other selections in the context menu.

6.1.1 Restricting domain and range
Try the plot command plot(sec(x),x=-Pi.. 2*Pi). Notice the “spikes” at

x = −π/2, π/2, and 3π/2 in your maple plot. These correspond to singularities
of sec(x). We restrict the range to get a more reasonable plot.

> plot(sec(x),x=-Pi..2*Pi,y=-5..5);

The resulting plot appears in Figure 6.3. Observe the vertical lines in the plot.
maple has tried to plot a continuous curve even though the function secx has
discontinuities at x = −π/2, π/2, and 3π/2 in the interval [−π, 2π]. To allow
for these discontinuities we can use the discont option. Try

> plot(sec(x),x=-Pi..2*Pi,y=-5..5,discont=true);

So, to plot y = f(x), where a ≤ x ≤ b, and c ≤ y ≤ d, in maple we use the
command plot(f(x),x=a..b,y=c..d).

6.1.2 Parametric plots
To plot the curve parameterized by

x = f(t), y = g(t), for a ≤ t ≤ b,

we use the command plot([f(t),g(t),t=a..b]). The ellipse

x2 + 4y2 = 1,

can be parameterized as

x = cos(t), y =
1
2

sin(t), where 0 ≤ t ≤ 2π.
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Try

> plot([cos(t),1/2*sin(t),t=0..2*Pi]);

This should give you the desired plot.
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4

y

–2 2 4 6x

Figure 6.3 maple plot of y = sec x.

6.1.3 Multiple plots
To plot the two functions

y =
√

x, y = 3 log(x),

try

> plot([sqrt(x),3*log(x)],x=0..400);

The resulting plot is given in Figure 6.4. On the screen, each curve is plotted
with a different color. Observe that our plot does not seem to illustrate the
expected behavior of the log function near x = 0. To get a more accurate plot,
we can use the numpoints option. Try

> plot([sqrt(x),3*log(x)],x=0..400,numpoints=1000);

An alternative method for doing multiple plots is to use the display function
in the plots package. Try

> with(plots):
> p1:=plot(sqrt(x),x=0..400):
> p2:=plot(3*log(x),x=0..400):
> display(p1,p2);

When defining p1 and p2, use a colon unless you want to see all the points
maple uses to plot the functions. To see all the functions in the plots package,
type
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> with(plots);
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Figure 6.4 maple plot of y =
√

x and y = 3 log x.

6.1.4 Polar plots
To plot polar curves we use the polarplot function in the plots package.

Use the command polarplot(f(t), t=a..b) to plot the polar curve r = f(θ).
Try

> with(plots):
> polarplot(cos(5*t),t=0..2*Pi);

The resulting plot appears in Figure 6.5.
When you try this the first time you will notice the scale on the x-axis is

different from that on the y-axis. To make the scales the same, hold the first
mouse button on Projection and release on Constrained; or, better still, click on

.
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–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8
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Figure 6.5 maple plot of the polar curve r = cos 5θ.
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We can also plot multiple polar curves. Try

> polarplot({cos(5*t),t},t=0..2*Pi);
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–2 2 4 6

Figure 6.6 maple plot of two polar curves.

You can use polarplot(L,options) where L is a list or set. If no range for the
angle is specified, the default range −π ≤ θ ≤ π is taken.

There is another way to plot polar curves. Since x = r cos θ and y = r sin θ,
the polar curve r = f(θ) is given parametrically by

x = f(θ) cos θ, y = f(θ) sin θ.

For example, the polar curve r = cos 5θ is given parametrically by

x = cos 5θ cos θ, y = cos 5θ sin θ,

so try

> plot([cos(t)*cos(5*t),sin(t)*sin(5*t),t=0..2*Pi]);

You should obtain the same plot.

6.1.5 Plotting implicit functions

In Section 6.1.2 we used a parameterization to plot the curve x2 + 4y2 = 1.
Alternatively, we can plot implicitly defined functions using the implicitplot
command in the plots package. Try

> with(plots):
> implicitplot(x∧2+4*y∧2=1,x=-1..1,y=-1/2..1/2);

This should agree with what we obtained before.
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6.1.6 Plotting points
In maple, we plot the points

(x1, y1), (x2, y2), . . . , (xn, yn)

with the command plot([[x1,y1],[x2,y2], . . . ,[xn,yn]]). Try

> L := [[0,0],[1,1],[2,3],[3,2],[4,-2]]:
> plot(L);

The resulting plot is given in Figure 6.7.
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Figure 6.7 maple plot of some data points.

Notice that maple (by default) has drawn lines between the points. To plot the
points and nothing but the points, try

> plot(L, style=point, symbol=circle);
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Figure 6.8 maple plot of some unconnected data points.
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The points correspond to circles. Try plotting this without the symbol=circle
option.

6.1.7 Title and text in a plot
To put a title above a plot, we use the option title. Try

> p1:=plot([sqrt(x),3*log(x)],x=0..400,
title=‘The Square Root and log functions‘):

> display(p1);

To add text to a plot, we use the texplot and display functions in the plots
package. Try

> p2:=textplot([[360,16,‘y=3log(x)‘],[130,10,‘y=sqrt(x)‘]]):
> display(p1,p2);

textplot([x1,y1,string]) creates a plot with string positioned at (x1, y1).
We add a legend to a plot. Try

> plot([sqrt(x),3*log(x)],x=0..400,
title="The Square Root \n and log functions",
legend=["y=sqrt(x)","y=3log x"]);

We can add Greek letters and other symbols to plots using the Symbol font.
Below is a table showing Greek letters with corresponding Roman letters.

a b c d e f g h i j k l m n
α β χ δ ε φ γ η ι ϕ κ λ μ ν

o p q r s t u v w x y z
o π θ ρ σ τ υ � ω ξ ψ ζ

A B C D E F G H I J K L M N
A B X Δ E Φ Γ H I ϑ K Λ M N

O P Q R S T U V W X Y Z
O Π Θ P Σ T Y ς Ω Ξ Ψ Z

To produce μ at the point (1, 1) in a plot, we try:

> with(plots):
> textplot([1,1,‘m‘], font=[SYMBOL,12]);

As an illustration, we will plot two normal curves with means μ and μ∗. We
need to load the stats package so we can plot normal density functions. We will
discuss the stats package in more detail in Chapter 16.

> with(stats):
> with(plots):
> xaxis:=plot([[-5,0],[7,0]]):
> meanl1:=plot([[0,0],[0,0.42]],linestyle=2):
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> meanl2:=plot([[1,0],[1,0.42]],linestyle=2):
> p1:=plot(statevalf[pdf,normald[0,1]](t),t=-5..5):
> p2:=plot(statevalf[pdf,normald[1,1]](t),t=-4..5):
> t1:=textplot([0,-0.02,m],font=[SYMBOL,12],’align=BELOW’):
> t2:=textplot([1,-0.02,"m*"],font=[SYMBOL,12],’align=BELOW’):
> display(xaxis,p1,p2,t1,t2,meanl1,meanl2,

view=[-5..7,-0.02..0.42], axes=none);

The resulting plot appears below in Figure 6.9.

xaxis gives a horizontal line corresponding to the x-axis. The two verti-
cal dotted lines are meanl1 and meanl2, indicating the two means μ and
μ∗. The two normal curves are given by p1 and p2. The stats function
statevalf[pdf,normald[μ,σ]] computes values of the normal density func-
tion with mean μ and standard deviation σ. See Chapter 16 for more details.
The symbols μ and μ∗ were placed in their correct positions using textplot.
The align option in textplot can take the values ABOVE, BELOW, RIGHT, or LEFT.
See ?plots[textplot] for more details.

Other keyboard characters give different symbols when using symbol font:

@ $ ∧ ’ |
∼= ∃ ⊥ � ∴

Try

> textplot([1,1,‘@‘],font=[SYMBOL,12]);

μ∗μ
Figure 6.9 Two normal curves.

Other symbols are encoded as character numbers using convert([n],
bytes). Here n is an integer satisfying 32 ≤ n ≤ 126, 161 ≤ n ≤ 254. Try
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> with(plots):
> textplot([0,0,convert([192], bytes)], font=[SYMBOL,12],

axes=none);
ℵ

To view more of these symbols define chardisplay:

> with(plots):
> chardisplay:=n -> display(textplot([0,0,convert([n],bytes)],

font=[SYMBOL,12]),axes=none):

Now try chardisplay(n) for different values of n.

> chardisplay(169);

6.1.8 Plotting options
The plotting options are given after the function and ranges in the plot

command. The following information is taken from the maple help pages. See
?plot[options].

adaptive

If set to false, disables the use of adaptive plotting.

axes

Specifies the type of axes, one of: FRAME, BOXED, NORMAL, and NONE.

axesfont=l

Font for the labels on the tick marks of the axes, specified in the same manner
as font.

color=n

Allows the user to specify the color of the curves to be plotted. The spelling
colour may also be used. See ?plot,color for details.

coords=name

Indicates that a parametric plot is in the coordinate system specified by name.
See ?plot[coords] for more information about the choices of coordinate system.

discont=s

Setting s to true forces plot to first call the function discont to determine the
discontinuities of the input and then break the horizontal axis into appropriate
intervals where the expression is continuous.

filled=truefalse

If the filled option is set to true, the area between the curve and the x-axis is
given a solid color. This option is valid only with the following commands: plot,
contourplot, implicitplot, listcontplot, polarplot, and semilogplot.
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font=l

Font for text objects in the plot; l is a list [family, style, size], where
family is one of TIMES, COURIER, HELVETICA, and SYMBOL. For TIMES, style may
be one of ROMAN, BOLD, ITALIC, or BOLDITALIC. For HELVETICA and COURIER,
style may be omitted or select one of BOLD, OBLIQUE, or BOLDOBLIQUE. SYMBOL
does not accept a style option. The final value, size, is the point size to be used.
As an example, try font=[HELVETICA,12].

labels=[x,y]

This option specifies labels for the axes. The values of x and y must be strings.
The default labels are the names of the variables used in the plotting function.

labeldirections=[x,y]

This option specifies the direction in which labels are printed along the axes.
The values of x and y must be HORIZONTAL or VERTICAL. The default direction
of any labels is HORIZONTAL.

labelfont=l

Font for the labels on the axes of the plot, specified in the same manner as font.

legend=s

A legend for a plot can be specified by either a string or a list of strings. When
more than one curve is being plotted, they must be specified as a list and there
must be a legend for each curve.

linestyle=n

Controls the dash pattern used to render lines in the plot. When n=1, the line
is solid. For n=2 the style is dot, n=3 gives dash, and n=4 gives dash-dot.

numpoints=n

Specifies the minimum number of points to be generated (the default is n = 50).
Note: plot employs an adaptive plotting scheme that automatically does more
work when the function values do not lie close to a straight line. Hence plot
will often generate more than the minimum number of points.

resolution=n

Sets the horizontal display resolution of the device in pixels (the default is n =
200). The value of n is used to determine when the adaptive plotting scheme
terminates. A higher value will result in more function evaluations for non-
smooth functions.

sample

Supplies a list of parameter values to be used for the initial sampling of the
function(s). When coupled with adaptive=false, this option allows explicit
control over the function evaluations performed by plot.
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scaling

Controls the scaling of the graph. Either CONSTRAINED or UNCONSTRAINED. De-
fault is UNCONSTRAINED. CONSTRAINED means the same scale is used on both
axes.

style=s

The interpolation style must be one of LINE, POINT, PATCH, or PATCHNOGRID.
The default is LINE. POINT style plots points only, LINE interpolates between
the points, PATCH uses the patch style for plots containing polygons, and
PATCHNOGRID is the PATCH style without the grid lines.

symbol=s

Symbol for points in the plot, s is one of BOX, CROSS, CIRCLE, POINT, and
DIAMOND.

symbolsize=n

The size (in points) of a symbol used in plotting can be given by a positive
integer. This does not affect the symbol POINT. The default symbol size is 10.

thickness=n

Thickness of lines in the plot; n should be 0, 1, 2, or 3. 0 is the default thickness.

tickmarks=[m,n]

This option specifies that a reasonable number of points no less than m and n
should be marked along the x-axis and y-axis, respectively. Both m and n must
be either a positive integer or the name default. If tickmarks are desired along
only one axis, use xtickmarks or ytickmarks instead.

title=t

The title for the plot. t must be a character string. The default is no title. You
can create multiline titles for standard plots. Use the characters “\n” in the
character string to obtain a line break in the title.

titlefont=l

Font for the title of the plot, specified in the same manner as font.

view=[xmin..xmax, ymin..ymax]

This option indicates the minimum and maximum coordinates of the curve to
be displayed on the screen. The default is the entire curve.

xtickmarks=n

Indicates that a reasonable number of points no less than n should be marked
along the horizontal axis; n must be a positive integer or a list. If n is a
list, then the list of values is used to mark the axis; the corresponding option
ytickmarks=n can be used to specify the minimum number of divisions along
the vertical axis, or a list of values used to mark the vertical axis.
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6.1.9 Saving and printing a plot
There are several ways to save a plot. Any plot that is part of a worksheet will

be saved when the worksheet is saved. See Sections 9.2 and 9.3. The plotsetup
function can be used to save a plot as a file suitable for other drivers. This is
done by specifying the plotdevice variable. Common settings for plotdevice
are

bmp Windows BMP file
cps Color Postscript file
gif GIF image file
ps encapsulated Postscript file
jpeg 24-bit color JPEG file
hpgl HP GL file

Here is an example.

> plotsetup(ps, plotoutput=‘plot.ps‘,
plotoptions=‘portrait, noborder‘);

> plot(sin(x),x=-2*Pi..2*Pi);
> interface(plotdevice=inline);

In this session, a plot of y = sin(x) was written to the Postscript file plot.ps, in
portrait style with no surrounding border. The interface function was used so
that any future plot will be within the worksheet. Otherwise, if plotsetup is
not changed, any future plot will overwrite the file plot.ps.

A plot may be printed as part of the worksheet using the menu. Alternatively,
it can be saved as a file and printed using a graphics driver. For example, try

> plotsetup(hpgl, plotoutput=‘plot.hp‘,plotoptions=‘laserjet‘);

when printing a plot with an HP Laserjet printer. For more information, use
the help commands ?plotsetup, ?plot[device].

A plot may be also saved using the Export menu. Click on a plot in the
worksheet that you want to save and then click on Export. A menu should
appear:

Drawing Exchange Format (DXF)...
Encapsulated Postscript (EPS)...
Graphics Interchange Format (GIF)...
JPEG File Interchange Format (JPG)...
Persitence of Vision (POV)...
Windows Bitmap (BMP)...
Windows Metafile (WMF)...

Select your favorite file format. A Save As window should appear. Type an
appropriate file name in the File name box and click on Save .

6.1.10 Other plot functions
We describe briefly the other two-dimensional plotting functions available in

the plots package. Don’t forget to load the plots package.
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> with(plots):

complexplot

Suppose f(t) is a complex-valued function, say

f(t) = u(t) + i v(t),

where u(t) and v(t) are real-valued functions. Then the function
complexplot(f(t),t=a..b) will plot the curve given parametrically by

x = u(t), v(t), a ≤ t ≤ b.

> complexplot(exp(I*x),x=0..2*Pi);

conformal

Suppose f(z) is a complex-valued function, then the function conformal
(f(z),z=z1..z2) will plot the image of a rectangular grid under the mapping
w = f(z). The complex numbers z1 and z2 determine two corners in the rectan-
gular grid. More details and examples for this function will be given in Section
11.6.

> conformal(sin(z),z=-1-I..1+I);

The resulting plot appears below in Figure 6.10.

coordplot

The function coordplot(coord,rangelist,eqns) plots graph paper of the
specified coordinate system. The available coordinate systems are bipolar,
cardioid, cartesian, cassinian, elliptic, hyperbolic, invcassinian,
invelliptic, logarithmic, logcosh, maxwell, para- bolic, polar, rose, and
tangent. For a description of these coordinate systems see ?coords. rangelist
is a list of two coordinate ranges, and eqns are optional equations that modify
the plot. See ?plots[coord] for more details.
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Figure 6.10 The conformal mapping w = sin z.
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> coordplot(polar,[0..2,0..2*Pi],labelling=true,
grid=[5,13], view=[-2..2,-2..2],scaling=constrained);

The resulting plot appears below in Figure 6.11.

fieldplot

The function fieldplot([f(x,y),g(x,y),x=a..b,y=c..d) plots the two-dim-
ensional vector field

�F (x, y) = f(x, y)�i + g(x, y)�j,

where a ≤ x ≤ b, and c ≤ y ≤ d. Let’s plot the direction field

�F (x, y) = −y�i + x�j,

23/211/2
0

2*Pi

11/6*Pi

5/3*Pi

3/2*Pi

4/3*Pi

7/6*Pi

Pi

5/6*Pi

2/3*Pi

1/2*Pi

1/3*Pi

1/6*Pi

0

Figure 6.11 Polar graph paper via coordplot.

> fieldplot([-y,x],x=-1..1,y=-1..1);
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Figure 6.12 2D direction field.
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inequal

The function inequal(ineqs,x=a..b,y=c..d,options) will plot regions de-
fined by linear inequalities in the variables x and y over the specified ranges. We
plot the regions specified by the inequalities

x − y ≤ 0, x + y ≤ 1, 5 + 2x ≥ y,

where −6 ≤ x ≤ 3, and −6 ≤ y ≤ 6. The intersection is colored red and
elsewhere is colored yellow.

> inequal( { x-y<=0,x+y<=1,5+2*x>=y}, x=-6..3,y=-6..6,
optionsfeasible=(color=red),optionsexcluded=(color=yellow));
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Figure 6.13 Graphing inequalities using inequal.

Warning: This function has some bugs for regions specified with strict inequal-
ities. For example, try

> inequal( { x-y<0,x+y<1,5+2*x>y}, x=-6..3,y=-6..6,
optionsfeasible=(color=red),optionsexcluded=(color=blue));

logplot

The function logplot(f(x),x=a..b) creates a plot of the function f(x) (a ≤
x ≤ b) with a logarithmic scale on the y axis. Try

> logplot(tan(x),x=0..1.55);

pareto

The pareto function plots a Pareto diagram of specified frequencies. For more
information see ?plots[pareto].

pointplot

The function pointplot(L) plots a list or set of points L. It is basically equivalent
to the command plot(L,style=point).
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polygonplot

If L is a list of points, the function polygonplot(L) creates a plot of a polygon
whose vertices are these points.

> L := [[0,1],[1,1],[1/2,1/2]]:
> polygonplot(L);
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Figure 6.14 A polygon plot of a triangle.

Regular Pentagon

Figure 6.15 A polygon plot of a pentagon.

Observe that we plotted the triangle with vertices (0, 1), (1, 1), (1/2, 1/2). In
general, straight lines connect the points of L, and then the last point in L is
connected to the first point. We can add color with the color option.

> ngon := n -> [seq([ cos(2*Pi*i/n), sin(2*Pi*i/n) ],
i = 1..n)]:

> polygonplot(ngon(5),scaling=constrained,axes=none,
title="Regular Pentagon",color=yellow);

The resulting plot is given above in Figure 6.15. The function ngon(n) re-
turns n equally spaced points on the unit circle. We plotted a regular polygon
by applying the polygonplot function to the list of five points returned by
ngon(5). Below we define a function nstar for plotting an n-pointed star using
polygonplot.
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> npt :=(r,i,n) -> [r*cos(2*Pi*i/n),r*sin(2*Pi*i/n)];

npt := (r, i, n) �→ [r cos(2
π i

n
), r sin(2

π i

n
)]

> shard:=(i,n,col)->polygonplot([npt(1,i,n),npt(2,(2*i+1),
2*n),npt(1,i+1,n)],color=col):

> nstar:=(n,col)->display(seq(shard(i,n,col),i=1..n),
scaling=constrained, axes=none):

> nstar(17,blue);

Figure 6.16 A polygon plot of a 17 pointed star.

The function nstar(n,color) should plot an n-pointed star with the specified
color. It is defined in terms of the two functions npt and shard. npt(r,i,n)
returns the ith point in a sequence of n equally spaced points on the circle of
radius r. shard(i,n,col) plots a triangle corresponding to the ith point of the
star.

semilogplot

The function semilogplot(f(x),x=a..b) creates a plot of the function f(x)
(a ≤ x ≤ b) with a logarithmic scale on the x axis. Try

> semilogplot({sqrt(x),log(x)},x=0.1..100);
setoptions

This function sets global options for two-dimensional plots. These become de-
fault for all subsequent 2D plots in the same maple session. See ?plot[options]
for a list of options.

> setoptions(title=‘Semilog plot of Sqrt and Log‘,
axes=BOXED);

> semilogplot({sqrt(x),log(x)},x=0.1..100);
To remove these options, do

> setoptions(title=‘‘, axes=normal);
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6.2 Three-dimensional plotting
The syntax for plotting an expression (or function) in two variables (say

x, y) is plot3d(f(x,y), x=a..b,y=c..d). For example, to plot the function
z = e−(x2+y2−1)2 for −2 ≤ x, y ≤ 2, we use the command

> plot3d(exp(-(x∧2 + y∧2-1)∧2), x=-2..2, y=-2..2);

Figure 6.17 A plot of the function z = e−(x2+y2−1)2 .

Observe (as before with two-dimensional plotting) that the plot appears in the
worksheet. Now try clicking on the plot. Notice the appearance of the Style,
Colour, Axes, Projection, and Animation menus. The context bar has also
changed. There should be a pair of small windows labelled ϑ and φ, each con-
taining the number 45. This pair of numbers refers to a point in spherical
coordinates and corresponds to the orientation of the plot. There should also be
13 new buttons. Try clicking on each button to see its effect.

Specifies orientation.

Render the plot using the polygon patch style
with gridlines.

Render the plot using the polygon patch style.

Render the plot using the polygon patch and
contour style.
Render the plot using the hidden line removal
style.

Render the plot using the contour style.

Render the plot using the wireframe style.

Render the plot using the point style.

Draw the plot axes as an enclosed box.
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Draw the plot axes as an exterior frame.

Draw the plot axes in traditional form.

Suppress the drawing of plot axes.

Use the same scale on each axis.

Now, hold the first mouse button down on the plot and at the same time move
it around. Notice how the plot rotates as you move the mouse, and notice that
the value of (ϑ, φ) changes. Below in Figure 6.18 is a plot obtained by clicking

on and and selecting (ϑ, φ) = (22, 67).
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Figure 6.18 A maple plot with boxed axes.

Now, try clicking to see some hidden detail of the plot. You might use the
grid option to increase the number of contours plotted. Try

> plot3d(exp(-(x∧2 + y∧2)∧2), x=-2..2,y=-2..2, grid=[50,50]);

This time try clicking the right mouse button on the plot. A context menu
should appear:

Copy
Style �
Color �
Axes �
Projection �
Animation �
Export As �
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Select Color. Another menu appears.

� XYZ
XY
Z
Z (Hue)
Z (Grayscale)
No Coloring
Default Coloring
No Lighting
User Lighting
Light Scheme 1
Light Scheme 2
Light Scheme 3
Light Scheme 4

Select Light Scheme 1. Notice how the coloring of the plot changes. Try out
some other selections.

Now let’s plot something simpler such as a plane. Remember that the equa-
tion of a plane takes the form

ax + by + cz = d.

To plot such a plane, we solve for z and plot the resulting function of x and y.
As an example, we plot the plane

2x + 3y + 2z = 6.

Solving for z, we find that we must plot the function f(x, y) = 3 − x − 3y/2.

> plot3d(3 - x - 3*y/2,x=0..3,y=0..2,axes=normal,
orientation=[20,60], view=[0..4,0..3,0..4]);
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Figure 6.19 Plot of a plane.
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The option axes=normal gave the usual x-, y- and z-axes. The option
orientation=[20,60] set ϑ = 20 and φ = 60. The view option restricted
the range for each variable as 0 ≤ x ≤ 4, 0 ≤ y ≤ 3, 0 ≤ z ≤ 4. This way we
were able to plot that portion of the plane that lies in the first octant (i.e., x, y,
z ≥ 0).

6.2.1 Parametric plots
To plot the surface parameterized by

x = f(u, v), y = g(u, v), z = h(u, v),

where a ≤ u ≤ b, c ≤ v ≤ d; use the command plot3d([f(u,v), g(u,v),
h(u,v)], u=a..b, v=c ..d). For example, the hyperboloid

x2 + y2 − z2 = 1,

may be parameterized by

x =
√

1 + u2 cos t, y =
√

1 + u2 sin t, z = u,

where −∞ < u < ∞ and 0 ≤ t ≤ 2π. Try

> plot3d([sqrt(1+u∧2)*cos(t),sqrt(1+u∧2)*sin(t),u],
u=-1..1, t=0..2*Pi);
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Figure 6.20 maple plot of a hyperboloid.

A plot with (ϑ, φ) = (45, 60) is given above in Figure 6.20.

6.2.2 Multiple plots
To plot the two functions

z = e−x2−y2
,

z = x + y + 1,
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try

> plot3d({exp(-x∧2-y∧2),x+y+1},x=-2..2, y=-1..1);

with (ϑ, φ) = (120, 45). As with two-dimensional plotting, multiple three-
dimensional plots can be produced using the display function in the plots pack-
age. Try

> with(plots):
> p1:=plot3d(exp(-x∧2-y∧2),x=-2..2, y=-1..1):
> p2:=plot3d(x+y+1,x=-2..2,y=-1..1):
> display(p1,p2);

Figure 6.21 Two intersecting surfaces.

6.2.3 Space curves

To plot the space curve

x = f(t), y = g(t), z = h(t),

where a ≤ t ≤ b, we use the spacecurve function in the plots package. The
command is spacecurve([f(t),g(t),h(t)],t=a..b). We plot the helix

x = cos t, y = sin t, z = t.

Try

> with(plots):
> spacecurve([cos(t),sin(t),t],t=0..4*Pi, numpoints=200,

orientation=[22,60],axes=BOXED);
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Figure 6.22 maple plot of a helix.
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Figure 6.23 A contour plot.

6.2.4 Contour plots
The graph of a function of two variables may be visualized with a two-

dimensional contour plot. To produce contour plots, we use the functions
contourplot and contourplot3d in the plots package. Contourplot3d “paints”
the contour plot on the corresponding surface. Try

> with(plots):
> contourplot(exp(-(x∧2+y∧2-1)∧2), x=-(1.3)..(1.3),

y=-(1.3)..(1.3), filled=true, coloring=[blue,red]);

The resulting plot is given above in Figure 6.23.

> contourplot3d(exp(-(x∧2+y∧2-1)∧2), x=-(1.3)..(1.3),
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y=-(1.3)..(1.3), filled=true, coloring=[blue,red]);

Figure 6.24 A 3D contour plot.
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Figure 6.25 maple plot of a hyperbolic paraboloid.

6.2.5 Plotting surfaces defined implicitly

To plot the surface defined implicitly by the equation

f(x, y, z) = c,

use the command implicitplot3d(f(x,y,z)=c, x=a..b, y=d..e,
z=g..h) in the plots package. For example, to plot the hyperbolic paraboloid

y2 − x2 = z,

try
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> with(plots):
> implicitplot3d(y∧2 - x∧2 = z, x=-2..2, y=-2..2,

z=-4..4);

The resulting plot is given above in Figure 6.25.
In Section 6.2.1 we obtained a plot of the surface

x2 + y2 − z2 = 1,

by using a parameterization. This time, try

> implicitplot3d(x∧2 + y∧2 - z∧2 = 1, x=-1..1, y=-1..1,
z=-1..1);

> implicitplot3d(x∧2 + y∧2 - z∧2 = 1, x=-2..2, y=-2..2,
z=-1..1);

Notice how care must be taken in choosing the range for each variable.

6.2.6 Title and text in a plot

A title or text may be inserted in a three-dimensional plot in the same way
it was done in Section 6.1.7 for two-dimensional plots. Try

> with(plots):
> p1:=plot3d(exp(-(x∧2+y∧2-1)∧2), x=-2..2,y=-2..2,
font=[TIMES,ROMAN,12],titlefont=[HELVETICA,BOLD,10],
title=‘The surface z=exp(-(x∧2+y∧2-1)∧2)‘):
> p2:=textplot3d([0,1.1,1,‘Circular Rim‘], align=RIGHT,

color=BLUE):

> display(p1,p2);

6.2.7 Three-dimensional plotting options

The options axes, font, labels, labelfont, linestyle, numpoints,
scaling, symbol, thickness, title, titlefont, and view should work like
they did for two-dimensional plotting (see Section 6.1.8). Other options are
given below. This information was taken from the maple help pages. See
?plot3d[options].

ambientlight=[r,g,b]

This option sets the red, green, and blue intensity of the ambient light for user-
defined lighting. r, g, and b must be numeric values in the range 0 to 1.

axes=f

This option specifies how the axes are to be drawn, where f is one of BOXED,
NORMAL, FRAME, and NONE. The default axis is NONE.
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axesfont=l

This option defines the font for the labels on the tick marks of the axes, specified
in the same manner as font.

color=c

This option defines a color value or function, where c is a predefined color name
in a color function as described in ?plot3d,colorfunc. See those help pages
for details.

contours=n

This option specifies the number of contours or a list of contour values, where n
is a positive integer or a list of contour values. The default is n = 10.

coords=c

This option specifies the coordinate system to be used. The default is the Carte-
sian system. For other coordinate systems see ?plot3d[coords].

filled=true/false

If the filled option is set to true, the region between the surface and the xy-plane
is displayed as solid. This option is valid only with the following commands:
plot3d, contourplot3d, and listcontplot3d.

grid=[m,n]

This option specifies the dimensions of a rectangular grid on which the points
will be generated (equally spaced).

gridstyle=x

This option specifies rectangular or triangular grid; x is either rectangular or
triangular.

labeldirections=[x,y,z]

This option specifies the direction in which labels are printed along the axes. The
values of x, y, and z must be HORIZONTAL or VERTICAL. The default direction of
any labels is HORIZONTAL.

labelfont=l

This option defines the font for the labels on the axes of the plot, specified in
the same manner as font.

labels=[x,y,z]

This option specifies labels for the axes. The value of x, y, and z must be a
string. The default label is no label.
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light=[phi,theta,r,g,b]

This option adds a directed light source from the direction phi, theta in spher-
ical coordinates with red, green, and blue intensities given by r, g, and b, re-
spectively. r, g, and b must be numeric values in the range 0 to 1.

lightmodel=x

This option chooses a predefined light model to illuminate the plot. Valid light
models include none, light1, light2, light3, and light4.

numpoints=n

This option specifies the minimum total number of points to be generated (de-
fault 625 = 252). Plot3d will use a rectangular grid of dimensions =

√
n.

orientation=[theta,phi]

This option specifies the theta and phi angles of the point in three dimensions
from which the plot is to be viewed. The default is at a point that is out
perpendicular from the screen (negative z-axis) so that the entire surface can be
seen. The point is described in spherical coordinates where theta and phi are
angles in degrees, with default 45 degrees in each case.

projection=r

This option specifies the perspective from which the surface is viewed, where r
is a real number between 0 and 1. The 1 denotes orthogonal projection, and the
0 denotes wide-angle perspective rendering. r can also be the one of the names,
FISHEYE, NORMAL, and ORTHOGONAL, which correspond to the projection values
0, 0.5, and 1, respectively. The default projection is ORTHOGONAL.

scaling=s

This option specifies whether the surface should be scaled so that it fits the screen
with axes using a relative or absolute scaling, where s is either UNCONSTRAINED
or CONSTRAINED.

shading=s

This option specifies how the surface is colored, where s is one of XYZ, XY, Z,
ZGREYSCALE, ZHUE, NONE.

style=s

This specifies how the surface is to be drawn, where s is one of POINT, HIDDEN,
PATCH, WIREFRAME, CONTOUR, PATCHNOGRID, PATCHCONTOUR, or LINE. The default
style is PATCH for colored surface patch rendering.

tickmarks=[l,n,m]

This option specifies reasonable numbers no less than l; n and m should be
marked along the x-axis, y-axis, and z-axis, respectively. Each tick mark value
must be either a positive integer or the name DEFAULT.
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view=zmin..zmax or [xmin..xmax,ymin..ymax,zmin..zmax]

This option indicates the minimum and maximum coordinates of the surface to
be displayed on the screen. The default is the entire surface.

6.2.8 Other three-dimensional plot functions

We describe briefly the other three-dimensional plotting functions available
in the plots package. Don’t forget to load the plots package.

> with(plots):

coordplot3d

The coordplot3d(coord, rangelist, eqns) function plots a graphical rep-
resentation of most of the three-dimensional coordinate systems currently sup-
ported in maple . The available coordinate systems are given below.

bipolarcylindrical bispherical cardioidal
cardioidcylindrical casscylindrical confocalellip
confocalparab conical cylindrical
ellcylindrical ellipsoidal hypercylindrical
invcasscylindrical invellcylindrical invoblspheroidal
invprospheroidal logcoshcylindrical logcylindrical
maxwellcylindrical oblatespheroidal paraboloidal
paraboloidal2 paracylindrical prolatespheroidal
rosecylindrical sixsphere spherical
tangentcylindrical tangentsphere toroidal

For a description of these coordinate systems, see ?coords. rangelist is a list
of three coordinate ranges, and eqns are optional equations that modify the
plot. See ?plots[coord].

> coordplot3d(spherical);

Figure 6.26 Spherical coordinates plot.
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Observe the plot (Figure 6.26) of the three surfaces corresponding to the spher-
ical coordinates ρ, φ, and θ by setting each to a constant. So the sphere corre-
sponds to ρ, the cone corresponds to φ, and the plane corresponds to θ.

cylinderplot

The cylinderplot(L,r1,r2,options) function plots a surface in cylindrical
coordinates. L is an expression for r in term of the two cylindrical coordinate
variables z and θ or L is a list of three such procedures or expressions. r1, r2
are ranges for the variables. We plot the surface

r = z + cos θ.

> cylinderplot(z+cos(theta),theta=0..2*Pi,z=0..1);

Figure 6.27 A plot using cylindrical coordinates.

fieldplot3d

The function fieldplot3d is the three-dimensional analog of fieldplot. It
plots a three-dimensional vector field. Let’s plot the direction field

�F (x, y) =
x�i + y�j + z �k√

x2 + y2 + z2
,

> fieldplot3d([x/sqrt(x∧2+y∧2+z∧2),y/sqrt(x∧2+y∧2+z∧2),
z/sqrt(x∧2+y∧2+z∧2)],x=-1..1,y=-1..1,z=-1..1);

Figure 6.28 A 3D vector field.
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polygonplot3d

The polygonplot3d function is used to plot polygons in three dimensions. Let’s
plot the faces of a square pyramid leaving one face open.

> p1:=polygonplot3d([[-1,-1,0],[-1,1,0],[1,1,0],
[1,-1,0]]):

> p2:=polygonplot3d([[-1,-1,0],[-1,1,0],[0,0,1]]):
> p3:=polygonplot3d([[-1,1,0],[1,1,0],[0,0,1]]):
> p4:=polygonplot3d([[1,1,0],[1,-1,0],[0,0,1]]):
> display(p1,p2,p3,p4);

Figure 6.29 A 3D polygon plot of an open pyramid.

polyhedraplot

The polyhedraplot function plots polyhedra at specified points. L is a point or
list of points. There are two options specific to this function. The polyscale
option controls the size of each polyhedron, and the polytope option specifies
the type of polyhedron, such as tetrahedron, octahedron, dodecahedron, etc. To
see a complete list of supported polyhedra, try

> polyhedra supported();

Let’s plot a transparent dodecahedron.

> with(plots):
> polyhedraplot([0,0,0],polytype=dodecahedron,

style=wireframe,scaling=CONSTRAINED,orientation=[71,66]);
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Figure 6.30 A transparent dodecahedron.

This time we plot a solid icosahedron.

> polyhedraplot([0,0,0],polytype=icosahedron,
style=patch,scaling=CONSTRAINED);

Figure 6.31 A solid icosahedron.

sphereplot

The sphereplot(L,r1,r2,options) function plots a surface in spherical coor-
dinates. It is analogous to cylinderplot. See ?sphereplot for more details.

surfdata

The surfdata function plots one or more surfaces where a surface is input as a
grid of data points of the form [x,y,z]. See ?surfdata for more details.

tubeplot

The tubeplot function basically plots a spacecurve as a tube. Let’s use
tubeplot to plot the helix

x = cos t, y = sin t, z = t.
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Try

> with(plots):
> spacecurve([cos(t),sin(t),t],t=0..4*Pi, numpoints=200,

orientation=[22,60],axes=BOXED);
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Figure 6.32 Tube plot of a helix.

6.3 Animation
maple is capable of animating two- and three-dimensional plots. The two

animation functions are animate and animate3d. These are in the plots package.
For fixed t, we consider the function

ft(x) =
1

1 + xt
.

We can examine the behavior of this function as t changes using animate. Try

> with(plots):
> animate(1/(1+x*t),x=0..10,t=0..1, frames=10);

A plot of f0(x) = 1 should appear in the worksheet. Now click on the plot. A
new context bar should appear containing a window for coordinates and nine
new buttons similar to those on a cassette tape player. Try clicking on each
button to see its effect.

Stop the animation.

Play the animation.

Move to the next frame.

Set the animation direction to be backward.
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Set the animation direction to be forward.

Decrease the speed of the animation.

Increase the speed of the animation.

Set animation to run in single-cycle mode.

Set animation to run in continuous-cycle mode.

Now click on to play the animation. The frames option allows you to set
the number of separate frames in the animation. To view each frame, click on

. Try setting frame=50. Now try

> animate([Pi/2*sin(t*(u+1)),sin(2*t)*sin(Pi/2*sin(t*u+t)),
t=-2*Pi..2*Pi], u=0..1,frames=20,numpoints=200,
color=blue);

This time right-click on the plot. You should get the usual context menu for a
two-dimensionsal plot. Select Animation. A submenu appears.

Play
Next
Backward
Faster
Slower
Continuous

Select Continuous and then Play. This sets the animation in a continuous loop,

and has the same effect as pressing and .
The three-dimensional animation command is animate3d. The surface

x2 − y2 = z,

may be parameterized by

x = r cos t, y = r sin t, z = r2 cos 2t.

Try animating a rotation of this surface

> with(plots):
> animate3d([r*cos(t+a),r*sin(t+a),r∧2*cos(2*t)], r=0..1,

t=0..2*Pi, a=0..3, frames=10,style=patch,
title=‘The Rotating Saddle‘);

A little adjusting creates a flying pizza

> animate3d([r*cos(t+a),r*sin(t+a),r∧2*cos(2*t)+sin(a)],
r=0..1,t=0..2*Pi, a=0..2*Pi,frames=10,style=patch,
title=‘The Flying Pizza‘);

Try clicking on to set your pizza in continuous motion.
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maple is a programming language as well as an interactive symbolic calcu-
lator. It is possible to solely use maple interactively and not bother with its
programming features. However, it is well worth the effort to develop some pro-
gramming skills. The maple language is much easier to learn than traditional
programming languages, and you do not need to be an expert programmer to
master it. You will appreciate the real power of maple when you learn some of
the basic maple language and use it in combination with its interactive features.
If you have gotten this far into the book, you are already familiar with many
maple commands, and the step to maple programming is not a big one.

A number of programming exercises are included in this chapter. The an-
swers to all the exercises can be found in the last section.

7.1 The MAPLE procedure
The following is a maple program. Start a maple session and type it in.

> f2c := proc(x)
> evalf(5/9*(x - 32));
> end proc;

f2c := proc(x) evalf(5/9 ∗ x − 160/9) end proc

Notice that the body of the proc was echoed below it. To avoid this use a colon
instead of a semicolon to end the end proc statement.

Warning: In maple v Release 5 (and earlier versions), use end instead of end
proc. So in maple v you should enter

> f2c := proc(x)
> evalf(5/9*(x - 32));
> end:

Here proc is an abbreviation for procedure, which is just another name for pro-
gram. The maple program f2c converts degrees from Fahrenheit to centigrade.
The program takes one value x within the procedure, and calculates an ap-
proximation to 5(x − 32)/9. Since this is the last calculation done within the
procedure, the f2c procedure returns this approximation. If we call x the de-
grees in Fahrenheit and y the temperature in centigrade then x and y are related
by

y =
5
9
(x − 32).

This explains the formula within the program. Below are some examples. Try
them out.

101
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> fc2(32);
0

> fc2(100);
37.77777778

> f2c(60);
15.55555556

> f2c(70);
21.11111111

This means that

32oF = 0oC,

60oF ≈ 15.6oC,

70oF ≈ 21.1oC,

100oF ≈ 37.8oC.

Exercise 1.
Now, write a maple program called c2f that converts the temperature in degrees
centigrade to degrees Fahrenheit, and returns the result as a decimal.

> c2f :=

Check out your program by computing some examples:

> c2f(0);
> c2f(37.8);
> c2f(100);
> c2f(f2c(100));

Did you get what was expected?

7.1.1 Local and global variables

Variables that you use at the interactive level in maple, that are not within
the body of a procedure (or program), are called global variables. Variables
that are introduced within a procedure and are known to maple only within
the procedure are called local variables. To illustrate this, we define two nearly
identical procedures g and h. The procedure g will be defined using a local
variable a. In h, the variable a will be a global variable.

> g := proc()
> local a;
> a := exp(2);
> evalf(a);
> end proc:
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The empty parentheses () indicate that this procedure requires no input. The
procedure g computes an approximation to e2. Remember that in maple,
exp(x) corresponds to the exponential function ex. In the procedure the variable
a is declared a local variable.

> g();
7.389056099

> a;
a

Notice that g() returned the approximation 7.389056099 for e2, and notice that
the variable a remains a variable (unassigned). Now we define h:

> h := proc()
> global a;
> a := exp(2);
> evalf(a);
> end proc:

This procedure is the same as g except that now a is a global variable.

> h();
7.389056099

> a;
e2

Notice this time that the procedure still returned the approximation 7.389056099,
but the variable a has been assigned the value e2, and this value holds outside
the procedure.

Exercise 2.
Write a maple procedure dist that computes the distance between two points
(x1, y1) and (x2, y2) using at least one local variable. Your procedure should
return an exact answer, so do not use evalf.

> dist := proc(x1,y1,x2,y2)

Check your program:

> dist(1,3,13,-4);

Did you get
√

193?

7.2 Conditional statements
A conditional statement has the form

© 2002 by Chapman & Hall/CRC



104 The Maple Book

if condition then
statseq

else
statseq

end if:

Here statseq is a sequence of statements separated by semicolons (or colons).
Also, notice that the if statement is closed by end if.

For example,

> x:=1;
x := 1

> if x>0 then
> y:=x+1
> else
> y:=x-1
> end if:
> y;

2

This conditional statement means that if x > 0, then y = x + 1, but if x ≤ 0,
then y = x − 1. In the session, x = 1 > 0, so y = x + 1 = 2.
Warning: In maple v Release 5 (and earlier versions), use fi instead of end
if to end the conditional statement.

The conditional or if statement is used to define functions piecewise. For
example, consider the function

f(x) =
{

x2 if x > 1,

(1 − x3) otherwise.

We illustrate how to define this function (as a proc) in maple:

> f := proc(x)
> if x > 1 then
> x∧2;
> else
> (1-x∧3);
> end if;
> end proc;

f := proc(x) if 1 < x then x∧2 else 1 − x∧3 end if end proc

Let’s try out our function f(x):

> f(2);
4
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> f(-3);
28

Now 1 < 2, so f(2) = 22 = 4, and since −3 ≤ 1, f(−3) = 1−(−3)3 = 1+27 = 28.

7.2.1 Boolean expressions
In the previous section we used the relational operator < in our definition of

the proc f. Other relational operators are given below.

< less than
> greater than
<= less than or equal
>= greater than or equal
<> not equal

We also need the logical operators and, or, and not. Now we are able to define
more complicated functions. For instance, consider the function

f(x) =
{

x if 0 < x ≤ 1,

−1 otherwise.

We can define f as a maple proc.

> f := proc(x)
> if 0<x and x<=1 then
> x;
> else
> 0;
> end if;
> end proc:

We test our function.

> f(-1/2), f(0), f(1/2), f(1), f(3/2);

−1,−1, 1/2, 1,−1

We found f(−1/2) = f(0) = −1, f(1/2) = 1/2, f(1) = 1, and f(3/2) = −1, as
expected.

Consider the function

g(x) =

⎧⎪⎨⎪⎩
x2 − 3x + 2 if x > 2,

1 − x3 if 0 < x ≤ 2,
x3 otherwise.

We define a maple proc g, which corresponds to this function.

> g := proc(x)
> if x>2 then
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> x∧2-3*x+2;
> else
> if 0<x and x<=2 then
> 1 - x∧3;
> else
> x∧3;
> end if;
> end if;
> end proc:

We can write this more compactly using elif, which means else if.

> g := proc(x)
> if x > 2 then x∧2 - 3*x + 2;
> elif x>0 and x<=2 then 1-x∧3;
> else x∧3;
> end if;
> end proc:

Notice that elif is not closed by an end if. We can even plot this function.
See Figure 7.1.

> plot(g, -1..3, discont=true);

–6

–4

–2

0

2

–1 1 2 3

Figure 7.1 maple plot of a proc.

This is correct form for plotting a proc, if it corresponds to a function of one
variable. We set discont=true since g(x) is a discontinuous function. Look
what happens if we try to use g(x) instead of g in plot:

> plot(g(x), x=-1..3, discont=true);
Error, (in g) cannot evaluate boolean: -x < -2
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Exercise 3.
Write a maple proc h corresponding to the function

h(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if x ≤ 0,

x if 0 < x ≤ 1,
1 if 1 < x ≤ 3,
0 otherwise.

Check your function by plotting it on the interval [−1, 4].

7.3 The “for” loop
Loops are used to do the same or similar computation several times. There

are two kinds of loops: the “for” loop and the “while” loop. A for loop statement
has the form

for var from num1 to num2 do
statseq

end do:

For instance, we can print out the numbers from 1 to 5.

> for i from 1 to 5 do
> print(i);
> end do:

1
2
3
4
5

Warning: In maple v Release 5 (and earlier versions), use od instead of end
do to close a for loop.

Now we will write a maple procedure that incorporates a for loop.

> SUM := proc(n)
> local i, tot;
> tot := 0;
> for i from 1 to n do
> tot := tot + 1;
> end do;
> tot;
> end proc:
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This procedure computes the sum of the integers from 1 to n. Let’s test it out.

> 1+2+3+4+5+6+7+8+9+10;
55

> SUM(10);
55

It may be hard for you to see what is going on inside this program. One way to
get more information is to change the maple global variable printlevel.

> printlevel;
1

Observe that the default value of printlevel is 1. Let’s increase the value of
printlevel and see what happens.

> printlevel := 20;
printlevel := 20

> SUM(10);
(--> enter SUM, args = 10

tot := 0
tot := 1
tot := 3
tot := 6
tot := 10
tot := 15
tot := 21
tot := 28
tot := 36
tot := 45
tot := 55

55

<-- exit SUM (now at top level) = 55)

55

Now we can see more of what is going on. First, tot = 0, then tot = 1, then
tot = 1 + 2 = 3, then tot = 1 + 2 + 3 = 6, then tot = 1 + 2 + 3 + 4 = 10, etc.

Statements within a particular procedure are recognized in levels, determined
by the nesting of conditional statements or loops and the nesting of procedures.
The setting of printlevel has the effect of printing out all statements executed
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up to the level set. The higher the value of printlevel, the more information that
will be displayed.

We can also add print statements when we want to understand a program
better. First we reassign printlevel back to its default value:

> printlevel := 1;

We redefine our proc SUM this time adding some print statements.

> SUM := proc(n)
> local i, tot;
> tot := 0;
> for i from 1 to n do
> tot := tot + 1;
> print(‘i=‘,i,‘ tot=‘,tot);
> end do;
> tot;
> end proc:
> SUM(10);

i =, 1, tot =, 1
i =, 2, tot =, 3
i =, 3, tot =, 6
i =, 4, tot =, 10
i =, 5, tot =, 15
i =, 6, tot =, 21
i =, 7, tot =, 28
i =, 8, tot =, 36
i =, 9, tot =, 45
i =, 10, tot =, 55

55

Let’s examine the output:
i = 1 tot = 1
i = 2 tot = 1 + 2 = 3
i = 3 tot = 1 + 2 + 3 = 6
i = 4 tot = 1 + 2 + 3 + 4 = 10
...
i = 10 tot = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55

Now we can see more of what is going on. When we enter the loop for the
first time, tot = 0. Every time we cycle through the loop, i increases by 1 and
i is added to tot. In this way we sum the integers from 1 to 10.

In the loops we have seen, the variable is incremented by one unit for each
cycle. There is a way to increment by different amounts. Examine this example.
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> for i from 2 by 5 to 24 do
> print(i);
> end do;

2
7
12
17
22

This time in each cycle i is incremented by 5 units. So the more general form of
the for loop takes the shape:

for var from a by b to c do
statseq

end do;

Here var is incremented by b units in each cycle of the loop.

Exercise 4.
Modify our proc SUM to accept two inputs a, b and return the sum of the integers
from a to b, i.e., return

a + (a + 1) + (a + 2) + · · · + (b − 1) + b.

> SUM := proc(a,b)

Check your program by computing

> SUM(1,10);
> SUM(15,29);

Make sure the output is correct by checking by hand or using a calculator.

Exercise 5.
Write a maple procedure ODDSUM that returns the sum of the odd integers from
1 to n, assuming n is odd.

> ODDSUM := proc(n)

> 1+3+5+7+9+11+13+15+17+19;

100

> ODDSUM(19);

Did you get 100? Now use a for loop to print out a table of ODDSUM(k) for k
from 1 to 19. Do you see a pattern?
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7.4 Type declaration
In maple it is possible to declare the type of input that is acceptable for a

given procedure. We illustrate this feature by modifying our SUM function.

> SUM := proc(n::posint)
> local i, tot;
> tot := 0;
> for i from 1 to n do
> tot := tot + 1;
> end do;
> tot;
> end proc:

Notice how n was declared a positive integer by typing n::posint. Let’s try
it out.

> SUM(10);
55

> SUM(sqrt(2));
Error, SUM expects its 1st argument, n, to be of type
posint, but received 2∧(1/2)

See how maple has informed us that our input
√

2 was not valid because it
was not a positive integer. Some common types are array, complex, equation,
even, integer, list, name, negint, odd, posint, prime, set, and string. See
?type for more types.

Exercise 6.
Below is a maple procedure called find2s, which writes a given prime as a sum
of two squares if such a sum exists, otherwise it prints the statement, “p is not
the sum of two squares.” The procedure checks whether the input is a prime.
Fill in the missing parts. Below you will find some sample output with which to
check the procedure.

> find2s := proc(p::.......)
> local ................
> find := 0;
> for a from 1 to trunc(sqrt(p/2)) do
> c := p - a∧2:
> if issqr(c) then
> print(‘p = a∧2 + b∧2 where a=‘,a,......);
> find := 1:
> end if;
> end do;
> if find=0 then
> .....................;
> end if;
> end proc:
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Sample output

> find2s(3);
p is not the sum of two squares

> find2s(13);

p = a∧2 + b∧2 where a =, 2, b =, 3

> find2s(17);

p = a∧2 + b∧2 where a =, 1, b =, 4

(i) Explain why in the for loop a goes from 1 to trunc(sqrt(p/2)).

(ii) Explain what the purpose of the variable find is in the procedure.

(iii) Find all primes less than 100 that are the sum of two squares.

7.5 The “while” loop
A while loop statement takes the form

while condition do
statseq

end do:

In the while loop, maple tests the condition recycling through the loop until
the condition fails.

We construct a proc binpow(n) that returns the highest power of 2 less than
or equal to n.

> binpow := proc(n::posint)
> local x,m:
> x:=0:
> m:=n:
> while m>=1 do
> m := m/2:
> x:= x + 1:
> end do:
> x - 1;
> end:

Let’s make sure our function works with some examples.

> for n from 1 to 8 do
> n, binpow(n);
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> end do;

1, 0
2, 1
3, 1
4, 2
5, 2
6, 2
7, 2
8, 3

Our function seems to work. In the example, 22 ≤ 6 < 23, so that binpow(6)=2.
In the for loop, m is repeatedly divided by 2 until m < 1. At the same time, x
keeps track of the number of divisions, and we see that x − 1 gives the correct
power of 2.

There is a famous algorithm of Euclid’s for computing the gcd of two integers.
We write a maple proc euclid(m,n), which implements this algorithm.

> euclid := proc(m::posint,n::posint)
> local a,b,r:
> a:=m:
> b:=n:
> r:=irem(a,b):
> while r>0 do
> a:=b:
> b:=r:
> r:=irem(a,b):
> end do:
> b:
> end proc:

There is a built-in maple function igcd that also computes the gcd. We check
our program with an example.

> a:=281474439315457:
> b:=33685115929:
> euclid(a,b);

256999

> igcd(a,b);

256999
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We computed the gcd of 281474439315457 and 33685115929 two ways as 256999
each time.

Our next exercise is to write a program that will convert an integer (in
base 10) to binary, i.e., base 2. Recall that the algorithm involves computing
successive divisions by 2 and the remainders. Let’s convert 213 to binary as an
example.

> a:=53; r:=irem(a,2);

a := 53
r := 1

> a:=iquo(a,2); r:=irem(a,2);

a := 26
r := 0

> a:=iquo(a,2); r:=irem(a,2);

a := 13
r := 1

> a:=iquo(a,2); r:=irem(a,2);

a := 6
r := 0

> a:=iquo(a,2); r:=irem(a,2);

a := 3
r := 1

> a:=iquo(a,2); r:=irem(a,2);

a := 1
r := 1

> a:=iquo(a,2); r:=irem(a,2);

a := 0
r := 0

We obtained the remainders 1, 0, 1, 0, 1, 1, 0. Writing these in reverse order we
obtain the binary form of 53:

(53)2 = 0110101 = 110101.
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maple already has a function that converts to binary, which we use to check
our result.

> convert(53,binary);
110101

This example should help you get started on the next exercise. Notice that we
computed successive divisions by 2 until a = 0. This suggests our program will
involve a while loop.

Exercise 7.
Write a maple proc conbin(n) that converts a positive integer n to binary.
Don’t forget to check your program with lots of examples.

7.6 Recursive procedures
The Fibonacci numbers are defined as follows:

f0 = 0,
f1 = 1,

and for n ≥ 2,
fn = fn−1 + fn−2.

In this way, we say that the Fibonacci numbers are defined recursively. The
Fibonacci sequence is thus

f0 = 0, f1 = 1, f2 = f1 + f0 = 1 + 0 = 1, f3 = f2 + f1 = 1 + 1 = 2, . . .

This is the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

Notice that each number in the sequence is the sum of the two previous terms
and that this corresponds to the equation

fn = fn−1 + fn−2.

The following proc computes fn, for any n:

> restart;
> FIB := proc(n::nonnegint)
> if n<2 then
> n;
> else
> FIB(n-1) + FIB(n-2);
> end if;
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> end proc:

Let’s compute the first 16 Fibonacci numbers.

> seq(FIB(n), n=0..15);

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610

Let’s examine our proc FIB. First observe that fn = n when n = 0, 1. This
explains the first part of the conditional statement in the proc. FIB is an example
of a recursive procedure. It is a procedure that calls itself. For instance, when
we enter FIB(5), maple goes through something like

FIB(5) = FIB(4) + FIB(3) = (FIB(3) + FIB(2)) + (FIB(2) + 1)
= ((FIB(2) + 1) + (1 + 0)) + ((1 + 0) + 1)
= (((1 + 0) + 1) + (1 + 0)) + ((1 + 0) + 1)
= 5.

The FIB proc is not very efficient. The time command returns the number of
cpu seconds taken in executing a given command.

> time(FIB(20));

0.570

It took 0.57 seconds to compute f20. This is pretty slow. Many calculations
are repeated and forgotten. There is a way to get the FIB proc to remember its
results. This is done using the remember option.

> FIB := proc(n::nonnegint)
> option remember;
> if n<2 then
> n;
> else
> FIB(n-1) + FIB(n-2);
> end if;
> end proc:

Let’s see how this new version of FIB performs.

> time(FIB(20));
0.

> time(FIB(200));
.010
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This time f20 was computed in no time at all, and it took only 0.01 seconds to
compute f200.

Exercise 8.
Assume m and n are nonnegative integers and 0 ≤ m ≤ n. There are two

ways to define the binomial coefficients
(

n

m

)
. They can be defined in terms of

factorials: (
n

m

)
=

n!
(n − m)!m!

.

They can defined recursively as follows:(
n

n

)
=
(

n

0

)
= 1,

and for n ≥ 1 and 1 ≤ m ≤ n − 1,(
n

m

)
=
(

n − 1
m − 1

)
+
(

n − 1
m

)
.

Write a recursive proc MYBINOM(n,m) which computes the binomial coefficient(
n

m

)
. Use your program to compute the binomial coefficient

(
20
8

)
. Check your

result by using a different method.

> MYBINOM := proc(n::nonnegint,m::nonnegint)
> if n >= 1 and m <= n-1 and ..... then
> ............................. ;
> else
> ..... ;
> end if:
> end proc:

7.7 Explicit return
By default, a maple proc will return the last computation encountered in

the proc. Quite often this is difficult to arrange. The return statement is used
to invoke an explicit return. For instance, suppose we want to define the function

f(x) =

⎧⎪⎨⎪⎩
x for x < 0,

1 − x for 0 ≤ x ≤ 1,

x2 for x > 1,

but we don’t want to bother with else and elif statements, or with making
sure that the last statement executed returns the correct result. This is easy if
we use return statements.

> f := proc(x)
> if x < 0 then
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> return x;
> end if;
> if x >= 0 and x <= 1 then
> return 1 - x;
> end if;
> if x > 1 then
> return x∧2;
> end if;
> end proc:

Let’s test our function.

> f(-0.4), f(0.3), f(2);

−.4, .7, 4

Warning: In maple v Release 5 (and earlier versions), this form of the return
statement will cause an error. In these earlier versions use RETURN(x).

Exercise 9.
Use return statements to write a proc called GRADE that returns the usual letter
grades. In other words, GRADE(x) returns

A if x ≥ 90,
B+ if 85 ≤ x < 90,
B if 80 ≤ x < 85,
C+ if 75 ≤ x < 80,
C if 70 ≤ x < 75,
D if 60 ≤ x < 70, and
E if x < 60.

7.8 Error statement
An error statement is used in a proc to print out an informative error

message. The proc SCORETOT computes the total of a list of five lab scores.

> SCORETOT := proc(L::list)
> local num, TOT, k;
> num := nops(L):
> if num = 5 then
> TOT := sum(L[k],k=1..5);
> return TOT;
> else
> error "L must have have 5 entries. Your L had %1.",
> num;
> end if;
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> end proc:

Warning: In maple v Release 5 (and earlier versions), use ERROR( ) instead
of error.

> L := [48,36.5,24,43,36];

L := [48, 36.5, 24, 43, 36]

> SCORETOT(L);
187.5

So the total score in this example is 187.5. Suppose we accidently omitted one
of the scores.

> L:=[48,36.5,24,43];

L := [48, 36.5, 24, 43]

> SCORETOT(L);
Error, (in SCORETOT) L must have have 5 entries. Your L had
4.

Notice how helpful the error message was. The syntax of the error statement
has two forms:

error string
error string, listparams

Here string is the message string, and listparams is a list of parameters. In
our example above, the message string was "L must have have 5 entries.
Your L had %1." , and there was one parameter num. The percent sign is used
to refer to parameters. In our example, %1 refers to the parameter num.

Now we write a new version of SCORETOT that (1) prints out a table of
lab scores, and (2) returns the total score as a percentage. Since we want a
percentage, we need to know the total possible score for each lab. This time we
require two input arguments L and M. L is a list of lab scores and M is a list of
the total possible scores for each lab.

> SCORETOT := proc(L::list,M::list)
> local num, TOT, k, numlabs, numtots, A, j, TOTPOSS,
> TOTPER;
> numlabs:=nops(L);
> numtots:=nops(M):
> lprint(‘LAB GRADE COMPUTATION‘);
> lprint(‘ASSUMPTIONS: Overall grade is computed by ‘);
> lprint(‘summing all lab scores, then dividing by‘);
> lprint(‘the total possible and then converting to a‘);
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> lprint(‘percentage.‘);
> A:=matrix(numlabs+1,4);
> A[1,1]:=‘LAB‘: A[1,2]:=‘Raw Score‘:
> A[1,3]:=‘Total Possible‘:
> A[1,4]:=‘Score as Percentage‘:
> if numlabs=numtots then
> for j from 1 to numlabs do
> A[j+1,1]:=j: A[j+1,2]:=L[j]:
> A[j+1,3]:=M[j]:
> A[j+1,4]:=evalf(L[j]/M[j]*100,4):
> end do;
> print(A);
> TOT:=sum(L[k],k=1..numlabs);
> TOTPOSS:=sum(M[k],k=1..numlabs):
> TOTPER:=evalf(TOT/TOTPOSS*100,4);
> lprint(‘Total of lab scores = ‘,TOT);
> lprint(‘Total possible score = ‘,TOTPOSS);
> lprint(‘TOTAL score as a percentage = ‘,TOTPER);
> else
> error "numlabs must equal numtots but here"
> "numlabs=%1 and numtots=%2.",numlabs,numtots;
> end if;
> end proc:
In this proc the matrix A has four columns. The first column is the LAB number.
The second column gives the raw LAB scores, the third column gives the total
possible score for each LAB, and the fourth column gives each LAB score as a
percentage. For example, suppose there are 3 LABS: LAB 1, 2, 3 are out of 20,
30, and 15 points, respectively. In this case, M would be the list [20,30,15] —
each entry corresponds to a maximum possible score. Suppose a student obtains
18, 20, and 14.5 points on LABS 1, 2, 3, respectively. Then L would be the list
[18, 20, 14.5]. We are now ready to illustrate the new version of SCORETOT.

> L:=[18,20,14.5];M:=[20,30,15];

L := [18, 20, 14.5]
M := [20, 30, 15]

> SCORETOT(L,M);
‘LAB GRADE COMPUTATION‘
‘ASSUMPTIONS: Overall grade is computed by ‘
‘summing all lab scores, then dividing by‘
‘the total possible and then converting to a‘
‘percentage.‘⎡⎢⎣

LAB Raw Score Total Possible Score as Percentage
1 18 20 90.
2 20 30 66.67
3 14.5 15 96.67

⎤⎥⎦
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‘Total of lab scores = ‘, 52.5
‘Total possible score = ‘, 65
‘TOTAL score as a percentage = ‘, 80.77

Exercise 10.
Complete the maple proc WSCORETOT(L,M) given below. This proc gives each
LAB the same weight by computing each LAB score as a percentage. Here
L is a list of scores, and M is a list of maximum possible scores. Your proc
WSCORETOT(L,M) should work for any list of scores L and list of totals M. It
should return an error message if the number of entries of L does not equal the
number of entries of M . It should also return an error message if a student’s
total is larger than the total possible. The proc should return the total score as
a percentage, and each lab should count equally.

> WSCORETOT := proc(L::list,M::list)
> local num, TOT, k, numlabs, numtots, A, j, TOTPOSS,
> TOTPER;
> numlabs:=nops(L);
> numtots:=nops(M):
> lprint(‘LAB GRADE COMPUTATION‘);
> lprint(‘ASSUMPTIONS: Overall grade is computed by ‘);
> lprint(‘.........................................‘);
> lprint(‘............................‘);
> A:=matrix(numlabs+1,4);
> A[1,1]:=‘LAB‘: A[1,2]:=‘Raw Score‘:
> A[1,3]:=‘Total Possible‘:
> A[1,4]:=‘Score as Percentage‘:
> if numlabs=numtots then
> for j from 1 to numlabs do
> if ......... then
> error "Score for LAB %1 = %2. This is too big"
> "since the total possible for this lab is ...",
> .,....,....;
> end if;
> A[j+1,1]:=j: A[j+1,2]:=L[j]:
> A[j+1,3]:=M[j]:
> A[j+1,4]:=evalf(L[j]/M[j]*100,4):
> end do;
> print(A);
> LABSUM:=..............................);
> LBS:=evalf(LABSUM,4);
> WSCORE:=evalf(..............,4);
> lprint(‘The sum of the lab scores‘);
> lprint(‘as percentages = ‘,...);
> lprint(‘Overall score as a percentage = ‘,......);
> else
> error "numlabs must equal numtots but here"
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> "numlabs=%1 and numtots=%2.",numlabs,numtots;
> end if;
> end proc:

Check your proc with the following example:

> L:=[18,20,14.5];M:=[20,30,15];

L := [18, 20, 14.5]
M := [20, 30, 15]

> WSCORETOT(L,M);
‘LAB GRADE COMPUTATION‘
‘ASSUMPTIONS: Overall grade is computed by ‘
‘converting each lab score to a percentage‘
‘and then taking the average.‘⎡⎢⎣

LAB Raw Score Total Possible Score as Percentage
1 18 20 90.
2 20 30 66.67
3 14.5 15 96.67

⎤⎥⎦
‘The sum of the lab scores‘
‘as percentages = ‘, 253.3
‘Overall score as a percentage = ‘, 84.43

7.9 args and nargs
When defining a maple procedure, it is not necessary to supply the names of

input parameters. args is a special name for the sequence of input parameters
and nargs is the special name given to the number of input parameters used.

> zol := proc()
> print("The args of this proc are",args);
> print("The first arg is",args[1]);
> print("The number of args is",nargs);
> end proc:
> zol(a,b);

"The args of this proc are", a, b

"The first arg is", a

"The number of args is", 2

> zol(b,a,a);

"The args of this proc are", b, a, a

"The first arg is", b

"The number of args is", 3
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The proc zol prints out its arguments, the first argument, and the number
of arguments. When zol(a,b) is called, the value of args is the sequence of
inputs a,b, so that the number of arguments is nargs = 2. The first argument
is args[1]. In general, the ith argument is args[i].

In our next example, we define a proc myevalf that takes one or two argu-
ments. When one argument is given, it returns an approximation to four digits,
otherwise the second argument specifies the number of digits.

> myevalf:=proc()
> if nargs=0 or nargs>2 then
> error "This proc only takes 1 or 2 arguments."
> "Number of args supplied = %1", nargs;
> else
> if nargs=2 then
> evalf(args[1],args[2]):
> else
> evalf(args[1],4):
> end if;
> end if;
> end proc:
> myevalf(Pi);

3.142

> myevalf(Pi,10);
3.141592654

Notice that the default for myevalf is four digits. So myevalf(Pi) returned π
to four significant digits.

7.10 Input and output

7.10.1 Formatted output

We have already seen two print commands: print and lprint. To produce
formatted printing we use the printf command. This command is similar to
the C printf command. The syntax of printf has the form

printf( format, expressionSequence)

The format tells maple how to write the terms in the expressionSequence. The
format has the following syntax

%[flags][width][.precision][modifiers]code

The optional flags are + (numeric value is output with a leading “+” or “-” sign),
- (output is left justified), blank space (numeric value is output with a leading
“+” or “-” sign), and 0 (numeric value is padded with zeroes). The optional width
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specifies the minimum number of characters to output. The optional precision
specifies number of digits after the decimal point for numeric point and the
maximum number of characters for string output. The optional modifiers are
l or L, and zc or Z. See ?printf for more information. The code indicates the
type of object to be printed. The value code can be d (signed decimal integer), o
(unsigned octal integer), x or X (unsigned hexadecimal integer), e or E (floating
point number in scientific notation), f (fixed-point number), g or G (automatic
d, e or f format depending on value), y or Y (IEEE hex dump format), c (single
character), s (character string), a or A (outputs maple object as a string), q or Q
(used for printing all remaining arguments), m (“.m” file format), or % (verbatim
output).

To print an integer we use the %d format.

> x:=2∧12;

x := 4096

> printf("%d",x);
96

It appears that maple has not printed the correct value. The problem is that
the printf function does not automatically insert a line break. To insert a line
break we use the symbol \n.
> printf("%d\n",x);
4096
> printf("x=%d\n",x);
x=4096
> printf("x=%10d\n",x);
x= 4096
> printf("x=%010d\n",x);
x=0000004096

We use the %e format to print a floating-point approximation in scientific
notation.

> y:=1/x;

y :=
1

4096

> evalf(y);

.0002441406250

> printf("y=%e\n",y);
y=2.441406e-04
> printf("y=%20e\n",y);
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y= 2.441406e-04
> printf("y=%20.9e\n",y);
y= 2.441406250e-04
> printf("x=%d and y=%e.\n",x,y);
x=4096 and y=2.441406e-04.
> printf("x=%d and \ny=%e.\n",x,y);
x=4096 and
y=2.441406e-04.

To print a maple expression we use the %a format.

> printf("Integral is %a.\n",int(1/t,t));
Integral is ln(t).

Observe how maple evaluated the integral and printed its value.

7.10.2 Interactive input

There may be some situations in a program when you would want to prompt
the user for input. There are two maple functions for entering input interac-
tively: readline and readstat. To enter a string we use readline(terminal).
More generally the call readline(filename) will read a line of text from a file.
The following proc getmethod will ask you to enter 1 or 2. Type 1 and press
the enter key.

> methodget:=proc()
> local p:
> printf("There are two available methods:\n");
> printf("1. Undetermined coefficients\n");
> printf("2. Laplace transforms\n");
> printf("ENTER 1 or 2: ");
> p:=readline(terminal);
> if p="1" or p="2" then
> return p;
> else
> error "You must enter 1 or 2."
> end if;
> end proc:
> methodget();
There are two available methods:
1. Undetermined coefficients
2. Laplace transforms
ENTER 1 or 2: 1

"1"

> whattype(%);

string
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Notice that when we entered “1” it was read as a string and not as an integer.
To read numerical input or a maple expression, we must use the readstat
command. The following proc will prompt you for an integer. When you run it,
type an integer followed by a semicolon.

> numget:=proc()
> local p:
> p:=readstat("Enter an integer: ");
> if type(p,integer) then
> return p;
> else
> error "You must enter an integer."
> end if;
> end proc:
> numget();
Enter an integer: 13;

13

We typed in “13;”. When using readstat, input entered must end with a
semicolon or colon.

There is a way to read numerical input or a maple expression using
readline. This can be done by using the parse function to convert the string
entered into a maple expression.

> s:="sin(x∧3+2*x)";
"sin(x^3+2*x)"

> whattype(%);
string

> parse(s);
sin(x3 + 2x)

> whattype(%);
function

Exercise 11.
Write a maple proc varget using readline and parse that produces the fol-
lowing output:

> varget();
ENTER an independent variable: x

x

> varget();
ENTER an independent variable: 12
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Error, (in varget) You must enter a variable.
You entered a integer.

7.10.3 Reading commands from a file

Although the editing features of maple are getting better and better with
each release, it is usually more convenient and wiser to write maple programs
using an editor and save them in ordinary text files. For instance, instead of
typing the proc SCORETOT (given in Section 7.8) directly into a worksheet within
maple, it would be better to create it using an editor in, say, the file stot.
The maple read function is used to read a file into a maple session. We give
an example for Windows. If this file is in the subdirectory myprogs within the
Maple 7 directory, try

> read "c:\\Program Files\\Maple 7\\myprogs\\stot";

and then the proc SCORETOT will be ready for use. A variant of this should work
on other platforms. For instance, in the UNIX version try

> read stot;

if your maple session was started in the same directory.

7.10.4 Reading data from a file

There are several ways to read numerical data from a file. The simplest
functions are ImportMatrix and readdata. The ImportMatrix function is used
to read columns of numbers. Its syntax has the form

ImportMatrix( "filename", delimiter=string)

Here filename is name of the file containing the data, and string is the character
that separates entries on each line of the file. The default value of string is the
tab character. Sometimes a single space " " is used a delimiter. Suppose we
have a file mydata.txt containing the following data:

0 1.
.175e-1 .905
.125 .649
.353 .353
.649 .125
.905 .175e-1
1. 0

We use ImportMatrix to read this data into a maple session. We interpret each
line as a two-dimensional data point and plot the result. If you are using the
Windows version of maple, then you may have to create the file mydata.txt in
the c:\"Program Files"\"Maple 7" directory.

© 2002 by Chapman & Hall/CRC



128 The Maple Book

> M:=ImportMatrix("mydata.txt",delimiter=" ");

M :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1.
.0175 .905
.125 .649
.353 .353
.649 .125
.905 .0175
1. 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
> whattype(%);

Matrix

> datapts:=[seq([M[i,1],M[i,2]],i=1..7)];

datapts := [[0, 1.], [.0175, .905], [.125, .649], [.353, .353], [.649, .125],
[.905, .0175], [1., 0]]

> plot(datapts,style=point,symbol=circle,color=black);

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Figure 7.2 maple plot of imported data points.

Alternatively we can use the readdata function. Its syntax has the form

readdata( "filename", numColumns)

Here numColumns is the number of columns of data in the file.

> L:=readdata("mydata.txt",2);

L := [[0, 1.], [.0175, .905], [.125, .649], [.353, .353], [.649, .125],
[.905, .0175], [1., 0]]
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> whattype(L);

list

> plot(L,style=point);

Observe this time that the data is interpreted as a list instead of a matrix.
Other functions for reading data are fscanf, scanf, and readbytes. See the
help pages for more information.

7.10.5 Writing data to a file
In the previous section we used the ImportMatrix function to read numerical

data into a maple session. The analogous function for writing data to a file is
ExportMatrix. We now create a data file, mydata2.txt, similar to the one used
in the previous section.

> M:=Matrix(7,2);
> for i from 0 to 6 do
> x:=sin(Pi*i/12)∧3:
> y:=cos(Pi*i/12)∧3:
> M[i+1,1]:=evalf(x,3):
> M[i+1,2]:=evalf(y,3):
> end do:
> ExportMatrix("mydata2.txt", M);

The call to ExportMatrix creates a data file mydata2.txt from the entries of the
matrix M . Being the default, the tab character is used to separate entries on
each line of the file. The syntax of the command has the form

ExportMatrix( "filename", matrix)
ExportMatrix( "filename", matrix, delimiter=string)

Other functions for writing data are writedata, fprintf, and writebytes. See
the help pages for more information.

7.10.6 Writing and saving to a file
In the previous section we used the ExportMatrix function to write numer-

ical data to a text file. To write or save more general maple output, we must
use other functions. One method is to use the writeto command to redirect
output from the screen to a file.

> restart;
> y:=int(1/x,x);

y := ln(x)

> writeto("myoutput");
> y;
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> writeto(terminal);
> y;

ln(x)

You should now have a text file myoutput, which contains the string ln(x). In
the maple session we first computed an integral and assigned its value to y.
The call writeto("myoutput") opened a text file called myoutput for writing.
The next command entered was written to this file instead of being displayed
on the screen. The call writeto(terminal) restores output to the screen. The
command appendto is similar to writeto except output is appended to the file
if it already exists.

Output saved using writeto cannot be reread back into maple. To reuse
output one should use the save command. The syntax of the command has the
form

save name1, name2, . . . , namek, filename

The specified variables will be written to the file specified by filename. If the
file name ends with the characters .m then values are saved in maple’s internal
format.

> x:=5;
5

> y:=7;
7

> z:=int(1/u,u);
ln(u)

> save x,y,z,"first.m";
> save x,y,part1;
> quit

In the session above, all the variables were saved in the maple internal file
first.m. The values of x and y were saved in the text file part1. In another
maple session we can restore these variables using the read command.

> read part1;

x := 5
y := 7

> anames();

x, y

> read "first.m";
> z;

ln(u)

© 2002 by Chapman & Hall/CRC



maple Programming 131

In case you forget the names of the saved variables, use the anames function.
The call anames() will return a list of variables that have been assigned values.

7.11 Generating C and Fortran code
The codegen package contains functions for converting maple code to C or

Fortran. As an example we use maple to construct a Fortran function f(x),
which will return an approximation of the Bessel function J0(x) for x near 1.
First we load the codegen package.

> restart:
> with(codegen):

Next we compute the first few terms of the series expansion of J0(x) near x = 1.

> s:=series(BesselJ(0,x),x=1,6):
> p:=convert(s,polynom):
> ep:=evalf(p);

ep := 1.205248272 − 0.4400505857x − 0.1625735505 (x − 1.0)2

+0.05419118346 (x − 1.0)3 + 0.009575290409 (x − 1.0)4

−0.002241113982 (x − 1.0)5

Now we use the makeproc function to convert this last expression in x into a
proc.

> f:=makeproc(ep,[x]);
f := proc(x)
1.205248272 - .4400505857*x - .1625735505*(x - 1.)∧2
+ .05419118346*(x - 1.)∧3 + .009575290409*(x - 1.)∧4
- .002241113982*(x - 1.)∧5
end

Finally we use the fortran function to convert this proc to Fortran code.

> fortran(f,optimized);
real function f(x)
real x

real t2
real t3
real t7

t2 = x-1.E0
t3 = t2**2
t7 = t3**2
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f = 0.1205248E1-0.4400506E0*x-0.1625736E0*t3
#+0.5419118E-1*t3*t2+0.957529E-2*t7-0.2241114E-2*t7*t2
return
end

Here we have used the optimized option. This has the effect of doing common
subexpression optimization. The analogue for producing C code is C.

> C(f);
#include <math.h>
double f(x)
double x;
{

{
return(0.1205248272E1-0.4400505857*x-0.1625735504*

pow(x-1.0,2.0)+0.5419118346E-1*pow(x-1.0,3.0)
+0.9575290409E-2*pow(x-1.0,4.0)-0.2241113982E
-2*pow(x-1.0,5.0));

}
}

7.12 Viewing built-in MAPLE code
One of the great features of maple is that most of the built-in functions are

written in the maple programming language, and the code is accessible to the
user. To see how maple defines the Gamma function, try

> interface(verboseproc=2);

> op(GAMMA);

7.13 The MAPLE interactive debugger
maple has several functions that allow interactive debugging of programs.

As an example we reexamine the maple proc euclid from Section 7.5. However,
this version has a bug.

> euclid := proc(m::posint,n::posint)
> local a,b,r:
> a:=m:
> b:=n:
> r:=irem(a,b):
> while r>0 do
> a:=b:
> b:=r:
> r:=irem(a,b):
> end do:
> r:
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> end proc:
> euclid(45,51);

0

As you see, this version has a bug. The call euclid(45,51) should return a gcd
of 3, not 0. The showstat command displays a maple procedure with statement
numbers.

> showstat(euclid);
euclid := proc(m::posint, n::posint)
local a, b, r;

1 a := m;
2 b := n;
3 r := irem(a,b);
4 while 0 < r do
5 a := b;
6 b := r;
7 r := irem(a,b)

end do;
8 r

end proc

To invoke the maple debugger we use the stopat command.

> stopat(euclid);
[euclid]

> euclid(45,51);
euclid:

1* a := m;

DBG>

This stopat call inserts a break point when the euclid proc is called. The
debugger prompt is DBG>. At this point maple is waiting for a debugger
command. See ?debugger for available debugger commands. After the DBG
prompt we type next.

DBG> next
45
euclid:

2 b := n;

DBG>

Notice that maple printed out 45, the value of a in statement 1, and then printed
out the next statement followed by the DBG prompt. Next we keep using the
next command until the program is finished.
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DBG> next
51
euclid:

3 r := irem(a,b);

DBG> next
45
euclid:

4 while 0 < r do
. . .

end do;

DBG> next
0
euclid:

8 r

DBG> next
0

>
Notice that we did not step through each statement in the while loop. To step
into a loop we use the step command. This time, after statement 4 is printed,
we use the step command.

DBG> next
45
euclid:

4 while 0 < r do
. . .

end do;

DBG> step
45
euclid:

5 a := b;

DBG> step
51
euclid:

6 b := r;

DBG> step
45
euclid:

7 r := irem(a,b)
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DBG> step
6
euclid:

5 a := b;

DBG>
The step command allows us to step through each statement in the loop until we
exit the loop. Now we could issue another step command or a next command
to continue to the next statement. Instead we issue a cont command to continue
execution.

DBG> cont
0

To turn off the maple debugger, use the unstopwhen function.

> unstopwhen();
[]

Exercise 12.
Find the bug in the euclid proc.

7.14 Writing your own packages
There are two methods of writing maple packages. The first method uses a

table to save functions in a package. With maple 7, the modern and preferred
method is to use modules.

7.14.1 Packages as tables

As an example, we will write a package called qprod, which contains three
functions: aqprod, etaq, and qbin. The idea is to define a table with the name
qprod. The table qprod will contain the three functions. Finally, the table is
saved as the file qprod.m.

> qprod:=table();
> qprod[aqprod]:=proc(a,q,n)
> local x,i:
> if type(n,nonnegint) then
> x:=1:
> for i from 1 to n do
> x := x * (1-a*q∧(i-1)):
> end do:
> else
> x:=‘‘(a,q)[n];
> end if:
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> return x:
> end proc:
> qprod[etaq]:=proc(q,i,trunk)
> # This proc returns (q∧i:q∧i) inf up to q∧trunk
> local k,x,z1,z,w:
> z1:=(i + sqrt( i*i + 24*trunk*i ) )/(6*i):
> z:=1+trunc( evalf(z1) ):
> x:=0:
> for k from -z to z do
> w:=i*k*(3*k-1)/2:
> if w<=trunk then
> x:=x+ q∧( w )*(-1)∧k:
> end if:
> end do;
> return x:
> end proc:
> qprod[qbin]:=proc(q,m,n)
> if whattype(m)=integer and whattype(n)=integer then
> if m>=0 and m<=n then
> return normal(aqprod(q,q,n)/aqprod(q,q,m)
> /aqprod(q,q,n-m));
> else
> return 0;
> end if:
> else
> error "m and n must be integers.";
> end if:
> end proc:
> save( qprod,
> "c:\\Program Files\\Maple 7\\mylib\\qprod.m");

In the last two lines, the table qprod was saved to the file

c:\Program Files\Maple 7\mylib\qprod.m
on a Win95 machine. The name of this file should be changed to suit your
platform. You must edit maple’s initialization file before you can load this
package into a maple session. On a Windows machine the initialization file is
called maple.ini and is contained in the bin.wnt subdirectory of the maple 7
directory. Add the following lines to this file:

mylib := "c:\\Program Files\\Maple 7/mylib":
libname := libname, mylib:

Now when you start a session, maple will know the location of the mylib di-
rectory. The name of the initialization file is platform-dependent. On a UNIX
machine it has the name .mapleinit. We try loading our new package into a
maple session.
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> with(qprod);
[aqprod , etaq , qbin]

> qbin(q,3,6);(
q2 − q + 1

) (
q4 + q3 + q2 + q + 1

) (
q3 + q2 + q + 1

)

7.14.2 Modules for packages

A maple module is a collection of maple procs and data that are bound
together. A module is similar in construction to a procedure in that some objects
are local and global. Objects are made visible outside the module using the
export declaration. The syntax of a module has the form

module()
local localvars;
export exportvars;
global globalvars;
options optionseq;
description descriptionstring;
...
maple statements and procs
...

end module

As an example we construct a module called etaproduct, which contains three
procs: GPmake, cuspmake, and etaprodcuspord, for computing orders of cusps
of eta-products on the group Γ0(N). Don’t worry whether you understand what
a cusp or an eta-product is. This example only serves to illustrate the form of a
module when it is used to create a maple package. Use an editor to write the
following maple code in a text file called etaprod.txt.

etaproduct := module()
description "A package for cusps of eta products";
export GPmake, cuspmake, etaprodcuspord;
option package;
GPmake:=proc(etaprod)

description "This proc finds the GP corresponding"
" to the given etaproduct.";
local L1,L1n,GP,i,r,p,t:
if whattype(etaprod)=‘∧‘ then
L1:=[etaprod]:

else
if whattype(etaprod)=function then
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return [op(etaprod)/tau,1];
else
L1:=[op(etaprod)]:

end if:
end if:
L1n:=nops(L1):
GP:=NULL:
for i from 1 to L1n do
r:=degree(L1[i]):
if r=1 then
p:=op(L1[i]):
t:=p/tau:

else
p:=op(L1[i]):
t:=op(p[1])/tau:

end if:
GP:=GP,t,r:

end do:
return [GP];

end proc:
cuspmake:=proc(N)

description "Computes a set of inequivalent "
"cusps for GAMMA 0(N)";
local S,SoD,c,a,lasta,SSc,lastd,gcN,d,md:
SoD:=numtheory[divisors](N):
SoD := SoD minus 1:
S:=0:
for c in SoD do
SSc:=:
lastd:=c-1:
gcN:=gcd(c,N/c):
for d from 1 to lastd do
md:=modp(d,gcN):
if gcd(d,c)=1 and member(md,SSc)=false then

S:= S union d/c:
SSc:= SSc union md:

end if:
end do:

end do:
return S:

end proc:
etaprodcuspord:=proc(etaprod,N)

description "Prints the order at each cusp"
"from (GAMMA 0(N)) of the given etaproduct.";
local GP,ngp,S,s,ords,i,t,r,c:
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GP:=etaproduct:-GPmake(etaprod):
ngp:=nops(GP):
S:=etaproduct:-cuspmake(N):
for s in S do
ords:=0:
for i from 1 to (ngp/2) do
t:=GP[2*i-1]:
r:=GP[2*i]:
c:=denom(s):
ords:=ords+gcd(t,c)∧2/t*r/24:

end do:
printf(" Order at cusp %a is %a.\n",s,ords);

end do:
return :

end proc:
end module:

We have assigned the name etaproduct to the module. There are three procs
defined inside the module: GPmake, cuspmake, and etaprodcuspord. The dec-
laration

export GPmake, cuspmake, etaprodcuspord;

tells maple that these three procs are visible outside the module. We call these
exports. Also note we have used the package option to tell maple we intend to
use the etaproduct module as a package. The syntax for accessing an export
has the form

modulename:-functionname

We use the read function to read in our text file etaprod.txt and use the cuspmake
function to find the cusps of Γ0(20).

> read "etaprod.txt";
> etaproduct:-cuspmake(20);{

0,
1
2
,
1
4
,
1
5
,

1
10

,
1
20

}
We use etaprodcuspord function to print out the order of the eta-product(

η(5τ)
η(τ)

)6

at each cusp of Γ0(20).

> ep:=(eta(5*tau)/eta(tau))∧6;

(η(5 τ))6

(η(τ))6
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> etaproduct:-etaprodcuspord(ep,20);
Order at cusp 0 is -1/5.
Order at cusp 1/2 is -1/5.
Order at cusp 1/10 is 1.
Order at cusp 1/4 is -1/5.
Order at cusp 1/5 is 1.
Order at cusp 1/20 is 1.

We use the savelib command to save our module etaproduct as a package.
This way we will be able to use the package in a later session. We describe the
process on a UNIX system. Other systems will be similar, the main difference
being the way the files are named. Before we can use savelib, the global
variables libname and savelibname should be set correctly. As well, certain
maple library files need to be created. In Section 7.14.1 we showed how to set
up the maple initialization file maple.ini on a Windows machine. On a UNIX
machine the maple initialization file is .mapleinit. In this file add the name
of the directory where you want the package to be saved. Something like the
following should be added to the initialization file:

mylib := "/home/fac0/frank/maple/mylib":
libname := mylib, libname:

Let’s start a maple session.

> libname;

"/home/fac0/frank/maple/mylib", "/opt/maple 6/lib"

We read our text file etaprod.txt and then use maple’s archiving function march
to create the necessary maple library files in the mylib directory.

> read "etaprod.txt";
> march(’create’, mylib, 100);

There should now be two maple library files in the mylib directory: maple.ind
and maple.lib. We set the global savelibname variable and save the
etaproduct package using the savelib command.

> savelibname := mylib;

savelibname := /home/fac0/frank/maple/mylib

> savelib(’etaproduct’);
> quit

The etaproduct package has now been saved to a library file in the mylib
directory. We start a new maple session and load the package using the with
command.
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> with(etaproduct);

[GPmake, cuspmake, etaprodcuspord ]

> ep:=(eta(5*tau)/eta(tau))∧6;

ep :=
(η(5 τ))6

(η(τ))6

> GPmake(ep);
[5, 6, 1,−6]

7.15 Answers to programming exercises

1.

> c2f := proc(x)
> evalf(9/5*x + 32);
> end proc:

2.

> dist := proc(x1,y1,x2,y2)
> local s;
> s := (x1-x2)∧2 + (y1-y2)∧2;
> sqrt(s);
> end proc:

3.

> h:=proc(x)
> if x>3 then 0;
> elif x>0 and x<=1 then x;
> elif x>1 and x<=3 then 1;
> else
> -1;
> end if;
> end proc:
> plot(h, -1..4, discont=true);

4.

> SUM := proc(a,b)
> local i, tot;
> tot := 0;
> for i from a to b do
> tot := tot + i;
> end do;
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> tot;
> end proc:
> SUM(1,10);

55

> SUM(15,19);
85

5.

> ODDSUM := proc(n)
> local i, tot;
> tot := 0;
> for i from 1 by 2 to n do
> tot := tot + i;
> end do;
> tot;
> end proc:
> ODDSUM(19);

100

> for k from 1 by 2 to 19 do
> print(‘k=‘,k,‘ ODDSUM=‘,ODDSUM(k));
> end do;

k=, 1, ODDSUM=, 1
k=, 3, ODDSUM=, 4
k=, 5, ODDSUM=, 9
k=, 7, ODDSUM=, 16
k=, 9, ODDSUM=, 25
k=, 11, ODDSUM=, 36
k=, 13, ODDSUM=, 49
k=, 15, ODDSUM=, 64
k=, 17, ODDSUM=, 81
k=, 19, ODDSUM=, 100

Do you see the pattern? If N is odd, it seems that

1 + 3 + 5 + · · · + N =
(

N + 1
2

)2

.

6.

> find2s := proc(p::prime)
> local a,c,find;
> find := 0;
> for a from 1 to trunc(sqrt(p/2)) do
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> c := p - a∧2:
> if issqr(c) then
> print(‘p = a∧2 + b∧2 where a=‘,a,
> ‘ b=‘,sqrt(c));
> find := 1:
> end if;
> end do;
> if find=0 then
> print(‘p is not the sum of two squares‘);
> end if;
> end proc:

(i) We want a2 + b2 = p. Since p is prime, a ≥ 1. We may assume a ≤ b.
Then 2a2 ≤ p and a ≤

√
(p/2). Since a must be an integer, this explains why

in the loop a goes from 1 to trunc(sqrt(p/2)).

(ii) The value of find indicates whether p is the sum of two squares. It is set
to 1 if in the loop we find a as the sum of two squares. So find = 1 if and only
if p is the sum of two squares.

(iii) The primes less than 100 that are the sum of two squares are 2, 5, 13, 17,
29, 37, 41, 53, 61, 73, 89, and 97.

7.

> conbin:=proc(n::posint)
> local m,x,y,r;
> m:=n:
> x:=0:
> y:=1:
> while m>0 do
> r:=irem(m,2):
> m:=iquo(m,2):
> x:=x + r*y:
> y:=10*y:
> end do:
> x;
> end proc:

8.

> MYBINOM := proc(n::nonnegint,m::nonnegint)
> if n >= 1 and m <= n-1 and m >= 1 then
> MYBINOM(n-1,m-1) + MYBINOM(n-1,m);
> else
> 1 ;
> end if:
> end proc:
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> MYBINOM(20,8);
125970

> 20!/8!/12!;
125970

We found
(

20
8

)
= 125970, and checked our result using the factorial definition.

maple has a built-in binomial function. See ?binomial for more information.

9.

> GRADE := proc(x)
> if x >= 90 then return ‘A‘; end if;
> if x >= 85 and x < 90 then return ‘B+‘; end if;
> if x >= 80 and x < 85 then return ‘B‘; end if;
> if x >= 75 and x < 80 then return ‘C+‘; end if;
> if x >= 70 and x < 75 then return ‘C‘; end if;
> if x >= 60 and x < 70 then return ‘D‘; end if;
> if x < 60 then return ‘E‘; end if;
> end proc:

10.

> WSCORETOT := proc(L::list,M::list)
> local num, TOT, k, numlabs, numtots, A, j, TOTPOSS,
> TOTPER;
> numlabs:=nops(L);
> numtots:=nops(M):
> lprint(‘LAB GRADE COMPUTATION‘);
> lprint(‘ASSUMPTIONS: Overall grade is computed by ‘);
> lprint(‘converting each lab score to a percentage‘);
> lprint(‘and then taking the average.‘);
> A:=matrix(numlabs+1,4);
> A[1,1]:=‘LAB‘: A[1,2]:=‘Raw Score‘:
> A[1,3]:=‘Total Possible‘:
> A[1,4]:=‘Score as percentage‘:
> if numlabs=numtots then
> for j from 1 to numlabs do
> if L[j]>M[j] then
> error "Score for LAB %1 = %2. This is too big"
> "since the total possible for this lab is %3.",
> j,L[j],M[j];
> end if;
> A[j+1,1]:=j: A[j+1,2]:=L[j]:
> A[j+1,3]:=M[j]:
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> A[j+1,4]:=evalf(L[j]/M[j]*100,4):
> end do;
> print(A);
> LABSUM:=sum(L[k]/M[k]*100,k=1..numlabs);
> LBS:=evalf(LABSUM,4);
> WSCORE:=evalf(LABSUM/numlabs,4);
> lprint(‘The sum of the lab scores‘);
> lprint(‘as percentages = ‘,LBS);
> lprint(‘Overall score as a percentage = ‘,WSCORE);
> else
> error "numlabs must equal numtots but here"
> "numlabs=%1 and numtots=%2.",numlabs,numtots;
> end if;
> end proc:

11.

> varget:=proc()
> local p,q:
> printf("ENTER an independent variable: ");
> p:=readline(terminal);
> q:=parse(p);
> if not type(q,name) then
> error "You must enter a variable."
> "You entered a %1.",whattype(q);
> else
> return q;
> end if;
> end proc:

12.

The second to last line of the euclid proc should be b:, not r:.

© 2002 by Chapman & Hall/CRC



8. DIFFERENTIAL EQUATIONS

8.1 Solving ordinary differential equations
Remember in maple that there are two ways to code the derivatives

dy
dx , d2y

dx2 , d3y
dx3 . . . We can use the diff, or Diff function:

diff(y(x),x), diff(y(x),x,x), diff(y(x),x,x,x), . . .

or we can use the differential D operator:

D(y)(x), (D@@2)(y)(x), (D@@3)(y)(x), . . .

To solve the differential equation de involving Y = y(x), we use the command
dsolve(de,Y).

> y:=’y’:
> Y:=y(x);

Y := y(x);

> dY := diff(Y,x);
∂

∂x
y(x)

> ddY := diff(%,x);
∂2

∂x2
y(x)

> de := ddY+5*dY+6*Y = sin(x)*exp(-3*x);

de :=
∂2

∂x2
y(x) + 5

∂

∂x
y(x) + 6 y(x) = sin(x) e−3x

> ans := dsolve(de, Y);

ans := y(x) = e−3 x C2 + e−2 x C1 +
1
2

(cos(x) − sin(x)) e−3 x

We found that the general solution to the differential equation

y′′ + 5y′ + 6y = sinx e−3x

is
y =

1
2
(cos(x) − sin(x))e−3x + c1e

−3x + c2e
−2x,

where c1 and c2 are any constants. We use maple to check the solution. There
are two methods. First we check the solution by computing derivatives and
verifying the differential equation.

147
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> sol := rhs(ans);

sol := 1/2 cos(x)e−3 x − 1/2 sin(x)e−3 x + C1 e−3 x + C2 e−2 x

> dsol:=diff(sol,x);

dsol := sin(x)e−3 x − 2 cos(x)e−3 x − 3 C1 e−3 x − 2 C2 e−2 x

> ddsol:=diff(sol,x,x);

ddsol := 7 cos(x)e−3 x − sin(x)e−3 x + 9 C1 e−3 x + 4 C2 e−2 x

> simplify(ddsol + 5*dsol + 6*sol);

sin(x)e−3 x

This confirms the solution found before. A quicker method is to use maple’s
odtest function.

> odetest(ans,de);
0

Because 0 was returned, the solution has been verified. See ?odetest for more
information.

Now let’s look at our DE again, this time using a context menu.

> de;
∂2

∂x2
y(x) + 5

∂

∂x
y(x) + 6 y(x) = sin(x) e−3x

Right-click on the DE. A context menu should appear:

Copy
Left-hand Side
Right-hand Side
Negate a Relation
Move to Left
Move to Right
Solve D.E. �
Add an Initial Condition �
Classify the O.D.E. �
Conversions �

First highlight the DE with the mouse. Click on Solve D.E. and then
y(x) .
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> y(x) = exp(-3*x)* C2+exp(-2*x)* C1
+1/2*(cos(x)-sin(x))*exp(-3*x);

y(x) = e−3 x C2 + e−2 x C1 +
1
2

(cos(x) − sin(x)) e−3 x

Now try selecting Classify the O.D.E and then y(x) .

> [[ 2nd order, linear, nonhomogeneous]];

[[ 2nd order , linear , nonhomogeneous ]]

maple has recognized that the DE is second order, linear, and nonhomogeneous.

8.1.1 Implicit solutions
Quite often it is preferable to find solutions given implicitly. Consider the

DE:
(3y2 + ex)

dy

dx
+ ex(y + 1) + cos x = 0.

> DE:=(3*y(x)∧2+exp(x))*diff(y(x),x)+exp(x)*(y(x)+1)
+cos(x) = 0;(

3 (y(x))2 + ex
) ∂

∂x
y(x) + ex (y(x) + 1) + cos(x) = 0

> dsolve(DE,y(x),implicit);

exy(x) + ex + sin(x) + (y(x))3 + C1 = 0

The general solution to the DE is given implicitly by the equation

exy + ex + sin x + y3 = c,

where c is any constant. We found this solution by adding the implicit option
to the dsolve function. For other options see ?dsolve. Without the implicit
option maple would have returned three slightly horrible explicit solutions. Try
it:

> dsolve(DE,y(x));

8.1.2 Initial conditions
We consider the initial value problem

y′′ + 5y′ + 6y = sin x e−3x, y(0) = −5
2
, y′(0) = 2.

We continue our maple session.
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> de;
∂2

∂x2
y(x) + 5

∂

∂x
y(x) + 6 y(x) = sin(x) e−3x

> dsolve({de,y(0)=-5/2,D(y)(0)=2},Y);

y(x) = 1/2 cos(x)e−3 x − 1/2 sin(x)e−3 x + 2 e−3 x − 5 e−2 x

The solution to the initial value problem is given by

y =
1
2

cos(x)e−3 x − 1
2

sin(x)e−3 x + 2 e−3 x − 5 e−2 x.

Notice that in maple we entered the initial condition y′(0) = 2, using the
differential operator D. So in maple D(y)(0) means y′(0). For a higher order
derivative y(k) we use the maple notation (D@@k). To enter an initial condition
of the form y(k)(x0), use the maple notation (D@@k)(y)(x0). For example, let’s
solve the following third-order initial value problem:

y + y′ − 3y′′ + y′′′ = e−x(10 − 4x), y(0) = 5, y′(0) = 6, y′′(0) = 3.

> DE := y(x) +D(y)(x) -3*(D@@2)(y)(x)+ (D@@3)(y)(x)
= exp(-x)*(10-4*x);

y(x) + D(y)(x) − 3 (D(2))(y)(x) + (D(3))(y)(x) = e−x (10 − 4x)

> dsolve({DE,y(0)=5,D(y)(0)=6,(D@@2)(y)(0)=3},y(x));

y(x) = e−xx + 5 ex

The solution to the initial value problem is given by

y = xe−x + 5ex.

The syntax of the dsolve function has the form

dsolve({DE,sequence of initial conditions}, dependent variable)

Here the sequence of initial conditions

y(x0) = y0, y(x0) = y1, y′′(x0) = y2, . . .

is coded using the D operator as

y(x0)=y0, D(y)(x0)=y1, (D@@2)(x0)=y2, . . .
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8.1.3 Systems of differential equations
Systems of differential equations can be solved in an analogous fashion. To

solve the initial value problem

y′ + z′ = ex, y(0) = 8/9
y′ − 3z = x, z(0) = 10/9,

try

> de1 := diff(y(x),x) + diff(z(x),x) = exp(x);
> de2 := diff(y(x),x) -3*z(x) = x;
> dsolve({de1,de2,y(0)=8/9,z(0)=10/9},{y(x),z(x)});

When solving a system of DEs, the syntax of the dsolve command has the form

dsolve({sysDE,sequence of initial conditions}, {dependent variables})
Here sysDE is a sequence of differential equations.

8.2 First-order differential equations
maple knows the standard methods for solving first-order equations: sepa-

rable equations, linear equations, exact equations, and the method of integrating
factors. As well, maple knows the standard first order equations, such as Abel’s
equation, Bernoulli’s equation, Clauraut’s equation, Ricatti’s equation, Chini’s
equation, and d’Alembert’s equation.

8.2.1 odeadvisor
There are many facilities for solving ODEs in the DEtools package. There

is a neat function in this package, odeadvisor, which analyzes a given ODE
and gives advice. Let’s see how this function works. Consider the first-order
equation

dy

dx
=

x − 3
y2

.

> restart:
> with(DEtools):
> DE := diff(y(x),x) = (x-3)/y(x)∧2;

∂

∂x
y(x) =

x − 3
(y(x))2

> odeadvisor(DE);
[ separable]

maple is telling us that this DE is separable. Try

> odeadvisor(DE,help);
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This time the odeadvisor should bring you to a help page on separable equa-
tions. This page contains information on separable equations including the gen-
eral form of the solution as well as some examples. This should give you some
help in completing the problem by hand. You can then check your answer by
typing

> dsolve(DE, y(x));
Thus maple is able to recognize a separable equation. The odeadvisor recog-
nizes the following first-order types:

separable — Separable equations
A first-order equation is separable if it is of the form

dy

dx
= f(x) g(y).

linear — First order linear equation
A first-order linear equation has the form

dy

dx
+ f(x) y = g(x).

exact — Exact equation
A first-order equation is exact if it can be written in the form

d

dx
f(x, y(x)) = 0;

i.e., in the form

fx(x, y(x)) + fy(x, y(x))
dy

dx
= 0.

homogeneous — Homogeneous equation
A first-order homogeneous equation has the form

dy

dx
= f(y/x).

See also ?odeadvisor[homogeneousB], ?odeadvisor[homogeneousC], ?odead-
visor[homogeneousD], and ?odeadvisor[homogeneousG].

quadrature — Quadrature format
A first-order de is said to be in quadrature format if the right side is a function
of x only or a function of y only.

rational — Rational equation
A first-order rational equation has the form

dy

dx
=

p(x, y)
q(x, y)

,
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where p and q are polynomials.

Bernoulli — Bernoulli’s equation
Bernoulli’s equation has the form

dy

dx
+ f(x) y = g(x) yn.

Riccati — Riccati’s equation
Riccati’s equation has the form

dy

dx
= f(x) y2 + g(x) y + h(x).

Other first-order types are given below:

Abel Abel2A Abel2C Bernoulli Chini
Clairaut dAlembert patterns sym implicit

The odeadvisor recognizes the following second-order types:

Bessel Duffing ellipsoidal elliptic
Emden erf exact linear exact nonlinear
Gegenbauer Halm Hermite Jacobi
Lagerstrom Laguerre Lienard Liouville
linear ODEs linear sym missing Painleve
quadrature reducible sym Fx Titchmarsh
Van der Pol

and it recognizes the following higher order types.

quadrature missing exact linear exact nonlinear
reducible linear ODEs

In Section 8.1 we saw how maple’s dsolve function was used to solve dif-
ferential equations. The infolevel function can be used to supply additional
information when using the dsolve function. Let’s consider the following DE:

dy

dx
=

(x − 3)
ey

.

> with(DEtools):
> DE := diff(y(x),x) = (x-3)/exp(y(x));

d

dx
y(x) =

x − 3
ey(x)
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> odeadvisor(DE);
[ separable]

> infolevel[dsolve]:=3;

infolevel[dsolve] := 3

> dsolve(DE,y(x));
Methods for first order ODEs:
Trying to isolate the derivative dy/dx...
Successful isolation of dy/dx
-> Trying classification methods
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
separable successful

y(x) = ln(1/2x2 − 3x + C1 )

8.2.2 Integrating factors
An integrating factor for a first-order differential equation is a function

μ(x, y) such that when the differential equation is multiplied by μ(x, y), the
resulting equation is exact. The maple function intfactor in the DEtools
package looks for an integrating factor for a given ODE. Consider the DE

x4 + y + x
(
y2 + ln(x)

) dy

dx
= 0.

This DE is not exact. We use intfactor to look for an an integrating factor.

> with(DEtools):
> de:=(x∧4+y(x))+x*(y(x)∧2+ln(x))*diff(y(x),x)=0;

de := x4 + y(x) + x
(
(y(x))2 + ln(x)

) d

dx
y(x) = 0

> mu := intfactor(de,y(x));

μ :=
1
x

The function μ(x) = 1
x is an integrating factor. We multiply both sides of the

DE by μ(x).

> de2:=expand(mu*de);

x3 +
y(x)
x

+
(

d

dx
y(x)

)
(y(x))2 +

(
d

dx
y(x)

)
ln(x) = 0
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> odeadvisor(de2);
[ exact ]

We see that the resulting equation is exact. Now we can either use dsolve
to find the general solution or use the method of exact equations to finish the
problem by hand.

8.2.3 Direction fields

The DEplot function in the DEtools package plots the direction field of a
first-order differential equation. We plot the direction field of the differential
equations

dy

dx
=

4x

y
.

> restart:
> with(DEtools):
> DE:= diff(y(x),x)=4*x/y(x);

∂

∂x
y(x) = 4

x

y(x)

> DEplot(DE,y(x),x=-2..2,y=-1..3);

–1

0

1

2

3

y(x)

–2 –1 1 2
x

Figure 8.1 Direction field of a first-order DE.

We plotted the direction field in the region given by

−2 ≤ x ≤ 2, −1 ≤ y ≤ 3.

The syntax of the DEplot function has the form
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DEplot(eqn, dvar, ivarrange, dvrange)

where deqn is the differential equation, dvar is the dependent variable,
ivarrange is the range of the independent variable, and dvrange is the range
of the dependent variable.

Continuing with our example, we plot the solution that satisfies the initial
condition y(0) = 2.

> DEplot(DE,y(x),x=-2..2,[[y(0)=2]],y=-1..3);

–1

0

1

2

3

y(x)

–2 –1 1 2
x

Figure 8.2 Direction field with a solution curve.

We try adding the solution that satisfies y(1) = 1.

> DEplot(DE,y(x),x=-2..2,[[y(0)=2],[y(1)=1]],y=-1..3);

–1

0

1

2

3

y(x)

–2 –1 1 2
x

Figure 8.3 Direction field with two solution curves.
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It is clear that maple has plotted this second solution incorrectly. Any solution
curve that comes near the x-axis must be nearly vertical there. The plotted
solution seems fairly accurate for x > 1, but otherwise the plot is totally wrong.
The problem is that maple has not plotted enough points when y is close to
zero. One way to fix this is to choose a small step-size. Try

> DEplot(DE,y(x),x=-2..2,[[y(0)=2],[y(1)=1]],y=-1..3,
stepsize=0.0005);

This should give a more accurate plot. But beware! Don’t compute blindly
without thinking!

When using initial conditions, the syntax of DEplot has the form

DEplot(eqn, dvar, ivarrange, ICondtions, dvrange)

where IConditions is a list of initial conditions. Here each initial condition has
the form [y(x0)=y0]. To plot the solution curves and omit the direction field,
use the option arrows=NONE. Try

> DEplot(DE,y(x),x=-2..2,[[y(0)=2],[y(1)=1]],y=-1..3,
stepsize=0.0005, arrows=NONE);

8.3 Numerical solutions
Numerical solutions to differential equations can be found using the dsolve

function with the numeric option. Consider the initial value problem

dy

dx
= x2 + y3, y(0) = 0.

> de:=diff(y(x),x)=x∧2+y(x)∧3:
> IVP:={de,y(0)=0};{

d

dx
y(x) = x2 + (y(x))3 , y(0) = 0

}
> nsol := dsolve(IVP,y(x),numeric);

nsol := proc(rkf45 x) . . . end proc

Observe that the call to dsolve (with the numeric option) has returned a maple
procedure. The rkf45 refers to the Frehlberg fourth-fifth order Runge-Kutta
method which is maple’s default method for numerical solutions. Now let’s
compute some values of the solution.

> for i from 0 to 9 do
> nsol(i/10.);
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> end do;

[x = 0., y(x) = 0.]
[x = .1000000000, y(x) = .000333333333579307896]
[x = .2000000000, y(x) = .00266666703929017805]
[x = .3000000000, y(x) = .00900002181584397612]
[x = .4000000000, y(x) = .0213337214734835162]
[x = .5000000000, y(x) = .0416702833992176336]
[x = .6000000000, y(x) = .0720224053831288041]
[x = .7000000000, y(x) = .114438119153382908]
[x = .8000000000, y(x) = .171065984044121100]
[x = .9000000000, y(x) = .244303629574327802]

The default numerical method is rkf45. maple knows many other numeri-
cal methods, including the classical Euler methods, the seventh-eighth order
Runge-Kutta method, and the Burlirsch-Stoer rational extrapolation method.
See ?dsolve,numeric for more details.

We can plot numerical solutions using the odeplot function in the plots
package.

> with(plots):
> odeplot(nsol,[x,y(x)],0..1,title="Numerical solution to

dy/dx=x∧2+y∧3, y(0)=0");

Numerical solution to
 dy/dx=x^2+y^3, y(0)=0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.2 0.4 0.6 0.8 1

Figure 8.4 Numerical solution of an IVP.
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8.4 Second- and higher order linear DEs

8.4.1 Constant coefficients
The constantcoeffsols function in the DEtools package returns a basis of

the space of solutions to a homogeneous linear DE with constant coefficients.

> with(DEtools):
> de:=diff(y(x),x,x)+2*diff(y(x),x)+4*y(x)=0;

d2

dx2
y(x) + 2

d

dx
y(x) + 4 y(x) = 0

> constcoeffsols(de,y(x));

[e−x sin(
√

3x), e−x cos(
√

3x)]

We see that the functions

y1 = e−x sin(
√

3x), y2 = e−x cos(
√

3x)

form a basis for the solution space of the homogeneous DE

d2y

dx2
+ 2

dy

dx
+ 4y = 0.

Hence, the general solution is

y = c1e
−x sin

√
3x + c2e

−x cos
√

3x,

where c1, c2 are any constants.

8.4.2 Variation of parameters
Variation of parameters is a method for computing a particular solution to

a nonhomogeneous linear DE, given a basis of solutions for the corresponding
homogeneous linear DE. The corresponding maple function is varparam from
the DEtools package. Consider the DE

d2y

dx2
+ y = tan x.

Two independent solutions to the corresponding homogeneous equation are

y1 = cos x y2 = sinx.

> with(DEtools):
> varparam([cos(x),sin(x)],tan(x),x);

C 1 cos(x) + C 2 sin(x) − cos(x) ln(sec(x) + tan(x))
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We see maple has found that the general solution of our nonhomogeneous DE
is

y = c1 cos x + c2 sinx − cos x ln(sec x + tan x),

where c1, c2 are any constants. The general syntax of varparam is

varparam(sols, v, ivar)

where sols is a list of independent solutions providing a basis for the corre-
sponding homogeneous equation, v is the function on the right side of the non-
homogeneous equation, and ivar is the independent variable. A general solution
to the nonhomogeneous equation is returned.

8.4.3 Reduction of order

Reduction of order is a method for reducing the order of a given linear ho-
mogeneous DE when a nontrivial solution is known. The reduceOrder function
in the DEtools package does the job. Suppose we know that y1 = ex is a solution
to the DE

y′′′ + y′′ + 3y′ − 5y = 0.

We can use reduction of order to obtain a second-order equation.

> with(DEtools):
> de:=diff(y(x),x,x,x)+diff(y(x),x,x)+3*diff(y(x),x)

-5*y(x)=0;

de :=
∂3

∂x3
y(x) +

∂2

∂x2
y(x) + 3

∂

∂x
y(x) − 5y(x) = 0

> reduceOrder(de,y(x),exp(x));

d2

dx2
y(x) + 4

d

dx
y(x) + 8 y(x)

> dsolve(%,y(x));

y(x) = C1 e−2 x sin(2x) + C2 e−2 x cos(2x)

We need two further independent solutions, y2, y3. Via reduction of order we
see that they must satisfy

y′′ + 4y′ + 8y = 0.

We can solve this equation to find y2 = e−2x cos 2x, y3 = e−2x sin 2x, so that the
general solution of our third-order equation is

y = c1e
x + c2e

−2x cos 2x + c3e
−2x sin 2x,

where c1, c2, c3 are any constants.
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8.5 Series solutions
Series solutions to ordinary differential equations can be found using the

dsolve function with the type=series option. Consider the DE

(1 + x2)
d2y

dx2
+ 3x

dy

dx
+ y = 0.

> de:=(1+x∧2)*diff(y(x),x,x) + 3*x*diff(y(x),x) + y(x)
= 0;

de := (1 + x2)
∂2

∂x2
y(x) + 3x

∂

∂x
y(x) + y(x) = 0

> dsolve(de,y(x),type=series);

y(x) = y(0) + D(y)(0)x − 1
2

y(0)x2 − 2
3
D(y)(0)x3 +

3
8

y(0)x4

+
8
15

D(y)(0)x5 + O
(
x6
)

When no initial conditions are given, the series is computed about the origin. By
default, the first six terms of the series are returned. Let’s compute the solution
satisfying the initial condition

y(0) = 1, y′(0) = 0.

> dsolve({de,y(0)=1,D(y)(0)=0},y(x),type=series);

y(x) = 1 − 1
2
x2 +

3
8
x4 + O

(
x6
)

To compute more terms in the series, we change the value of the Order environ-
ment variable.

> Order:=10;
10

> dsolve({de,y(0)=1,D(y)(0)=0},y(x),type=series);

y(x) = (1 − 1
2
x2 +

3
8
x4 − 5

16
x6 +

35
128

x8 + O
(
x10

)
)

Next we solve the IVP

(x2 − 3x)
d2y

dx2
+ 2x

dy

dx
+ y = 0, y(1) = 4, y′(1) = −2.
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> Order := 6:
> de:=(x∧2-3*x)*diff(y(x),x,x) + 2*x*diff(y(x),x) + y(x)

= 0; (
x2 − 3x

) d2

dx2
y(x) + 2x

d

dx
y(x) + y(x) = 0

> dsol := dsolve({de,y(1)=4,D(y)(1)=-2},y(x),type=series);

dsol := y(x) = 4 − 2 (x − 1) − 1
2

(x − 1)3 − 13
80

(x − 1)5 + O
(
(x − 1)6

)
Because the initial conditions are at x = 1, the series returned is about x = 1.
We can plot this solution by first converting it to a polynomial. See Figure 8.5.

> psol:=convert(rhs(dsol), polynom);

y(x) = 6 − 2x − 1/2 (x − 1)3 − 13
80

(x − 1)5

> plot(psol,x=0..2);

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x

Figure 8.5 Plot of a series solution.

The dsolve function uses several methods when trying to find a series so-
lution to an ODE or a system of ODEs. When initial conditions are given, the
series is calculated at the given point; otherwise, the series is calculated at the
origin, which is assumed to be an ordinary point.

8.5.1 The method of Frobenius
The method of Frobenius is a method for solving a second-order DE of the

form
(t − t0)2y′′(t) + (t − t0)P (t)y′(t) + Q(t)y(t) = 0,
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where P (t), and Q(t) are analytic near t = t0. The point t0 is called a regular
singular point. The regular singular points can be found using the regularsp in
the DEtools package. The form of the solution depends on the roots of the indicial
equation. This equation can be computed using the indicialeq function in the
DEtools package. As an example, we can consider the hypergeometric equation:

t(1 − t)y′′(t) + (c − (1 + a + b)t)y′(t) + aby(t) = 0,

where a, b, c are constants.

> with(DEtools):
> DE:=t*(1-t)*diff(y(t),t,t)+(c - (1+a+b)*t)*diff(y(t),t)

-a*b*y(t)=0;

DE := t (1 − t)
d2

dt2
y(t) + (c − (1 + a + b) t)

d

dt
y(t) − aby(t) = 0

> regularsp(DE,t,y(t));
[0, 1]

> indicialeq(DE,t,0,y(t));

t2 + (−1 + c) t = 0

> solve(%,t);
0, 1 − c

The points t = 0, 1 are regular singular points of the hypergeometric equation.
For the point t = 0 the roots of the indicial equation

r2 + (−1 + c)r = 0,

are
r = 0, 1 − c.

This means that if c is not an integer, there are two independent solutions of
the hypergeometric equation of the form

y1(t) =
∞∑

n=0

antn, y2(t) = t1−c
∞∑

n=0

bntn.

The syntax of the indicialeq function has the form

indicialeq(DE, independent variable, t0, dependent variable)

where the point t = t0 is a regular singular point of DE with specified independent
and dependent variables.
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8.6 The Laplace transform
Recall that the Laplace transform, F (s) = L{f}(s), of a function f(t) is

defined by

F (s) =
∫ ∞

0

e(−s t) f(t) dt.

We need the maple inttrans package:

> with(inttrans);

[addtable, fourier , fouriercos, fouriersin, hankel , hilbert , invfourier ,

invhilbert , invlaplace, invmellin, laplace,mellin, savetable]

To find the Laplace transform of a function f(t) we use the command
laplace(f(t),t,s). As an example we find the Laplace transform of

f(t) = t e3t.

> laplace(t*exp(3*t),t,s);

1
(s − 3)2

To find the inverse Laplace transform, we use the invlaplace function. It has
the following syntax:

invlaplace(F(s), s, t)

As an example we find the inverse Laplace transform of the function

F (s) =
s − 1

s2 + s + 6
.

> invlaplace((s-1)/(s∧2+s+6),s,t);

− 3
23

e−1/2 t
√

23 sin(1/2
√

23t) + e−1/2 t cos(1/2
√

23t)

We found that

L−1

{
s − 1

s2 + s + 6

}
(t)

= − 3
23

e−1/2 t
√

23 sin(1/2
√

23t) + e−1/2 t cos(1/2
√

23t).

© 2002 by Chapman & Hall/CRC



Differential Equations 165

8.6.1 The Heaviside function

In practice, the Laplace transform is useful for solving initial value problems
which involve functions with jump discontinuities. The Heaviside function is the
building block of such functions. The Heaviside function H(t), sometimes called
the unit step function, is defined by

H(t) :=
{

0 if t < 0,
1 if t > 0.

In maple the Heaviside function is denoted by Heaviside(t). Let’s plot the
Heaviside function on the interval [−1, 1]. See Figure 8.6.

> plot(Heaviside(t),t=-1..1,discont=true,thickness=3,
title="The Heaviside Function H(t)");

The Heaviside Function H(t)

0

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1t

Figure 8.6 The Heaviside function.

To help with solving an initial value problem using Laplace transforms, we
enter the following:

> restart:
> with(inttrans):
> dy:=diff(y(t),t);

dy :=
∂

∂t
y(t)

> ddy:=diff(dy,t);

ddy :=
∂2

∂t2
y(t)

> dddy:=diff(ddy,t);

dddy :=
∂3

∂t3
y(t)

> addtable(laplace,y(t),Y(s),t,s);
> laplace(y(t),t,s);

Y (s)
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> laplace(dy,t,s);
sY (s) − y(0)

> laplace(ddy,t,s);

s (sY (s) − y(0)) − D(y)(0)

We have used the addtable function to tell maple that we want to denote the
Laplace transform of y(t) by Y (s). Also observe that maple correctly returned
the Laplace transforms of y(t), y′(t) and y′′(t).

We are now ready to solve an IVP using Laplace transforms. Consider the
following initial value problem:

y′′(t) + 4y(t) = f(t), y(0) = 0, y′(0) = 0,

where

f(t) =

⎧⎪⎨⎪⎩
0 if 0 ≤ t < π,

sin t if π ≤ t < 2π,

0 if t > 2π.

We can easily write f(t) in terms of the Heaviside function:

f(t) = sin t (H(t − π) − H(t − 2π)).

We assign f to the right side of the DE:

> f := sin(t)*(Heaviside(t-Pi)-Heaviside(t-2*Pi));

f := sin(t) (Heaviside(t − π) − Heaviside(t − 2π))

Next we input the initial conditions:

> y(0) := 0;
y(0) := 0

> D(y)(0) := 0;
D(y)(0) := 0

Remember that D(y) means the derivative y′(t). We observe that the left side
of the DE is ddy + 4*y(t):

> ddy + 4*y(t);
∂

∂t
y(t) + 4 y(t)

Now we take the Laplace transform of both sides of the DE:
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> laplace(ddy+4*y(t),t,s) = laplace(f,t,s);

s(sY (s) − y(0)) − D(y)(0) + 4Y (s) = −e(−sπ)

s2 + 1
− e(−2sπ)

s2 + 1

> simplify(%);

s2Y (s) + 4Y (s) = −e−sπ (1 + e−sπ)
s2 + 1

Next we solve this equation for Y (s).

> solve(%,Y(s));

−e−sπ (1 + e−sπ)
s4 + 5 s2 + 4

> S := factor(%);

S := − e−sπ (1 + e−sπ)
(s2 + 4) (s2 + 1)

We see that

Y (s) = − e−sπ (1 + e−sπ)
(s2 + 4) (s2 + 1)

To find the solution y(t), we find the inverse Laplace transform:

> ysol := invlaplace(S,s,t);

ysol :=
1
6

Heaviside(t − π) sin(2 t) +
1
3

sin(t)Heaviside(t − π)+

1
6

Heaviside(t − 2π) sin(2 t) − 1
3

sin(t)Heaviside(t − 2π)

which is our solution y(t).
Of course, we could use dsolve to solve this initial value problem.

> y:=’y’: D(y):=’D(y)’:
> IC := y(0) = 0, D(y)(0) = 0;

IC := y(0) = 0,D(y)(0) = 0

> DE := ddy + 4*y(t) = f:
> dsolve({DE,IC},y(t));

y(t) =
(

1
6

Heaviside(t − π) +
1
6

Heaviside(t − 2π)
)

sin(2 t)

+
(

1
3

Heaviside(t − π) − 1
3

Heaviside(t − 2π)
)

sin(t)
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> ysol2:=rhs(%);

ysol2 :=
(

1
6

Heaviside(t − π) +
1
6

Heaviside(t − 2π)
)

sin(2 t)

+
(

1
3

Heaviside(t − π) − 1
3

Heaviside(t − 2π)
)

sin(t)

> simplify(ysol - ysol2);
0

Happily we found the same solution.

8.6.2 The Dirac delta function

In maple the Dirac delta function δ(t) is denoted by Dirac(t).

> with(inttrans):
> assume(t0>=0):
> laplace(Dirac(t-t0),t,s);

e(−s t0∼)

maple knows the Laplace transform for the delta function:

L{δ(t − t0)} =
∫ ∞

0

e−stδ(t − t0) dt = e−st0 ,

for t0 ≥ 0. The delta function is used in IVPs, which involve an impulsive force.
We consider the IVP:

y′′(t) + 2y′(t) + y(t) = e−t + 2δ(t − 1), y(0) = 0, y′(0) = −1.

> restart:
> with(inttrans):
> dy:=diff(y(t),t):
> ddy:=diff(dy,t):
> addtable(laplace,y(t),Y(s),t,s):
> f := exp(-t) + 2*Dirac(t-1):
> y(0) := 0:
> D(y)(0) := -1:
> LS := ddy + 2*dy + y(t);

LS : +
∂2

∂t2
y(t) + 2

∂

∂t
y(t) + y(t)

We take the Laplace transform of both sides of the DE:
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> laplace(LS,t,s) = laplace(f,t,s);

s2Y (s) + 1 + 2 sY (s) + Y (s) = (1 + s)−1 + 2 e−s

We solve this equation for Y (s).

> solve(%,Y(s));
−s + 2 e−s + 2 e−ss

3 s2 + s3 + 3 s + 1

> S := factor(%);
−s + 2 e−s + 2 e−ss

(1 + s)3

We found that

Y (s) = L{y(t)} =
−s + 2 e−s + 2 e−ss

(1 + s)3
.

To find the solution y(t), we find the inverse Laplace transform:

> invlaplace(S,s,t);

1
2

t2e−t − te−t + 2Heaviside(t − 1)e−t+1t − 2Heaviside(t − 1)e−t+1

We found
y(t) = 2(t − 1)e−t+1H(t − 1) +

1
2

t2e−t − te−t.

8.7 The DEtools package
In this chapter we have already seen many useful functions in the DEtools

package. In this section we give a brief summary of the remaining functions.

8.7.1 DE plotting functions

DEplot

This plots the solution to a DE or the solutions to a system of DEs. For a first
order DE it also plots the corresponding direction field. See Section 8.2.3.

DEplot3d

Plots the solution curve to a system of DEs. If the system involves two functions
y(t) and z(t), the curve parametrized by (x, y, z) = (t, y(t), z(t)) is plotted in
three dimensions.

dfieldplot

Plots the direction field of solutions y(x) to a two-element system involving x(t)
and y(t).
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phaseportrait

Unfortunately this does not produce a true phase portrait. It seems to be just
an alias for DEplot.

8.7.2 Dynamical systems

generate ic

Generates a set of lists of initial conditions satisfying a given Hamiltonian con-
straint.

hamilton eqs

Generates a sequence of Hamilton equations for a specified Hamiltonian.

poincare

Plots the projection of a Poincaré section of a specified Hamiltonian.

zoom

The zoom function allows for changing the ranges of the display of a given 2D/3D
plot without having to recalculate it, thus saving time and memory resources.

8.7.3 DE manipulation

DEnormal

Returns a “normalized” form of a linear differential equation. Here normalized
means an equivalent DE where coefficients are polynomials with no common
factor.

autonomous

Determines whether a given DE or system of DEs is strictly autonomous.

convertAlg

Returns a coefficient list form for a DE.

convertsys

Converts a system of DEs to a first-order system.

indicialeq

Computes the indicial equation of a homogeneous linear DE. See Section 8.5.1.

reduceOrder

Implements the method of reduction of order. See Section 8.4.3.

regularsp

Computes the regular singular points of a specified linear second-order DE. See
Section 8.5.1.
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translate

This function takes a linear DE in y(x) and returns a linear DE in y(x − a),
where a is a constant. The inverse of translate is untranslate.

Other functions include

convert ODEs Dchangevar declare DEnormal
dpolyform hyperode varparam X

8.7.4 Lie symmetry methods
The DEtools package contains a subpackage of commands and routines for

solving ODEs using integrating factors and Lie group symmetry methods, based
on the work of Cheb-Terrab et al., 1 and 2. The functions available are:

Xchange Xcommutator Xgauge buildsol buildsym
canoni convert ODEs equinv eta k firint
firtest gensys infgen intfactor invariants
line int muchange mutest normalG2 odeadvisor
odepde redode reduce order remove RootOf solve group
symgen symtest transinv

See ?DEtools,Lie for more information.

8.7.5 Differential operators
maple has facilities for computing with linear differential operators. Here a

differential operator takes the form

L = R0(x) + R1(x)D + R2(x)D2 + · · · + Rn(x)Dn,

where the Ri(x) are rational functions in x and D = d
dx . There are several

functions in the DEtools package for manipulating differential operators. See
diffop for more information.

DFactor

Factors a specified linear differential operator.

mult

Computes a product of differential operators.

diffop2de

Applies a given differential operator to a function. When applied to an unknown
function, the result is one side of a linear differential equation.

de2diffop

Converts a homogeneous linear ODE into a differential operator.
Other related functions include:
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DFactorLCLM GCRD LCLM
adjoint eigenring endomorphism charpoly
exterior power formal sol gen exp
integrate sols leftdivision rightdivision
symmetric power symmetric product

8.7.6 Closed form solutions

The DEtools package contains a collection of functions for finding solutions
to DEs using special methods.

DFactorsols

Returns a basis of solutions of a linear homogeneous ODE by using DFactor to
factor the corresponding linear differential operator.

RiemannPsols

Returns two independent solutions of a second-order linear homogeneous DE
that has three regular singular points.

Other functions include:

abelsol bernoullisol chinisol clairautsol
constcoeffsols eulersols exactsol expsols
genhomosol hypergeomsols kovacicsols liesol
linearsol matrixDE MeijerGsols parametricsol
polysols ratsols riccatisol separablesol

8.7.7 Simplifying DEs and rifsimp
There is a collection of functions for simplifying systems of DEs. See

rifsimp,overview for more information. Functions include:

caseplot checkrank initialdata maxdimsystems
rifread rifsimp rtaylor
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maple can do symbolic and floating point matrix and linear algebra compu-
tations. There are two packages: the linalg package and the new LinearAlgebra
package. The new LinearAlgebra package is more user-friendly for matrix alge-
bra computations. It is also more efficient for numeric computations, especially
with large matrices. The linalg package is recommended for more abstract com-
putations. We will concentrate mainly on the LinearAlgebra package. Try

> ?LinearAlgebra

for an introduction to the LinearAlgebra package and a list of functions.

9.1 Vectors, Arrays, and Matrices
Matrix, Array, and Vector are the main data types used in the LinearAlge-

bra package. Note that the “M”, “A” and “V” are capitalized. The lower-case
matrix, array, and vector are used in the linalg package. Matrix and Vector
are examples of what maple calls an rtable. See ?rtable for more information.

> Matrix(3); ⎡⎢⎣
0 0 0

0 0 0

0 0 0

⎤⎥⎦
> Matrix(3,4); ⎡⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎦
> Matrix(2,3,[[a,b,c],[d,e,f]]);[

a b c

d e f

]

> Matrix(2,3,[[a,b],[d,e,f]]);[
a b 0

d e f

]

> Matrix(2,3,[[a,b],[c,d,e,f]]);

Error, (in Matrix) initializer defines more columns
(4) than column dimension parameter specifies (3)
> Matrix(2,3,[a,b,c,d,e,f]);

173
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Error, (in Matrix) initializer defines more columns
(6) than column dimension parameter specifies (3)

The call Matrix(m,n) returns an m×n matrix of zeros. Observe matrix entries
are assigned by a list of rows.

> W:=Vector(4);

W :=

⎡⎢⎢⎢⎢⎣
0

0

0

0

⎤⎥⎥⎥⎥⎦
> V:=Vector([x,y,z]);

V :=

⎡⎢⎣
x

y

z

⎤⎥⎦
The call Vector(m) returns an m×1 column vector of zeros. Observe that vector
entries can be assigned using a list.

A fun way to create matrices is to use a function f(x, y) of two variables.
The function Matrix(m,n,f) produces the m× n matrix whose (i, j)th entry is
f(i, j).

> f := (i,j) -> x∧(i*j);

F := (i, j) �→ xij

> A := Matrix(2,2,f);

A :=

[
x x2

x2 x4

]

Now try

> A := Matrix(4,4,f);
> factor(LinearAlgebra[Determinant](A));

The map function also works on matrices. Let’s form a 5 × 5 matrix of the
integers from 1 to 25.

> M:=Matrix(5,(i,j)->5*i+j-5);

M :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Now let’s use map and ithprime to form a table of the first 25 primes:

> map(ithprime,M); ⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 3 5 7 11

13 17 19 23 29

31 37 41 43 47

53 59 61 67 71

73 79 83 89 97

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Of course, we could have done this without using map. Try

> Matrix(5,(i,j)->ithprime(5*i+j-5));

Try making a table of the first 100 primes:

> Matrix(10,(i,j)->ithprime(10*i+j-10));

9.1.1 Matrix and Vector entry assignment
It is easy to access entries in a matrix and reassign them.

> A:=Matrix(2,3,[[1,2,3],[5,10,16]]);[
1 2 3

5 10 16

]
> A[2,3];

16

The entry in the second row and third column is 16. Let’s change it to 15.

> A[2,3]:=15;
15

> A; [
1 2 3

5 10 15

]

In general, A[i,j] refers to the ijth entry of the matrix A (i.e., the entry in the
ith row and jth column). It is also possible to access a block of entries.

> A := Matrix(4,(i,j)->(i+j));

A :=

⎡⎢⎢⎢⎢⎣
2 3 4 5

3 4 5 6

4 5 6 7

5 6 7 8

⎤⎥⎥⎥⎥⎦
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> A[2..3,2..4]; [
4 5 6

5 6 7

]
> B := Matrix(2,3,[[0,1,2],[3,4,5]]);

B :=

[
0 1 2

3 4 5

]

> A[2..3,2..4]:=B;

A2..3,2..4 :=

[
0 1 2

3 4 5

]

> A; ⎡⎢⎢⎢⎢⎣
2 3 4 5

3 0 1 2

4 3 4 5

5 6 7 8

⎤⎥⎥⎥⎥⎦
In general, A[a..b,c..d] refers to the submatrix of A from rows a to b, and
columns c to d. It is also possible to rearrange rows or columns.

> B:=Matrix(3,(i,j)->b[i,j]);⎡⎢⎣
b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

⎤⎥⎦
> B[[3,2,2,1],1..3]; ⎡⎢⎢⎢⎢⎣

b3,1 b3,2 b3,3

b2,1 b2,2 b2,3

b2,1 b2,2 b2,3

b1,1 b1,2 b1,3

⎤⎥⎥⎥⎥⎦

Observe how we created a generic matrix B. The call B[[3,2,2,1],1..3]
created a new matrix whose rows are rows 3, 2, 2, and 1 of matrix B. Observe
how the second row was repeated. In general, we use the syntax B[L1,L2],
where L1, L2 are either lists or of the form a..b. Try

> A := Matrix(3,4,[[1,2,3,4],[2,4,6,8],[3,6,9,12]]);
> A[[3,2],[4,3,2]];
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> V := Vector([a,b,c,d]);
> W := V[[3,2]];

9.1.2 The Matrix and Vector palettes
The Matrix palette contains buttons for entering matrices up to a 4 × 4.

To show the Matrix palette: in the menu bar click on View, select Palettes ,

slide to Matrix Palette and release. The Matrix palette should appear in a
separate window. See Figure 9.1 below.

Figure 9.1 The Matrix palette.

Let’s enter a 2 × 2 matrix. Click a place in the worksheet where you want to
enter the matrix:

> |

Now click on . A matrix template should appear in the worksheet:

> Matrix([[ , %?], [%?, %?]]);

Type 23:

> Matrix([[23, %?], [%?, %?]]);

To get to the next entry location, press Tab .

> Matrix([[23, ], [%?, %?]]);

Type int(1/x,x=1..2) and press Tab :

> Matrix([[23, int(1/x,x=1..2), [ , %?]]);

Type 25 and press Tab :

> Matrix([[23, int(1/x,x=1..2), [25, ]]);

Finally, type 27 and press Enter :[
23 ln(2)

25 27

]
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The Vector palette works in a similar way. In the menu bar, click on View,
select Palettes , slide to Vector Palette , and release. The Vector palette
should appear in a separate window. See Figure 9.2 below.

Figure 9.2 The Vector palette.

Let’s enter a 3 × 1 row vector. Click a place in the worksheet where you want
to enter the vector:

> |

Now click on . A vector template should appear in the worksheet:

> < | %? | %?>;

Type 11:

> <11 | %? | %?>;

Press Tab and type 12:

> <11 | 12 | %?>;

Press Tab , type 13 and press Enter :

> <11 | 12 | 13>;
[11, 12, 13]

9.1.3 Matrix operations
maple can do the usual matrix operations of addition, multiplication, scalar

multiplication, inverse, transpose, and trace.

Matrix Mathematical maple
Operation Notation Notation

Addition A + B A + B
Subtraction A − B A - B
Scalar cA c*A
multiplication

Matrix AB A . B or
multiplication Multiply(A,B)

Matrix power An A∧n
Inverse A−1 A∧(-1) or 1/A

or MatrixInverse(A)
Transpose AT Transpose(A)
Trace tr A Trace(A)
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We illustrate matrix addition, subtraction and scalar multiplication.

> A := Matrix(2,[[1,2],[3,4]]);[
1 2

3 4

]

> B := Matrix(2,[[-2,3],[-5,1]]);[
−2 3

−5 1

]

> A + B; [
−1 5

−2 5

]
> A - B; [

3 −1

8 3

]
> 5*A; [

5 10

15 20

]

We continue with matrix multiplication, matrix power, and finding an inverse.

> A := Matrix(2,[[1,2],[3,4]]):
> B := Matrix(2,[[-2,3],[-5,1]]):
> A . B; [

−12 5

−26 13

]
> AI := 1/A; [

−2 1
3
2 − 1

2

]
> A . AI; [

1 0

0 1

]
> A∧3; [

37 54

81 118

]

The functions Multiply, MatrixInverse, Transpose, and Trace are part of the
LinearAlgebra package. Try
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> with(LinearAlgebra);
to see a list of functions in the LinearAlgebra package.

> with(LinearAlgebra):
> A := Matrix(2,[[1,2],[3,4]]):
> B := Matrix(2,[[-2,3],[-5,1]]):
> Multiply(A , B); [

−12 5

−26 13

]
> Multiply(Multiply(A,A),A);[

37 54

81 118

]

> AI := MatrixInverse(A); [
−2 1
3
2 − 1

2

]

> Transpose(A); [
1 3

2 4

]
> Trace(A);

5

Now try the following:

> with(LinearAlgebra):
> A:=Matrix(2,3,[[1,2,3],[4,5,6]]);
> B:=Matrix(3,2,[[2,4],[-7,3],[5,1]]);
> C:=Matrix(2,2,[[1,-2],[-3,4]]);
> A . B;
> Multiply(A,B);
> A.B-2*C;

Now check your results with pencil and paper. You should have found that

AB − 2C =

[
1 17

9 29

]

9.1.4 Matrix and vector construction shortcuts
Angled brackets < > are used as a shortcut to construct matrices and vectors.

We can construct a column vector:
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> V := <1,2,3>;

V :=

⎡⎢⎣
1

2

3

⎤⎥⎦
The construction <a, b, c, . . . > gives a column vector when a, b, c, . . . are
scalars. We can construct a row vector:

> R := <1|2|3>;
R := [ 1 2 3 ]

We can construct a matrix from column vectors:

> U := <a,b,c>; ⎡⎢⎣
a

b

c

⎤⎥⎦
> V := <i,j,k>; ⎡⎢⎣

i

j

k

⎤⎥⎦
> W := <x,y,z>; ⎡⎢⎣

x

y

z

⎤⎥⎦
> M := <U | V | W>; ⎡⎢⎣

a i x

b j y

c k z

⎤⎥⎦
Similarly, we can build a matrix from row vectors. Try the following:

> U := <a|b|c>;
> V := <i|j|k>;
> W := <x|y|z>;
> M := <U , V , W>;
Angled brackets can also be used to stack matrices.
> A:=Matrix(3,(i,j)->a∧i*b∧j):
> B:=Matrix(3,(i,j)->b∧i*c∧j):
> C:=Matrix(3,(i,j)->c∧i*a∧j):
> A,B,C;⎡⎢⎣

ab ab2 ab3

a2b a2b2 a2b3

a3b a3b2 a3b3

⎤⎥⎦ ,

⎡⎢⎣
bc bc2 bc3

b2c b2c2 b2c3

b3c b3c2 b3c3

⎤⎥⎦ ,

⎡⎢⎣
ca ca2 ca3

c2a c2a2 c2a3

c3a c3a2 c3a3

⎤⎥⎦
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Now we form a new matrix by stacking the matrices A, B, C, to the right of
each other:

> <A|B|C>;

⎡⎢⎣
ab ab2 ab3 bc bc2 bc3 ca ca2 ca3

a2b a2b2 a2b3 b2c b2c2 b2c3 c2a c2a2 c2a3

a3b a3b2 a3b3 b3c b3c2 b3c3 c3a c3a2 c3a3

⎤⎥⎦

Similarly we can stack A above B:

> <A,B>; ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ab ab2 ab3

a2b a2b2 a2b3

a3b a3b2 a3b3

bc bc2 bc3

b2c b2c2 b2c3

b3c b3c2 b3c3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Now try stacking A, B, and C above each other:

> <A,B,C>;

9.1.5 Viewing large Matrices and Vectors

Only relatively small matrices and vectors will be displayed on the screen.
For instance, a 50 × 20 matrix of the first 1000 primes is much too big to be
displayed on the screen.

> M:=Matrix(50,20,(i,j)->ithprime(20*i+j-20));

M :=

⎡⎢⎣
50 × 20 Matrix
Data Type: anything
Storage: rectangular
Order: Fortran order

⎤⎥⎦
Observe that this 50× 20 matrix was not displayed on the screen. In its place is
a matrix giving the dimensions and some information on Data Type, Storage,
and Order. To view entries in this matrix, we can use the context menu, which
we will discuss in more detail in the next section. First click the right button of
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the mouse on the matrix. A menu of options should appear:

Copy
Browse . . .
Export As �
Dimensions
Norm �
Rank
Singular Values
Solvers �
Conversions �
In-place Options �

Click on Browse . . . . The Structured Data Browser window should ap-
pear. See Figure 9.3 below.

Figure 9.3 The Structured Data Browser.

You will see a view panel consisting of horizontal bars of different colors. Color
corresponds to relative magnitude of corresponding entries in the matrix. Colors
range from blue (small numbers) to red (large numbers). In the present matrix
the bottom right section is the reddest — these corresponding to large prime
numbers. You will also see an edit field, a box showing Dimensions, and four
buttons Zoom Out , Full , Change . . . and Close . To the left of these
buttons you will see three lines of information:
H: 1..20
V: 1..50
(20,40)

The pair of numbers (20,40) correspond with the current position of the mouse
in the view panel. Move the mouse around and you will see its value change.
You can view a particular section of the matrix by clicking the left button of the
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mouse in the view panel, holding it down to form a rectangle, and releasing. The
view panel should now show an array of numbers corresponding to the subblock
of the matrix selected. For instance, if you selected the block corresponding to
H: 10..11
V: 26..29
(10,29)

you will see a 4 × 2 array of numbers:⎡⎢⎢⎢⎢⎣
3643 3659

3821 3823

3989 4001

4139 4153

⎤⎥⎥⎥⎥⎦
These correspond to the submatrix M[26..29,10..11]. Any entry clicked will
show up in the edit field. You can change an entry by clicking in the edit field
and changing its value. For instance, click on the top left entry, change the
number in the edit field to 0 and then press Enter . The entry M[26,10] has
been changed to zero. To check this, press Close

> M := rtable[17353556];

and try

> M[26..29,10..11]; ⎡⎢⎢⎢⎢⎣
0 3659

3821 3823

3989 4001

4139 4153

⎤⎥⎥⎥⎥⎦
See ?view,Array for more information on using The Structured Data
Browser.

9.2 Matrix context menu
Enter the following matrix:

> M:=Matrix(4,(i,j)->2∧(i*j));

M :=

⎡⎢⎢⎢⎢⎣
2 4 8 16

4 16 64 256

8 64 512 4096

16 256 4096 65536

⎤⎥⎥⎥⎥⎦
Click the right button of the mouse on the matrix. A menu of options should
appear:
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Copy
Browse . . .
Export As �
Transpose
Dimensions
Norm �
Rank
Select Element �
Determinant
Inverse
Trace
Characteristic Polynomial
Eigenvalues
Eigenvectors
Singular Values
Solvers �
Conversions �
In-place Options �

Most of the functions in the menu are self-explanatory. Let’s try clicking on
Dimensions :

> R0 := [LinearAlgebra:-Dimensions( rtable[5673280])];

R0 := [4, 4]

Observe that the result appeared as a maple command in the worksheet together
with the output [4, 4], which was assigned the name R0. Here Dimensions means
the number of rows and columns. Now we click on Determinant :

> R1 := [LinearAlgebra:-Determinant( rtable[5673280])];

R1 := 66060288

The determinant of our matrix is 66060288. The new maple command and
output has appeared just below our matrix and above the previous work. Let’s
factor the determinant:

> ifactor(R1);
(2)20 (3)2 (7)

We saw Browse in the previous section.

9.2.1 The Export As submenu

Export As has a submenu:
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Matlab . . .
Matrix Market . . .
Tab Delimited . . .

In Section 7.10.5 we saw the function MatrixExport, the command line version.
We can export a matrix in Matlab, Matrix Market, or Tab Delimited format.
Let’s save our matrix in Tab Delimited format. Click on Tab Delimited . . . .
A Save As window should appear. Type in a file name such as matrix.txt and
press OK . You should now have a file called matrix.txt, which looks something
like:

2 4 8 16
4 16 64 256
8 64 512 4096
16 256 4096 65536

Entries on each row are separated by the tab character.

9.2.2 The Norm submenu

Norm has a submenu:

1
Euclidean
infinity
Frobenius

See Section 9.11.2 or ?LinearAlgebra[Norm] for more information on these
matrix norms.

9.2.3 The Select Element submenu

When you select Select Element a menu will appear listing the indices of
each entry in the matrix. In our example, the list will be "1,1", "1,2", . . . ,
"4,4". Try selecting "2,3" .

9.2.4 The Solvers submenu

Solvers has a submenu:

Frobenius Form �
LU Decomposition �
Cholesky
QR Decomposition �
Jordan Form �

This menu provides various standard matrix decompositions.
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Frobenius Form has a submenu:

Frobenius Form
Transformation Matrix

See Section 9.15 or ?LinearAlgebra[FrobeniusForm] for more information on
the Frobenius (rational canonical) form.

LU Decomposition has a submenu:

Gaussian Elimination
RREF
Fraction Free

See Section 9.4 or ?LinearAlgebra[LUDecomposition] for more information.

QR Decomposition has a submenu:

QR Decomposition
Unitary Factor (Q)
Upper Triangular Factor (R)
Rank

See Section 9.13 or ?LinearAlgebra[QRDecomposition] for more information.

Jordan Form has a submenu:

Jordan Form
Transformation Matrix

See Section 9.10 or ?LinearAlgebra[JordanForm] for more information.

9.2.5 The Conversions submenu

Conversions has a submenu:

Approximate �
Maple
LaTeX
C Language
FORTRAN
Data Type �

Approximate has a submenu:
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5
10
20
50
100

This provides floating point approximations to 5, 10, 20, 50, or 100 digits. For
example, enter the following matrix:

> M:=<<Pi,exp(1)>|<log(2),int(1/(sqrt(1+x∧10)),x=0..1)>>;

M :=

[
π ln(2)

e1
∫ 1

0
1√

1+x10 dx

]
Right-click on the matrix, and then select Conversions , Approximate , 10 :

> R0 := evalf(M,10);

R0 :=

[
3.141592654 0.6931471806

2.718281828 0.9662361773

]

Data Type has a submenu:

Maple Float �
Hardware Float
Complex Maple Float �
Complex Hardware Float

This provides options for numeric computation.
Both Maple Float and Complex Maple Float have the submenu:

5
10
20
50
100

9.2.6 The In-place Options submenu
In-place Options has a submenu:

Set to Readonly
C Order

Selecting Set to Readonly means entries in the matrix cannot be changed.
The default order for storing matrices is Fortran Order (by columns). Selecting
C Order changes the storage mode to C Order (by rows). Selecting the button

again will bring the matrix back to Fortran Order.
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9.3 Elementary row and column operations
maple can perform all the elementary row and column operations.

Elementary Row Operational maple
Operation Notation Notation

Swap two rows Ri ←→ Rj RowOperation(A,[i,j]
Multiply a row Ri −→ cRi RowOperation(A,i,c)
by constant

Add a multiple Rj −→ Rj + cRi RowOperation(A,[j,i],c)
of one row to
another

Let

A =

⎡⎢⎣
1 1 3 −3

5 5 13 −7

3 1 7 −11

⎤⎥⎦
Let’s perform the row operation R2 −→ R2 − 5R1 (i.e., replace the second row
by the sum of the second row and −5 times the first row).

> with(LinearAlgebra):
> A:=Matrix([[1, 1, 3, -3],
> [5, 5, 13, -7],
> [3, 1, 7, -11]]);

A :=

⎡⎢⎣
1 1 3 −3

5 5 13 −7

3 1 7 −11

⎤⎥⎦
> RowOperation(A,[2,1],-5);

⎡⎢⎣
1 1 3 −3

0 0 −2 8

3 1 7 −11

⎤⎥⎦
> A; ⎡⎢⎣

1 1 3 −3

5 5 13 −7

3 1 7 −11

⎤⎥⎦
Notice that a new matrix was created. The original matrix A did not change.
To replace the original matrix we can use the inplace option.
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> RowOperation(A,[2,1],-5,inplace=true);⎡⎢⎣
1 1 3 −3

0 0 −2 8

3 1 7 −11

⎤⎥⎦
> A; ⎡⎢⎣

1 1 3 −3

0 0 −2 8

3 1 7 −11

⎤⎥⎦
The inplace option should be used with caution. If the operation fails, the
original matrix may become corrupted. Let’s restart a maple session and reduce
the matrix A to row echelon form using elementary row operations.

> restart:
> with(LinearAlgebra):
> A:=Matrix([[1, 1, 3, -3], [5, 5, 13, -7],

[3, 1, 7, -11]]);

A :=

⎡⎢⎣
1 1 3 −3

5 5 13 −7

3 1 7 −11

⎤⎥⎦
> A1 := RowOperation(A,[2,1],-5);

A1 :=

⎡⎢⎣
1 1 3 −3

0 0 −2 8

3 1 7 −11

⎤⎥⎦
> A2 := RowOperation(A1,[3,1],-3);

A2 :=

⎡⎢⎣
1 1 3 −3

0 0 −2 8

0 −2 −2 −2

⎤⎥⎦
> A3 := RowOperation(A2,[2,3]);

A3 :=

⎡⎢⎣
1 1 3 −3

0 −2 −2 −2

0 0 −2 8

⎤⎥⎦
Now try the following elementary row operations to continue the reduction to
reduced row echelon form.
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> A4:=RowOperation(A3,2,-1/2);
> A5:=RowOperation(A4,3,-1/2);
> A6:=RowOperation(A5,[2,3],-1);
> A7:=RowOperation(A6,[1,3],-3);
> A8:=RowOperation(A7,[1,2],-1);
This last matrix should be

A8 =

⎡⎢⎣
1 0 0 4

0 1 0 5

0 0 1 −4

⎤⎥⎦ ,

which is in reduced row echelon form.
In maple the elementary column operations are done in a similar fashion.

The analogous function is ColumnOperation.

9.4 Gaussian elimination
maple can do Gaussian and Gauss-Jordan elimination. We need the

LUDecomposition function in the LinearAlgebra package. In the previous sec-
tion we reduced a matrix to echelon form using elementary row operations. In
this section we check our results. To reduce A to row echelon form we use the
command

LUDecomposition(A,output=’U’)

> with(LinearAlgebra):
> A:=Matrix([[1, 1, 3, -3], [5, 5, 13, -7],

[3, 1, 7, -11]]):
> LUDecomposition(A,output=’U’);⎡⎢⎣

1 1 3 −3

0 −2 −2 −2

0 0 −2 8

⎤⎥⎦
This confirms our earlier computation using row operations. To reduce A to
reduced row echelon form, we use the command

LUDecomposition(A,output=’R’)

> LUDecomposition(A,output=’R’);⎡⎢⎣
1 0 0 4

0 1 0 5

0 0 1 −4

⎤⎥⎦
This should agree with the matrix A8 obtained in the previous section. We will
discuss the LUDecomposition function in more detail later in Section 9.14.
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9.5 Inverses, determinants, minors, and the adjoint
To find the inverse of a matrix and its determinant, we use the functions

MatrixInverse and Determinant in the LinearAlgebra package.

> with(LinearAlgebra):
> A:= Matrix([[1,1,3],[5,5,13],[3,1,7]]);

A :=

⎡⎢⎣
1 1 3

5 5 13

3 1 7

⎤⎥⎦
> Determinant(A);

−4

> B := MatrixInverse(A);

B :=

⎡⎢⎣
− 11

2 1 1
2

−1 1
2 − 1

2

5
2 − 1

2 0

⎤⎥⎦
We first found that det(A) = −4 �= 0, so that A is invertible, then found that

A−1 =

⎡⎢⎣
−11
2 1 1

2

−1 1
2

−1
2

5
2

−1
2 0

⎤⎥⎦ .

Now check your answer.

> B.A;

Did you get the identity matrix?
To compute the adjoint of a matrix we use the Adjoint function.

> with(LinearAlgebra):
> A := Matrix([[1,1,3],[5,5,13],[3,1,7]]):
> C := Adjoint(A);

C :=

⎡⎢⎣
22 −4 −2

4 −2 2

−10 2 0

⎤⎥⎦
We found that

adjA =

⎡⎢⎣
22 −4 −2

4 −2 2

−10 2 0

⎤⎥⎦ .
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Now check your answer:

> C.A;

Did you get a diagonal matrix?
The function Minor(A,i,j) returns the (i, j)th minor of the matrix A (i.e.,

the matrix obtained by deleting the ith row and jth column). Let’s compute
the (2, 3)th minor of our matrix A.

> with(LinearAlgebra):
> A := Matrix([[1,1,3],[5,5,13],[3,1,7]]):
> Minor(A,2,3); [

1 1

3 1

]

9.6 Special matrices and vectors

9.6.1 Band matrix

A band matrix is a matrix that is constant along each diagonal in a band.
The syntax of the BandMatrix function has the form

BandMatrix(L,n,r,c)

L is a list of scalars, which are constants to appear along diagonals. n is the
number of subdiagonals, r is the number of rows, and c is the number of columns.

> with(LinearAlgebra):
> BandMatrix([a,b,c,d],1,5,7);⎡⎢⎢⎢⎢⎢⎢⎢⎣

b c d 0 0 0 0

a b c d 0 0 0

0 a b c d 0 0

0 0 a b c d 0

0 0 0 a b c d

⎤⎥⎥⎥⎥⎥⎥⎥⎦
BandMatrix([a,b,c,d],1,5,7) produced a 5× 7 matrix with one diagonal be-
low the main diagonal. Try

> BandMatrix([a,b,c,d],2,5,7);

You should obtain a band matrix with two subdiagonals.

9.6.2 Constant matrices and vectors

The syntax of the ConstantMatrix function has the form

ConstantMatrix(s, r, c)
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s is the constant, r is the number of rows, and c is the number of columns.

> with(LinearAlgebra):
> ConstantMatrix(-3,2,4);[

−3 −3 −3 −3

−3 −3 −3 −3

]

The syntax of the ConstantVector function has the form

ConstantVector(s, d)
ConstantVector[row](s, d)

s is the constant, and d is the number of entries in the vector. The argument
[row] is optional and produces a row vector.

> with(LinearAlgebra):
> ConstantVector(11,2); [

11

11

]
> ConstantVector[row](11,3);

[ 11, 11, 11 ]

9.6.3 Diagonal matrices
The syntax of the DiagonalMatrix function has the form

DiagonalMatrix(V , r, c)
DiagonalMatrix(V , n)

V is a list of numbers or a list of matrices to be inserted along the diagonal. r
is the number of rows and c is the number of columns. n is the number of rows
for a square matrix.

> with(LinearAlgebra):
> DiagonalMatrix([a,b,c],3);⎡⎢⎣

a 0 0

0 b 0

0 0 c

⎤⎥⎦
Try these:

> DiagonalMatrix([a,b,c],4);
> DiagonalMatrix([<<a,c>|<b,d>>,e,
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<<f,i,l>|<g,j,m>|<h,k,n>>]);

9.6.4 Givens rotation matrices
A Givens rotation matrix is a rotation in a plane determined by two coordi-

nates. The syntax of the GivensRotationMatrix function has the form

GivensRotationMatrix(V , i, j)

V is a list of n numbers; i, j are positive integers corresponding to the coordinates
of the plane being rotated. An n × n matrix is returned. For more details see
GivensRotationMatrix. Try

> with(LinearAlgebra):
> V := <3,4,5>;
> GivensRotationMatrix(V, 1, 2);

9.6.5 Hankel matrices
A Hankel matrix is a symmetric A = (ai,j), where ai,j is a function of i + j;

i.e., constant on the diagonals i + j = c. The syntax of the HankelMatrix
function has the form

HankelMatrix(L)
HankelMatrix(L, n)

L is a list of 2n − 1 scalars that will appear on the the diagonals.

> with(LinearAlgebra):
> HankelMatrix([a,b,c,d,e]);⎡⎢⎣

a b c

b c d

c d e

⎤⎥⎦
Try

> HankelMatrix([a,b,c,d,e,f,g,h,i,j,k]);
> HankelMatrix([a,b,c,d,e,f,g,h,i,j,k],4);

9.6.6 Hilbert matrices
A generalized Hilbert matrix has the form (1/(i + j − x)). The syntax of the

HilbertMatrix function has the form

HankelMatrix(n)
HankelMatrix(r, c)
HankelMatrix(r, c, x)
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r is the number of rows and c is the number of columns. n is the number of rows
for a square matrix. If x is not specified, it is assumed to be 1.

> with(LinearAlgebra):
> HilbertMatrix(3); ⎡⎢⎣

1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

⎤⎥⎦
Try

> HilbertMatrix(3,x);
> HilbertMatrix(4,5,x);

9.6.7 Householder matrices
A Householder matrix corresponds to reflection in a fixed hyperplane. If V

is a vector, then HouseholderMatrix(V ) returns the matrix of the transforma-
tion, which is the reflection in the hyperplane orthogonal to the vector V . See
?HouseholderMatrix for more information.

> with(LinearAlgebra):
> V:=Vector([1,2,2]); ⎡⎢⎣

1

2

2

⎤⎥⎦
> M := HouseholderMatrix(V);⎡⎢⎣

7
9 − 4

9 − 4
9

− 4
9

1
9 − 8

9

− 4
9 − 8

9
1
9

⎤⎥⎦
Now compute

> M.V;

Is this what you expected?

9.6.8 Identity matrix
The function IdentityMatrix(n) returns the n × n identity matrix.

> with(LinearAlgebra):
> IdentityMatrix(3); ⎡⎢⎣

1 0 0

0 1 0

0 0 1

⎤⎥⎦
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Try

> IdentityMatrix(4);
> IdentityMatrix(4,6);

9.6.9 Jordan block matrices
A Jordan block matrix is a square matrix of the form⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ 1 0 · · · 0 0
0 λ 1 · · · 0 0

0 0
. . . . . . 0 0

...
... λ 1 0

0 0 · · · 0 λ 1
0 0 · · · 0 0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The command JordanBlockMatrix([[λ,n]]) returns an n × n Jordan block
matrix with eigenvalue λ. A Jordan matrix is a matrix with Jordan blocks along
the diagonal and zeros elsewhere. The corresponding maple command takes
the form

JordanBlockMatrix([[λ1,n1],[λ2,n2], . . . ,[λr,nr]])

> with(LinearAlgebra):
> JordanBlockMatrix([[-1,2],[5,3]]);⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0

0 −1 0 0 0

0 0 5 1 0

0 0 0 5 1

0 0 0 0 5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The matrix above has two Jordan blocks: one 2×2 block with eigenvalue λ = −1,
and one 3 × 3 block with eigenvalue λ = 5. Try

> JordanBlockMatrix([[2,2],[3,1],[4,3],[1,2]]);
> JordanBlockMatrix([[2,2],[3,1],[4,3],[1,2]],10);

9.6.10 Random matrices and vectors
maple can produce random matrices and vectors with both integral and

numeric entries. The relevant functions are RandomMatrix and RandomVector.
The syntax of RandomMatrix has the form

RandomMatrix(n)
RandomMatrix(r,c)
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RandomMatrix(r,c,generator=a..b)
RandomMatrix(r,c,density=p,generator=a..b)
RandomMatrix(r,c,density=p,generator=a..b,outopts)

Here n is the size of square matrix, r is the number of rows, c is the number of
columns, a..b is a range of integers or floating-point numbers, and 0 ≤ p ≤ 1.

RandomMatrix(r,c) will return a random r × c matrix with integer entries
from the set {−99,−98, . . . , 98, 99}.
> with(LinearAlgebra):
> RandomMatrix(2,3); [

−50 62 −71

30 −79 28

]

To specify the range for each entry we use the option generator=a..b. This
range can take integral for floating-point values. Try

> RandomMatrix(2,3,generator=0..9);
> RandomMatrix(6,generator=-10.0..20.0);

When the option density=p is used, the probability that an entry is assigned is
p. To generate a 20 × 3 matrix with lots of zeros try

> RandomMatrix(20,3, density=0.1, generator=0..1.0);

In this matrix there was a probability of 0.9 that an entry remained a zero. We
can use outputoptions to assign the shape of the resulting matrix. To generate
a random upper triangular matrix, try

> RandomMatrix(4,generator=1..9,
outputoptions=[shape=triangular[upper]]);

We use RandomMatrix to construct a procedure RandUniMat, which returns a
random unimodular matrix (i.e., a matrix with integral entries and determinant
±1). First we need a function rand1, which returns a random ±1 value.

> rand1 := 2*rand(0..1)-1:

The following procedure RandUniUpMat returns a random unimodular upper
triangular matrix.

> RandUniUpMat := proc(n::posint,a::integer,b::integer)
> local M1,i:
> M1:=LinearAlgebra[RandomMatrix](n,generator=a..b,

outputoptions=[shape=triangular[upper]]);
> for i from 1 to n do
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> M1[i,i]:=rand1():
> end do:
> return M1;
> end proc;
> RandUniUpMat(3,-5,5); ⎡⎢⎣

1 −3 −2

0 −1 4

0 0 1

⎤⎥⎦
Now we use RandUniUpMat to construct our procedure RandUniMat.

> RandUniMat := proc(n::posint,a::integer,b::integer)
> local M1, M2:
> M1 := RandUniUpMat(n,a,b):
> M2 := RandUniUpMat(n,a,b):
> M1.LinearAlgebra[Transpose](M2);
> end proc;

Let’s look at an example.

> with(LinearAlgebra):
> M:=RandUniMat(3,10,50);

M :=

⎡⎢⎣
3493 1296 −36

1172 963 −26

47 37 −1

⎤⎥⎦
> Determinant(M);

−1

> MatrixInverse(M); ⎡⎢⎣
1 36 −972

50 1801 −48626

1897 68329 −1844847

⎤⎥⎦
What do you notice about M−1?

The syntax for the RandomVector function is analogous to that of the
RandomMatrix function. Try

> with(LinearAlgebra):
> RandomVector(4);
> RandomVector(6,generator=0..1.0);
> RandomVector[row](6,generator=0..1.0);
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> RandomVector[row](6,generator=(2*rand(0..1)-1));

9.6.11 Toeplitz matrices
A square matrix that is constant along diagonals is called a Toeplitz matrix.

The syntax of the ToeplitzMatrix function has the form

ToeplitzMatrix(L)
ToeplitzMatrix(L,n)
ToeplitzMatrix(L,n,symmetric)

Here L is a list of scalars, and n is the size of the square matrix. Using symmetric
option produces a symmetric matrix.

> with(LinearAlgebra):
> ToeplitzMatrix([a,b,c,d,e]);⎡⎢⎣

c b a

d c b

e d c

⎤⎥⎦

Try

> ToeplitzMatrix([a,b,c,d,e,f,g]);
> ToeplitzMatrix([a,b,c,d,e,f,g],3);
> ToeplitzMatrix([a,b,c,d,e,f,g],symmetric);

9.6.12 Vandermonde matrices
A Vandermonde matrix is a square matrix of the form (xj−1

i ). If L is a list of
scalars, then VandermondeMatrix(L) will return a Vandermonde matrix whose
first column has entries from L.

> with(LinearAlgebra):
> VandermondeMatrix([a,b,c]);⎡⎢⎣

1 a a2

1 b b2

1 c c2

⎤⎥⎦
> Determinant(%);

bc2 − b2c + ca2 − ac2 + ab2 − ba2

> factor(%);
− (−b + a) (c − b) (c − a)

© 2002 by Chapman & Hall/CRC



Linear Algebra 201

Observe that ∣∣∣∣∣∣∣
1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣∣ = (a − b)(b − c)(a − c).

Try

> V := VandermondeMatrix([a,b,c,d,e]);
> factor(Determinant(V));
> VandermondeMatrix([a,b,c,d,e],3,4);

Can you see a pattern in the factorization of the determinant of a Vandemonde
matrix?

9.6.13 Zero matrices and vectors
ZeroMatrix(m,n) returns an m × n zero matrix.

> with(LinearAlgebra):
> ZeroMatrix(2,3); [

0 0 0

0 0 0

]

Try

> with(LinearAlgebra):
> ZeroMatrix(4);

ZeroVector(n) returns a zero column vector of dimension n. Try

> ZeroVector(4);
> ZeroVector[row](4);

9.7 Systems of linear equations
Consider the following system of linear equations:

10x − 27 y + z + r + 2 s − 11 t = 1
20x − 62 y + 29 z + 20 r + 11 s − 16 t = 1

−x − 8 y + 36 z + 24 r + 9 s + 9 t = 1
−8x + 27 y − 19 z − 13 r − 6 s + 5 t = −5

We enter this system into maple as the list EqList and call the list of variables
Vars.

> with(LinearAlgebra):
> EqList:= [10*x-27*y+z+r+2*s-11*t = 1,
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> 20*x-62*y+29*z+20*r+11*s-16*t = 1,
> -x-8*y+36*z+24*r +9*s+9*t = 1,
> -8*x+27*y-19*z-13*r-6*s+5*t = -5];

EqList := [10x − 27 y + z + r + 2 s − 11 t = 1,
20x − 62 y + 29 z + 20 r + 11 s − 16 t = 1,
−x − 8 y + 36 z + 24 r + 9 s + 9 t = 1,

−8x + 27 y − 19 z − 13 r − 6 s + 5 t = −5]

> Vars:=[x,y,z,r,s,t];

Vars := [x, y, z, r, s, t]

We can use the GenerateMatrix function to write our system as a matrix equa-
tion.

> (A,b) := GenerateMatrix(EqList,Vars);

A, b :=

⎡⎢⎢⎢⎢⎣
10 −27 1 1 2 −11

20 −62 29 20 11 −16

−1 −8 36 24 9 9

−8 27 −19 −13 −6 5

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
1

1

1

−5

⎤⎥⎥⎥⎥⎦

This means our linear system can be written as a matrix equation

A�v = �b,

where

A =

⎡⎢⎢⎢⎢⎣
10 −27 1 1 2 −11

20 −62 29 20 11 −16

−1 −8 36 24 9 9

−8 27 −19 −13 −6 5

⎤⎥⎥⎥⎥⎦ , �v =

⎡⎢⎢⎢⎢⎢⎣
x
y
z
r
s
t

⎤⎥⎥⎥⎥⎥⎦ , �b =

⎡⎢⎣
1
1
1
−5

⎤⎥⎦ .

We can write the system as an augmented matrix using the augmented = true
option.

> AM := GenerateMatrix(EqList,Vars,augmented=true);⎡⎢⎢⎢⎢⎣
10 −27 1 1 2 −11 1

20 −62 29 20 11 −16 1

−1 −8 36 24 9 9 1

−8 27 −19 −13 −6 5 −5

⎤⎥⎥⎥⎥⎦
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Now we use the LinearSolve function to solve this linear system.

> LinearSolve(AM);⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

215 + 19 t3 2 − 54 t3 3 − 39 t3 4

t3 2

t3 3

t3 4

−145 − 10 t3 2 + 33 t3 3 + 24 t3 4

169 + 13 t3 2 − 43 t3 3 − 31 t3 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We see that there are infinitely many solutions with three free parameters t2,
t3, t4. We can assign a name to the free parameters using the free option.

> SOL := LinearSolve(AM, free=’w’);

SOL :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

215 + 19w2 − 54w3 − 39w4

w2

w3

w4

−145 − 10w2 + 33w3 + 24w4

169 + 13w2 − 43w3 − 31w4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We see that the general solution to the system is given by

x = 215 + 19w2 − 54w3 − 39w4,

y = w2,

z = w3,

r = w4,

s = −145 − 10w2 + 33w3 + 24w4,

t = 169 + 13w2 − 43w3 − 31w4,

where w2, w3, w4 are any real numbers. We can easily check the solution.

> A . SOL = b; ⎡⎢⎢⎢⎢⎣
1

1

1

−5

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1

1

1

−5

⎤⎥⎥⎥⎥⎦
There are other forms for the LinearSolve function. To solve the linear system

A�v = �b,
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try LinearSolve(A, b).

> SOL := LinearSolve(A, b, free=’w’);

The method used for solving the system can also be specified. Methods include
Cholesky, LU, QR factorization. See ?LinearSolve for more information. The
function BackwardSubstitute is used to perform back substitution on a linear
system in upper triangular form. Consider the linear system with augmented
matrix ⎡⎢⎢⎢⎢⎢⎣

1 1 0 −3
... 4

0 0 1 0
... 2

0 0 0 1
... −5

0 0 0 0
... 0

⎤⎥⎥⎥⎥⎥⎦
> with(LinearAlgebra):
> ATM := <<1,0,0,0>|<1,0,0,0>|<0,1,0,0>|<-3,0,1,0>

|<4,2,-5,0>>; ⎡⎢⎢⎢⎢⎣
1 1 0 −3 4

0 0 1 0 2

0 0 0 1 −5

0 0 0 0 0

⎤⎥⎥⎥⎥⎦
> V := BackwardSubstitute(ATM);

V :=

⎡⎢⎢⎢⎢⎣
−11 − t3 1

t3 1

2

−5

⎤⎥⎥⎥⎥⎦
We see that the linear system has infinitely many solutions with one free param-
eter. We check the solution. First we select the coefficient matrix A and the last
column �b.

> A := ATM[1..-1,1..-2];⎡⎢⎢⎢⎢⎣
1 1 0 −3

0 0 1 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎥⎦
> b := ATM[1..-1,-1]; ⎡⎢⎢⎢⎢⎣

4

2

−5

0

⎤⎥⎥⎥⎥⎦
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Observe in ATM[1..-1,1..-2] that the −1 refers to the last row and the −2
refers to the second-to-last column. This way we can easily select the coefficient
matrix A. Now we are ready to check the solution.

> A . V = b; ⎡⎢⎢⎢⎢⎣
4

2

−5

0

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
4

2

−5

0

⎤⎥⎥⎥⎥⎦
We can also perform back substitution using the method option of LinearSolve.
Try

> V := LinearSolve(ATM, method=’subs’);

We conclude this section with the general syntax of the LinearSolve func-
tion:

LinearSolve(AM)
LinearSolve(A,b)
LinearSolve(AM,free=name)
LinearSolve(AM,method=method)

Here AM is an augmented matrix; A,b correspond to a matrix equation A�x =
�b; name is the name used for the free parameters; and the available methods
are ’none’, ’solve’, ’subs’, ’Cholesky’, ’LU’, ’QR’, or ’SparseLU’. See
?LinearSolve for more options and information.

9.8 Row space, column space, and nullspace
Let

A =

⎡⎢⎣
1 4 −10 3 −3

10 41 −102 30 −31

−9 −19 56 −27 10

⎤⎥⎦ .

We can use maple to find the rank of A and to find bases for the row space,
column space, and null space. The relevant maple functions are Rank, RowSpace,
ColumnSpace, and Nullspace.

> with(LinearAlgebra):
> A:=Matrix(3,5,[[1,4,-10,3,-3],
> [10,41,-102, 30,-31],
> [-9,-19,56,-27,10]]);

A :=

⎡⎢⎣
1 4 −10 3 −3

10 41 −102 30 −31

−9 −19 56 −27 10

⎤⎥⎦
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> Rank(A);
2

> RowSpace(A);

[[ 1 0 −2 3 1 ] , [ 0 1 −2 0 −1 ]]

> ColumnSpace(A);

[

⎡⎢⎣
1

0

−179

⎤⎥⎦ ,

⎡⎢⎣
0

1

17

⎤⎥⎦]

> NSA := NullSpace(A);

NSA :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2

2

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1

1

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−3

0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
We see that

rankA = 2.

The vectors

�u1 = (1, 0,−2, 3, 1),
�u2 = (0, 1,−2, 0,−1),

form a basis for the row space. The vectors

�v1 =

⎡⎢⎣
1

0

−179

⎤⎥⎦ ,

⎡⎢⎣
0

1

17

⎤⎥⎦ ,

form a basis for the column space and the vectors

�w1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2

2

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, �w2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1

1

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, �w3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−3

0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
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form a basis for the nullspace. Now we check that the vectors �w1, �w2, �w3, are
in the nullspace.

> W:=<NSA[1] | NSA[2] | NSA[3]>;⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −3

2 1 0

1 0 0

0 0 1

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
> A . W; ⎡⎢⎣

0 0 0

0 0 0

0 0 0

⎤⎥⎦
Is this what you expected?

9.9 Eigenvectors and diagonalization
Let

A =

⎡⎢⎣
177 77 −28

−546 −236 84

−364 −154 51

⎤⎥⎦
We use Eigenvalues to find the eigenvalues of A.

> with(LinearAlgebra):
> A:=<<177,-546,-364>|<77,-236,-154>|<-28,84,51>>;⎡⎢⎣

177 77 −28

−546 −236 84

−364 −154 51

⎤⎥⎦
> Eigenvalues(A); ⎡⎢⎣

2

−5

−5

⎤⎥⎦
We see that A has two eigenvalues λ = 2 and λ = −5 (multiplicity 2). Now,
let’s find a basis for each eigenspace using Eigenvectors.

> Eigenvectors(A); ⎡⎢⎣
2

−5

−5

⎤⎥⎦ ,

⎡⎢⎣
1 1 0

−3 0 1

−2 13/2 11/4

⎤⎥⎦
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Observe that a vector and a matrix were returned. The vector contains the
eigenvalues of A, and the columns of the matrix are the corresponding eigenvec-
tors. We see that the eigenspace corresponding to λ = 2 is one dimensional and
that {[1,−3,−2]T } is a basis. For λ = −5, the eigenspace is two dimensional and
a basis is {[1, 0, 13/2]T , [0, 1, 11/4]T }. Hence, we have found three independent
eigenvectors and A is diagonalizable. So, we let

P =

⎡⎣ 1 2 0
−3 0 4
−2 13 11

⎤⎦
Then P−1 AP should be a diagonal matrix. Try

> (EG,P):=Eigenvectors(A);
> MatrixInverse(P).A.P;

Did you get a diagonal matrix? Alternatively, we can use JordanForm to diago-
nalize A. Try

> JordanForm(A);
> JordanForm(A,output=’Q’);

This time the matrix P might be different (since it is not unique). See the next
section for more information on Jordan form.

maple can also compute eigenvalues and eigenvectors for complex matrices
and matrices with floating point entries. Try

> with(LinearAlgebra):
> A := Matrix(2,2,[[1.0,2.0],[3.0,4.0]]);
> Eigenvalues(A);
> Eigenvectors(A);
> B := Matrix(2,2,[[1+10*I,-8*I],[12*I, 1-10*I]]);
> Eigenvalues(B);
> Eigenvectors(B);
> P := JordanForm(B,output=’Q’);

9.10 Jordan form
We used the function JordanForm in the previous section. In general,

JordanForm gives the Jordan canonical form of a square matrix. Try

> with(LinearAlgebra):
> C := Matrix(4,4,[[10,10,-14,15],[0,3,0,0],
> [8,1,-13,8],[1,-8,-2,-4]]);
> Q := JordanForm(C,output=’Q’);
> MatrixInverse(Q).C.Q;
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The syntax of the JordanForm function has the form

JordanForm(A)
JordanForm(C,output=’Q’)

The first form gives the Jordan canonical form of the matrix A. The second
form returns a matrix Q such that Q−1CQ is in Jordan form.

9.11 Inner products, and Vector and matrix norms

9.11.1 The dot product and bilinear forms

The DotProduct function gives the usual dot product on Rn (or the usual
inner product on Cn).

> with(LinearAlgebra):
> V:=Vector([seq(v[i],i=1..4)]);⎡⎢⎢⎢⎢⎣

v1

v2

v3

v4

⎤⎥⎥⎥⎥⎦
> W:=Vector([seq(w[i],i=1..4)]);⎡⎢⎢⎢⎢⎣

w1

w2

w3

w4

⎤⎥⎥⎥⎥⎦
> DotProduct(V,W);

v1w1 + v2w2 + v3w3 + v4w4

> DotProduct(V,W,conjugate=false);

v1w1 + v2w2 + v3w3 + v4w4

> DotProduct(<1,2,3>,<3,2,1>);

10

If A is a positive definite n × n matrix, then

〈�x, �y〉 = �xT A�y (�x, �y ∈ Rn),
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defines an inner product on Rn. The function BilinearForm is used to construct
this inner product. First let’s construct a 3 × 3 positive definite matrix.

> with(LinearAlgebra):
> L:=Matrix(3,3,[[1,0,0],[1,1,0],[-3,-2,1]]):
> DG:=DiagonalMatrix([1,2,3]):
> A:=L.DG.Transpose(L); ⎡⎢⎣

1 1 −3

1 3 −7

−3 −7 20

⎤⎥⎦
Can you see why A is positive definite? In any case, we can check for positive
definiteness using the IsDefinite function.

> IsDefinite(A);
true

For two column vectors �u, �v, BilinearForm(�u, �v, A) computes the inner prod-
uct �uT A�v.

> BilinearForm(<1,1,1>,<1,3,1>,A);

0

We see that the vectors (1, 1, 1)T and (1, 3, 1)T are orthogonal with respect to
the given inner product.

9.11.2 Vector norms
For a column vector �v = (v1, . . . , vn)T , VectorNorm(�v, p) gives the usual

p-norm
||�v||p = (|v1|p + |v2|p + · · · + |vn|p)1/p

,

so that VectorNorm(�v, 2) gives the usual Euclidean norm.

> with(LinearAlgebra):
> V:=Vector([seq(v[i],i=1..4)]);⎡⎢⎢⎢⎢⎣

v1

v2

v3

v4

⎤⎥⎥⎥⎥⎦
> VectorNorm(V,3); (

|v1|3 + |v2|3 + |v3|3 + |v4|3
)1/3
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> VectorNorm(V,2); √
|v1|2 + |v2|2 + |v3|2 + |v4|2

VectorNorm(�v) or VectorNorm(�v, infinity) gives the usual infinity-norm

||�v||∞ = max
1≤i≤n

|vi| .

> VectorNorm(V);
max(|v1| , |v2| , |v3| , |v4|)

> VectorNorm(<-4,3,-5>,infinity);

5

9.11.3 Matrix norms
For an m × n matrxix A = (ai,j), the Frobenius norm is defined by

||A||F =

⎛⎝ n∑
j=1

m∑
i=1

a2
i,j

⎞⎠1/2

.

In maple, this is given by MatrixNorm(A,Frobenuius).

> with(LinearAlgebra):
> A:=Matrix(2,2,[seq([a[i,1],a[i,2]],i=1..2)]);[

a1,1 a1,2

a2,1 a2,2

]

> MatrixNorm(A,Frobenius);√
|a1,1|2 + |a2,1|2 + |a1,2|2 + |a2,2|2

> B:=<<1,2>|<3,4>>; [
1 3

2 4

]
> MatrixNorm(B,Frobenius);

√
30

For any p-norm, the matrix norm ||A||p is defined by

||A||p = max
�x	=�0

||A�x||p
||�x||p

.
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This norm is implemented in maple for p=1, 2 or ∞. It is given by
MatrixNorm(A,p) where p is 1, 2 or infinity. Try

> with(LinearAlgebra):
> A:=<<177,-546,-364>|<77,-236,-154>|<-28,84,51>>;
> MatrixNorm(A,1);
> MatrixNorm(A,2);
> MatrixNorm(A,infinity);

9.12 Least squares problems
Let A be an m × n matrix with m > n, and suppose �b ∈ Rm. The system

A�x = �b

has a least squares solution �xs if the vector �xs minimizes

||A�x −�b||.

Here || || is the usual Euclidean 2-norm. When A has full rank, this problem has
a unique solution. In maple it is given by LeastSquares(A,�b). As an example,
we consider the problem of fitting a line to some data points:

x 0.70 0.76 0.37 0.82 0.29 0.56 0.42 0.47

y 0.035 0.025 −0.18 0.045 −0.16 −0.058 −0.11 −0.085

This corresponds to solving a least squares problem. We form the matrix A and
the vector �b.

> X:=[0.70, 0.76, 0.37, 0.82, 0.29, 0.56, 0.42, 0.47];

X := [0.70, 0.76, 0.37, 0.82, 0.29, 0.56, 0.42, 0.47]

> Y:=[0.035, 0.025,-0.18, 0.045,-0.16,-0.058,-0.11,
-0.085];

Y := [0.035, 0.025,−0.18, 0.045,−0.16,−0.058,−0.11,−0.085]

> A:=Matrix([seq([1,X[k]],k=1..8)]);
> b:=Vector([seq(Y[k],k=1..8)]);

A is an 8 × 2 matrix whose first column is a string of 1’s and whose second
column consists of the x-values of the data points. The vector �b corresponds to
the y-values of the data points. Now we solve the corresponding least squares
problem.
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> with(LinearAlgebra):
> c := LeastSquares(A,b);

c :=

[
−0.304306737672958960

0.443383576624982178

]

The components of the least squares solution give the line of least squares fit.
So here the line of best fit has the equation

y = −0.3043 + 0.4433x.

We plot the data points together with the line of least squares fit.

> pts := [seq([X[k],Y[k]],k=1..8)];

pts := [[0.70, 0.035], [0.76, 0.025], [0.37,−0.18], [0.82, 0.045],
[0.29,−0.16], [0.56,−0.058], [0.42,−0.11], [0.47,−0.085]]

> bestline := c[1] + c[2]*x;

−0.304306737672958960 + 0.443383576624982178x

> with(plots):
> PL1 := plot(pts,style=point,symbol=circle):
> PL2 := plot(bestline,x=0..1):
> display(PL1,PL2);

–0.3

–0.2

–0.1

0

0.1

0.2 0.4 0.6 0.8 1

Figure 9.4 Line of best least squares fit.
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9.13 QR-factorization and the Gram-Schmidt process
If A is an m × n matrix with rank n, then A can be factored as

A = QR

where Q is an m × n matrix of orthonormal columns and R is an invertible
upper triangular matrix. The function QRDecomposition computes the QR-
factorization. We compute the QR-factorization of the matrix

A =

[
1 12

2 9

]
.

> with(LinearAlgebra):
> A:=<<1,2>|<12,9>>;

A :=

[
1 12

2 9

]
> (Q,R):=QRDecomposition(A);

Q,R :=

[ 1
5

√
5 2

5

√
5

2
5

√
5 − 1

5

√
5

][√
5 6

√
5

0 3
√

5

]
> Q.R; [

1 12

2 9

]
We see that the QR-factorization of A is given by

A =

[ 1
5

√
5 2

5

√
5

2
5

√
5 − 1

5

√
5

][√
5 6

√
5

0 3
√

5

]
.

We check that the columns of A are orthonormal:

> Transpose(Q).Q; [
1 0

0 1

]

We see QT Q = I, so the columns are orthonormal.
The Gram-Schmidt process is an algorithm for converting a basis into an

orthonormal basis. We can use QR-factorization to compute orthonormal bases.
As an example, let’s compute an orthonormal basis for the space spanned by the
vectors

�v1 =

⎡⎢⎢⎢⎢⎣
33

−12

−12

−12

⎤⎥⎥⎥⎥⎦ , �v2 =

⎡⎢⎢⎢⎢⎣
3

6

−20

−20

⎤⎥⎥⎥⎥⎦ , �v3 =

⎡⎢⎢⎢⎢⎣
21

29

3

68

⎤⎥⎥⎥⎥⎦
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We form the matrix whose columns are these three vectors:

> V1:=<33,-12,-12,-12>:
> V2:=<3,6,-20,-20>:
> V3:=<21,29,3,68>:
> A := <V1 | V2 | V3>;

A :=

⎡⎢⎢⎢⎢⎣
33 3 21

−12 6 29

−12 −20 3

−12 −20 68

⎤⎥⎥⎥⎥⎦
We compute the QR-factorization.

> with(LinearAlgebra):
> (Q,R) := QRDecomposition(A);

Q,R :=

⎡⎢⎢⎢⎢⎣
11
13 − 4

13
4
13

− 4
13

5
13

8
13

− 4
13 − 8

13 − 5
13

− 4
13 − 8

13
8
13

⎤⎥⎥⎥⎥⎦
⎡⎢⎣

39 13 −13

0 26 −39

0 0 65

⎤⎥⎦

The columns of Q give the required orthonormal basis. So the vectors

�q1 =

⎡⎢⎢⎢⎢⎣
11
13

− 4
13

− 4
13

− 4
13

⎤⎥⎥⎥⎥⎦ , �q2 =

⎡⎢⎢⎢⎢⎣
− 4

13

5
13

− 8
13

− 8
13

⎤⎥⎥⎥⎥⎦ , �q3 =

⎡⎢⎢⎢⎢⎣
4
13

8
13

− 5
13

8
13

⎤⎥⎥⎥⎥⎦
form an orthonormal basis for the vectors spanned by �v1, �v2, �v3. We check that
the vectors are orthonormal:

> Transpose(Q).Q; ⎡⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎦
Finally, we check that the vectors �q1, �q2, �q3, span the same subspace:

> M := <A | Q>;

M :=

⎡⎢⎢⎢⎢⎣
33 3 21 11

13 − 4
13

4
13

−12 6 29 − 4
13

5
13

8
13

−12 −20 3 − 4
13 − 8

13 − 5
13

−12 −20 68 − 4
13 − 8

13
8
13

⎤⎥⎥⎥⎥⎦
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> Rank(A);

3

> Rank(M);

3

Do you see why this implies that the vectors �q1, �q2, �q3, span the same subspace?

Alternatively, we can compute orthogonal bases directly using the function
GramSchmidt. Try

> with(LinearAlgebra):
> V1 := <33,-12,-12,-12>;
> V2 := <3,6,-20,-20>;
> V3 := <21,29,3,68>;
> OBAS := GramSchmidt([V1,V2,V3]);

This should give an orthogonal basis for space spanned by the three vectors �v1,
�v2, �v3. Check the orthogonality:

> M := convert(OBAS, Matrix);
> Transpose(M).M;

Did you get a diagonal matrix? To obtain an orthonormal basis we use the
normalized option in the GramSchmidt function:

> with(LinearAlgebra):
> V1 := <33,-12,-12,-12>;
> V2 := <3,6,-20,-20>;
> V3 := <21,29,3,68>;
> ONBAS := GramSchmidt([V1,V2,V3],normalized);

Did you get the same answer as obtained using the QRDecomposition function?

9.14 LU-factorization
In Section 9.4 we used the LUDecomposition function to do Gaussian and

Gauss-Jordan elimination. LU decomposition is a method for factoring a square
matrix as a product of a lower and upper triangular matrix. This is possible
if Gaussian elimination can produce an upper triangular matrix without row-
swaps. Let’s compute the LU factorization of the matrix

A =

⎡⎢⎣
2 1 −3

−4 4 8

−6 9 3

⎤⎥⎦ .
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> with(LinearAlgebra):
> A:=Matrix(3,3,[[2,1,-3],[-4,4,8],[-6,9,3]]);⎡⎢⎣

2 1 −3

−4 4 8

−6 9 3

⎤⎥⎦
> LUDecomposition(A);⎡⎢⎣

1 0 0

0 1 0

0 0 1

⎤⎥⎦
⎡⎢⎣

1 0 0

−2 1 0

−3 2 1

⎤⎥⎦
⎡⎢⎣

2 1 −3

0 6 2

0 0 −10

⎤⎥⎦
If A is a square matrix, in general LUDecomposition(A) returns a triple P , L,
U , where P is a permutation matrix (i.e., rows are a permutation of the identity
matrix I), L is a lower triangular matrix, and U is an upper triangular matrix.
Here P = I, so the LU factorization exists, and

A =

⎡⎢⎣
1 0 0

−2 1 0

−3 2 1

⎤⎥⎦
⎡⎢⎣

2 1 −3

0 6 2

0 0 −10

⎤⎥⎦ .

A does not have to be a square matrix. Try

> with(LinearAlgebra):
> A:=Matrix([[1, 1, 3, -3], [5, 5, 13, -7],

[3, 1, 7, -11]]);
> LUDecomposition(A);
> (P,L,U):=LUDecomposition(A);
> P.L.U;

The matrix U should be the row echelon form of A. Now try

> LUDecomposition(A,method=RREF);
> (P,L,U,R):=LUDecomposition(A,method=RREF);
> P.L.U.R;

RREF stands for row reduced echelon form. The matrix R should be the unique
row reduced echelon form of A, so the matrices P , L, U , R were produced using
Gauss-Jordan elimination. Also, try

> LUDecomposition(A,output=[’P’,’L’,’U1’,’R’]);
> LUDecomposition(A,output=[’R’]);
> LUDecomposition(A,output=[’P’,’L’]);
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If A is a real symmteric positive definite matrix, then it can be factored

A = LLT ,

where L is a lower triangular matrix with positive diagonal elements. This is
called the Cholesky decomposition of A. Let’s compute the Cholesky decompo-
sition of the matrix

A =

⎡⎢⎣
1 −3 −5

−3 13 27

−5 27 62

⎤⎥⎦ .

We use the command LUDecomposition(A,method=Cholesky). But first let’s
check that the matrix is positive definite.

> with(LinearAlgebra):
> A:=Matrix(3,3,[[1,-3,-5],[-3,13,27],[-5,27,62]]);⎡⎢⎣

1 −3 −5

−3 13 27

−5 27 62

⎤⎥⎦
> IsDefinite(A);

true

Now we are ready to compute the decomposition.

> L:=LUDecomposition(A,method=Cholesky);⎡⎢⎣
1 0 0

−3 2 0

−5 6 1

⎤⎥⎦
Finally, check your answer.

> L.Transpose(L);

9.15 Other LinearAlgebra functions
In this chapter we have already seen many useful functions in the LinearAlge-

bra package. In this section we give a brief summary of the remaining functions.

Add

Add(A, B, c1, c2) computes the linear combination c1A + c2B, provided A
and B are both matrices or both vectors with the same dimensions.
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Basis

Returns a basis for the space spanned by a given set or list of vectors.

BezoutMatrix

Computes the Bezout matrix of two polynomials. It is used in the computation
of resultants.

CharacteristicPolynomial

CharacteristicPolynomial(A, λ) computes the characteristic polynomial
det(A − λI) of a square matrix A.

Column

Selects a column or columns of a matrix A.

ColumnDimension

Returns the number of columns in a matrix.

CompanionMatrix

Returns the companion matrix of a polynomial. If p is a multivariate polynomial,
CompanionMatrix(A,p,x) returns the companion matrix of p as a polynomial
in the variable x.

ConditionNumber

The condition number cond(A) of a square matrix is relative to a matrix norm:

cond(A) = ||A|| ||A−1||.

ConditionNumber(A,p) computes a condition number relative to a specified p-
norm, where p is a nonnegative number, or infinity, Frobenius, or Euclidean.

CreatePermutation

Creates a permutation matrix or vector for a NAG pivot vector. See
?CreatePermutation for more information.

CrossProduct

CrossProduct(�v1, �v2) computes the cross product �v1×�v2 of two column vectors
�v1, �v2.

DeleteColumn

Deletes a column or list of columns from a matrix.

DeleteRow

Deletes a row or list of rows from a matrix.

Dimension

Returns the number of rows and columns of a matrix.
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Equal

Equal(A,B) returns true if the two matrices (or vectors) A and B are equal.

ForwardSubstitute

Solves a linear system whose given augmented matrix is in lower row echelon
form.

FrobeniusForm

Returns the rational canonical form of a square matrix. As an example, we
compute the rational canonical form of the matrix

A =

⎡⎢⎣
0 −1 2

3 −4 6

2 −2 3

⎤⎥⎦ .

> with(LinearAlgebra):
> A := Matrix(3,3,[[0,-1,2],[3,-4,6],[2,-2,3]]);
> FrobeniusForm(A);
> (F,Q) := FrobeniusForm(A,output=[’F’,’Q’]);
> MatrixInverse(Q).A.Q;

The matrix F should be the rational canonical form of A, and the matrix Q
should satisfy Q−1AQ = F .

GenerateEquations

Generates a system of equations from a coefficient matrix of a given augmented
matrix. As an example consider the matrix

A =

⎡⎢⎣
1 2 3 4

2 −3 4 5

3 −7 8 9

⎤⎥⎦ .

The syntax of GenerateEquations has the form

GenerateEquations(A,list of variables)

Here the number of variables in the list either equals the number of columns of
A or is one less. When it equals the number of columns, a homogeneous linear
system is generated. Try

> with(LinearAlgebra):
> A:=Matrix(3,4,[[1,2,3,4],[2,-3,4,5],[3,-7,8,9]]);
> GenerateEquations(A,[x,y,z,w]);
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When the number of variables is one less than the number of columns of A, A is
interpreted as an augmented matrix so that the last column corresponds to the
right side of the linear system. Now try

> GenerateEquations(A,[x,y,z]);

GetResultDataType

Gives a compatible data type of two input data types for matrices or vectors.
See ?GetResultDataType for more information.

GetResultShape

Gives the shape of the resulting data type of two input data types for matrices
or vectors relative to some specified operation. See ?GetResultShape for more
information.

HermiteForm

Returns the Hermite normal form (reduced row echelon form) of a matrix whose
entries are polynomials in a single variable x over the field Q or a field of rational
functions. Try the following example:

> with(LinearAlgebra):
> A:=Matrix(3,3,[[5-x,5-2*x,2-x],

[-x∧2+x-4,-2*x∧2+2*x-1,-x∧2+x],
[-x∧3-5,-2*x∧3-10,-x∧3-5]]);

> (H,U) := HermiteForm(A,x,output=[’H’,’U’]);
> HH:= map(expand,U.A);
> Equal(H,HH);

The matrix H is the Hermite normal form of A, and H = U A.

HermitianTranspose

Returns the Hermitian transpose of a matrix. The Hermitian transpose of a
matrix M is sometimes denoted by MH and defined by MH = (M)T . Try

> with(LinearAlgebra):
> A:=Matrix(2,[[2,1-I],[1+I,1]]);
> U:=1/sqrt(3)*Matrix(2,[[1-I,-1],[1,1+I]]);
> HermitianTranspose(U).U;
> HermitianTranspose(U).A.U;

HessenbergForm

Computes the Hessenberg form of a square matrix. Computation is done within
the floating point domain so that results are not exact. A matrix is in Hessenberg
form if it is upper triangular except for the first subdiagonal. The function
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HessenbergForm(A) computes a Hessenberg matrix H and a unitary matrix Q
so that QHAQ = H. Try

> with(LinearAlgebra):
> A:=Matrix(3,[[2,1+I,I],[1-I,1,3],[-I,3,1]]);
> (H,Q) := HessenbergForm(A, output=[’H’,’Q’]);
> map(fnormal[6],H);
> HH := map(simplify[zero],%);
> Q.H.HermitianTranspose(Q);
> map(fnormal[6],%);
> map(simplify[zero],%);

IntersectionBasis

Computes a basis for the intersection of given subspaces of Rn. Each subspace
is a given by a list of spanning vectors. In the example below

W1 = Span(�v1, �v2, �v3),
W2 = Span(�v4, �v5).

You will compute a basis for the intersection W = W1 ∩ W2.

> with(LinearAlgebra):
> V1:=<2|3|5|-1>;
> V2:=<3|9|6|-1>;
> V3:=<6|32|10|-1>;
> V4:=<8|21|17|-3>;
> V5:=<19|52|26|-4>;
> IntersectionBasis([ [V1,V2,V3], [V4,V5] ]);

IsOrthogonal

Determines whether a given matrix A is orthogonal (i.e., AAT = I). The call
IsOrthogonal(A, M) determines whether A is orthogonal with respect to the
innerproduct

〈�x, �y〉 = �xT M �y.

IsSimilar

Determines whether two given matrices A, B are similar (i.e., whether there is an
invertible matrix Q such that QA = BQ). In the case of matrices with floating
point entries, there is a tolerance option which can be set when comparing
eigenvalues numerically. See ?IsSimilar for more details.

IsUnitary

Determines whether a given matrix A is unitary (i.e., AAH = I). The call
IsUnitary(A, M) determines whether A is unitary with respect to the complex
innerproduct

〈�u,�v〉 = �uHM �v.
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Map
Map2

The call Map(f,M) applies the function f to each entry of the matrix M and
assigns M to the result. Try

> with(LinearAlgebra):
> M := Matrix([[1,2],[3,4]]);
> Map(x->1/x,M);
> M;

Observe how the entries of M have changed. The function Map2 is analogous to
map2.

MatrixAdd

MatrixAdd(A, B, c1, c2) computes the linear combination c1A + c2B, where
A and B are both matrices with the same dimensions. If used with the inplace
option, the first argument is overwritten. Try

> with(LinearAlgebra):
> A:=<<1|2|3>,<4|5|6>,<7|8|9>>;
> B:=<<a|b|c>,<d|e|f>,<g|h|i>>;
> MatrixAdd(A,B,1,-3,inplace);
> A;

Observe how A is replaced by A − 3B.

MatrixMatrixMultiply

Computes the product of two matrices. Syntax is analogous to MatrixAdd.

MatrixScalarMultiply

MatrixScalarMultiply(A,c) computes cA if c is a scalar and A is a matrix.

MatrixVectorMultiply

Computes the product of a matrix and a column vector.

MinimalPolynomial

Computes the minimal polynomial of a square matrix A. As an example, we
compute the minimal polynomial of

A =

⎡⎢⎣
0 −1 2

3 −4 6

2 −2 3

⎤⎥⎦ .

> with(LinearAlgebra):
> A := Matrix(3,3,[[0,-1,2],[3,-4,6],[2,-2,3]]);

A :=

⎡⎢⎣
0 −1 2

3 −4 6

2 −2 3

⎤⎥⎦
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> mpoly := MinimalPolynomial(A,x);

mpoly := −1 + x2

> charpoly := CharacteristicPolynomial(A,x);

charpoly := x2 + x3 − 1 − x

> normal(charpoly/mpoly);
x + 1

Observe that the characteristic polynomial divides the minimal polynomial. We
check that A satisifies its minimal polynomial.

> P := unapply( mpoly, x );

P := x �→ −1 + x2

> P(A); ⎡⎢⎣
0 0 0

0 0 0

0 0 0

⎤⎥⎦
Norm

Norm(A,p) computes a matrix norm if A is a matrix, and a vector norm if A is
a vector. See sections 9.11.2 and 9.11.3.

Normalize

Normalize(�v, p) normalizes a vector �v relative to the specified norm (i.e., it
returns the vector �v/||�v||p). Here p corresponds to a vector norm, so p is either a
nonnegative number, infinity, Euclidean, or Frobenius. If p is not specified,
the infinity-norm is assumed. Try

> with(LinearAlgebra):
> V := <1 | 2 | 3 | 4>;
> W := Normalize(V);
> U := Normalize(V,2);
> DotProduct(U,U);

OuterProductMatrix

If �u and �v are column vectors, then OuterProductMatrix(�u,�v) returns the
matrix �u�vT .

Permanent

Computes the permanent of a square matrix.
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Pivot

The call Pivot(A,i,j) pivots the matrix A about the nonzero ijth entry of A
(i.e., multiples of the ith row are added to the other rows to obtain zeros in all
other entries in the jth column). Try

> with(LinearAlgebra):
> A := Matrix(4,[[1,2,3,4],[0,-2,5,7],[0,3,5,6],

[0,11,-9,3]]);
> Pivot(A,2,2);

To change entries only in the third and fourth rows, try

> Pivot(A,2,2,[3,4]);

RowDimension

Returns the number of rows in a matrix.

ScalarMatrix

Returns a scalar multiple of the identity matrix. ScalarMatrix(λ,n) returns
λI, where I is the n × n identity matrix. Try

> with(LinearAlgebra):
> ScalarMatrix(lambda,3);
> ScalarMatrix(lambda,3,4);

ScalarMultiply

ScalarMultiply is the same function as MatrixScalarMultiply.

ScalarVector

Let �ej denote the jth column of the n × n identity matrix I. Then for a scalar
c, ScalarVector(c,j,n) returns the vector c�ej . Try

> with(LinearAlgebra):
> ScalarVector(x,3,4);

SchurForm

Computes the Schur form of a square matrix. Computation is done within
the floating point domain so that results are not exact. A matrix is in Schur
form if it is upper triangular with eigenvalues along the diagonal. The function
SchurForm(A) computes an upper triangular matrix T and a unitary matrix Z
so that ZHAZ = T . Try

> with(LinearAlgebra):
> A:=Matrix(3,[[2,1+I,I],[1-I,1,3],[1,0,1]]);
> (T,Z) := SchurForm(A, output=[’T’,’Z’]);
> map(fnormal[6],T);
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> TT := map(simplify[zero],%);
> Z.T.HermitianTranspose(Z);
> map(fnormal[6],%);
> map(simplify[zero],%);

SingularValues

Computes the singular values of a matrix. As an example we compute the
singular values of a random 4 × 3 matrix:

> with(LinearAlgebra):
> A := RandomMatrix(4,3,outputoptions=[datatype=float]);

A :=

⎡⎢⎢⎢⎢⎣
−34.0 −56.0 62.0

−62.0 −8.0 −79.0

−90.0 −50.0 −71.0

−21.0 30.0 28.0

⎤⎥⎥⎥⎥⎦
> S := SingularValues(A, output=’list’);

S := [158.058878304917442, 95.5064017072014764,
44.1238962687336666, 0.0]

> map(evalf[7],%);

[158.0589, 95.50640, 44.12390, 0.0]

We found that singular values of our matrix A are

σ1 ≈ 158.0589 ≥ σ2 ≈ 95.50640 ≥ σ3 ≈ 44.12390 ≥ 0.

If A is an m× n matrix, then there are orthogonal matrices U and V such that

A = UΣV T ,

where Σ is an m×n matrix of zeros except for singular values along the diagonal.
We can compute U , V using the SingularValues function. Try

> Sig := DiagonalMatrix( S[1..3], 4, 3 );
> U, Vt := SingularValues(A, output=[’U’, ’Vt’]);
> U.Sig.Vt;

The matrix Vt corresponds to V T , and Sig is Σ. Did you get A = UΣV T ?

SmithForm

Computes the Smith normal form of a matrix A whose entries are polynomials
in a single variable. The Smith normal form is a diagonal matrix obtained by
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doing elementary row and column operations. SmithForm(A) returns the Smith
normal of a matrix A.

> with(LinearAlgebra):
> A:=Matrix(3,3,[[5-x,5-2*x,2-x],

[-x∧2+x-4,-2*x∧2+2*x-1,-x∧2+x],
[-x∧3-5,-2*x∧3-10,-x∧3-5]]);

> S := SmithForm(A);

We can find invertible matrices U , V (corresponding to the row and column
operations) such that UAV is the Smith normal form.

> (U,V) := SmithForm(A,x,output=[’U’,’V’]);
> U.A.V;
> map(simplify,%);

Did U.A.V simplify to S, the Smith normal form of A?

SubMatrix

Returns a submatrix of a matrix. Let r be a list of row numbers and c be a list
of column numbers, then SubMatrix(A,r,c) returns the submatrix with entries
A[i, j], where i is from r, and j is from c. Try

> with(LinearAlgebra):
> A:=Matrix(6,[seq([seq(a[i,j],j=1..6)],i=1..6)]);
> SubMatrix(A,[1,3,5],[1..3,6]);

SubVector

Returns a subvector of a vector. Let L be a list of component places and �v a
vector. Then SubVector(�v, L) returns the vector with components �v[j], where
j is in L.

> with(LinearAlgebra):
> V:=Vector([2,4,6,8,10]);
> SubVector(V,[1,4,5]);

SumBasis

Computes a basis for the sum of given subspaces of Rn. Each subspace is given
by a list of spanning vectors. In the example below

W1 = Span(�v1, �v2, �v3),
W2 = Span(�v4, �v5).

You will compute a basis for the intersection W = W1 + W2.

> with(LinearAlgebra):
> V1:=<2|3|5|-1>;
> V2:=<3|9|6|-1>;
> V3:=<6|32|10|-1>;
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> V4:=<8|21|17|-3>;
> V5:=<19|52|26|-4>;
> B1:=SumBasis([ [V1,V2,V3], [V4,V5] ]);
> B2:=Basis([V1,V2,V3,V4,V5]);

What do you notice about B1 and B2?

SylvesterMatrix

Returns the Sylvester matrix of two polynomials. The Sylvester matrix is used
in the computation of the resultant. In fact, the determinant of the Sylvester
matrix is the resultant of the two polynomials. Try

> with(LinearAlgebra):
> p:=x -> x∧2-2:
> q:=x -> x∧2-3:
> SylvesterMatrix(p(t),q(x-t),t);
> Determinant(%);
> solve(%=0,x);

What do you notice about these roots?

TridiagonalForm

Computes the tridiagonal form matrix of a real symmetric or complex Hermitian
matrix. Computation is done within the floating point domain so that results
are not exact. A tridiagonal matrix is a square matrix of zeros, except on the
main diagonal and on the subdiagonal above and below the main one. Let’s
compute the tridiagonal form of a random symmetric 3 × 3 matrix.

> with(LinearAlgebra):
> A := RandomMatrix(3,3,outputoptions=[datatype=float,

shape=symmetric]);
> TridiagonalForm(A);
> TridiagonalForm(A, output=NAG);
> (T,Q) := TridiagonalForm(A, output=[’T’,’Q’]);
> Q.T.Transpose(Q);
> map(fnormal[6],%);
> map(simplify[zero],%);

In the computation above, QTQT should simplify to A. When A is complex
Hermitian, Q will be a unitary matrix and QTQH should simplify to A.

UnitVector

UnitVector(j,n) gives the jth column vector of the n × n identity matrix I.
Try

> with(LinearAlgebra):
> UnitVector(3,4);
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VectorAdd

VectorAdd is analogous to MatrixAdd. It computes the linear combination of
two vectors. Try

> with(LinearAlgebra):
> U := <a | b | c>;
> V := <i | j | k>;
> VectorAdd(U,V,3,4);

VectorAngle

Computes the angle θ between two vectors �u, �v, using the formula

cos θ =
�u · �v

||�u|| ||�v|| .

Try

> with(LinearAlgebra):
> U := <1 | 2 | 3>;
> V := <4 | 1 | -2>;
> W := <1 | 1 | 1>;
> VectorAngle(U,2*U);
> VectorAngle(U,V);
> VectorAngle(U,W);

VectorMatrixMultiply

If A is a matrix and �v is a row vector, VectorMatrixMultiply(�v, A) computes
the product �v A.

VectorScalarMultiply

VectorScalarMultiply(�v, c) computes c�v if c is a scalar and �v is a vector.

Zip

If f is a function of two variables and A, B are two vectors or matrices of the
same size and shape, then Zip(f,A,B) is the vector (or matrix) obtained by
applying f component-wise to A and B. Try

> with(LinearAlgebra):
> A:=<<a | b>, <c | d>>;
> B:=<<x | y>, <z | w>>;
> Zip(f,A,B);
> Zip(‘+‘,A,B);
> Zip(‘*‘,A,B);

9.16 The linalg package
For the bulk of this chapter we have concentrated on the LinearAlgebra

package, which is a great package for doing numerical matrix computations. For
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abstract or exact computations it is advisable to use the linalg package. In this
section we give an overview of the linalg package. To see all the functions in the
linalg package try

> with(linalg);

You will notice many functions in common with the LinearAlgebra package.

9.16.1 Matrices and vectors

In the linalg package, matrices and vectors are defined as in the LinearAlgebra
package, except that matrix( ) and vector( ) are used instead of Matrix( ) and
Vector( ).

> with(linalg):
> v:=vector([1,2,3]);

V := [1, 2, 3]

> A := matrix(2,3,[a,b,c,d,e,f]);

A :=

[
a b c

d e f

]

> A := matrix(2,3,[[a,b,c],[d,e,f]]);

A :=

[
a b c

d e f

]

> v;
v

> A;
A

> print(v);
[1, 2, 3]

> print(A); [
a b c

d e f

]

We used the vector and matrix functions in the linalg package to define the
three-dimensional vector v and the 2 × 3 matrix A. Notice that typing v or A
did not cause the vector or matrix to be displayed. We displayed them using the
print command. Also, try

> op(A);
> eval(A);
> evalm(A);
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9.16.2 Conversion between linalg and LinearAlgebra

Try

> with(linalg):
> with(LinearAlgebra):
> A := matrix(3,3,(i,j)->(i+j));

A :=

⎡⎢⎣
2 3 4

3 4 5

4 5 6

⎤⎥⎦
> Determinant(A);

Error, LinearAlgebra:-Determinant expects its 1st
argument, A, to be of type Matrix, but received A
> det(A);

0

The function Determinant is in the LinearAlgebra package and expects a Matrix,
not a matrix. det is the determinant function in the linalg package. It easy to
convert a matrix to a Matrix.

> B := convert(A, Matrix);

B :=

⎡⎢⎣
2 3 4

3 4 5

4 5 6

⎤⎥⎦
> Determinant(B);

0

It is easy to convert a Matrix to a matrix.

> C := convert(B, matrix);

C :=

⎡⎢⎣
2 3 4

3 4 5

4 5 6

⎤⎥⎦
> det(C);

0

Symbolic or abstract computations are performed better using the linalg package.
Let’s perform a symbolic computation in the LinearAlgebra package.
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> with(LinearAlgebra):
> A := Matrix(3,3,(i,j)->x∧(i+j));

A :=

⎡⎢⎣
x2 x3 x4

x3 x4 x5

x4 x5 x6

⎤⎥⎦
> B := A - y*IdentityMatrix(3);

B := −y

⎡⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎦+

⎡⎢⎣
x2 x3 x4

x3 x4 x5

x4 x5 x6

⎤⎥⎦
> simplify(B);

y

⎡⎢⎣
0 0 0

0 0 0

0 0 0

⎤⎥⎦+

⎡⎢⎣
x2 x3 x4

x3 x4 x5

x4 x5 x6

⎤⎥⎦
> C := A - 5*IdentityMatrix(3);

C :=

⎡⎢⎣
x2 − 5 x3 x4

x3 x4 − 5 x5

x4 x5 x6 − 5

⎤⎥⎦
Observe that the command A - y*IdentityMatrix(3) did not return a simpli-
fied matrix. It did, however, return a simplified matrix when y was given the
numeric value 5. Note also that simplify(B) not only failed to simplify B, but
it gave an incorrect result.

Let’s try the same calculation using linalg.

> with(linalg):
> A := matrix(3,3,(i,j)->x∧(i+j));

A :=

⎡⎢⎣
x2 x3 x4

x3 x4 x5

x4 x5 x6

⎤⎥⎦
> I3 := diag(1,1,1);

I3 :=

⎡⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎦
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> B := A - y*I3;
B := A − yI3

> evalm(B); ⎡⎢⎣
x2 − y x3 x4

x3 x4 − y x5

x4 x5 x6 − y

⎤⎥⎦
The call evalm(B) gave a single matrix.

9.16.3 Matrix operations in linalg

Matrix Mathematical maple
Operation Notation Notation

Addition A + B A + B
Subtraction A − B A - B
Scalar cA c*A
multiplication

Matrix AB A &* B or
multiplication multiply(A,B)

Matrix power An A∧n
Inverse A−1 A∧(-1) or 1/A

or inverse(A)
Transpose AT transpose(A)
Trace tr A trace(A)

Look at the following example:

> with(linalg):
> A := matrix(2,2,[1,2,3,4]):
> B := matrix(2,2,[-2,3,-5,1]):
> A+B;

A + B

> evalm(%); [
−1 5

−2 5

]

Notice that we had to use the function evalm to display the matrix A+B. Now
try the following:

> with(linalg):
> A:=matrix(2,3,[1,2,3,4,5,6]);
> B:=matrix(3,2,[2,4,-7,3,5,1]);
> C:=matrix(2,2,[1,-2,-3,4]);
> A&*B;
> evalm(%);
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> multiply(A,B);
> evalm(A&*B-2*C);

Check your results with pencil and paper. You should have found that

AB − 2C =

[
1 17

9 29

]

9.16.4 The functions in the linalg package
In this section we have seen a few of the linalg functions. Below we list all

the functions in the package.
addcol linear combination of matrix columns
addrow linear combination of matrix rows
adjoint adjoint of a matrix
angle angle between two vectors
augment augmented matrix
backsub back substitution
band band matrix
basis basis for a span of vectors
bezout Bezout matrix of two polynomials
BlockDiagonal see diag
blockmatrix block matrix
charmat characteristic matrix
charpoly characteristic polynomial of a matrix
cholesky Cholesky decomposition
col extract columns from a matrix
coldim number of columns in a matrix
colspace basis for a column space
colspan spanning vectors of a column space
companion companion matrix for a polynomial
cond standard condition number
copyinto copies a matrix into another
crossprod cross-product of two vectors
curl curl of a vector field
definite test for positive or negative definite
delcols delete columns of a matrix
delrows delete rows of a matrix
det determinant
diag block diagonal matrix
diverge divergence of a vector field
dotprod dot-product of two vectors
eigenvals eigenvalues of a matrix
eigenvectors bases for eigenspaces
entermatrix interactive matrix entry
equal determine whether two matrices are equal
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exponential matrix exponential
extend enlarge a matrix
ffgausselim fraction-free Gaussian elimination
fibonacci Fibonacci matrix
forwardsub forward substitution
frobenius see ratform
gausselim Gaussian elimination
gaussjord Gauss-Jordan elimination
geneqns generate system of equations
genmatrix generate augmented matrix
grad gradient of a function
GramSchmidt Gram-Schmidt orthogonalization process
hadamard an upper bound for determinant
hermite Hermite normal form of matrix with

polynomial entries
hessian Hessian matrix
hilbert Hilbert matrix
htranspose Hermitian transpose
ihermite integer only Hermite normal form
indexfunc indexing function of an array
innerprod innerproduct uT Av
intbasis basis for intersection of subspaces
inverse inverse of a matrix
ismith integer-only Smith normal form
issimilar determine if two matrices are similar
iszero determine whether a matrix is the zero matrix
jacobian Jacobian matrix of a vector function
jordan Jordan form
JordanBlock Jordan block matrix
kernel basis for the nullspace of a matrix
leastsqrs least squares problem
linsolve solve a linear system
LUdecomp LU -decomposition
matadd computes a matrix sum
minpoly minimal polynomial of a matrix
mulcol multiply a column by an expression
mulrow multiply a row by an expression
multiply product of two matrices
norm norm of a matrix or vector
normalize normalize a vector
nullspace see kernel
orthog determine whether a matrix is orthogonal
permanent permanent of a matrix
pivot pivot about a matrix entry
potential potential function of a vector field
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QRdecomp QR-decomposition of a matrix
randmatrix random matrix generator
randvector random vector generator
rank rank of a matrix
ratform rational canonical form
row extract rows from a matrix
rowdim number of rows in a matrix
rowspace basis for a rowspace
rref see gaussjord
scalarmul multiply a matrix by an expression
singularvals singular values of a matrix
smith Smith normal form
stack stacks two matrices vertically
submatrix extract a submatrix
subvector extract a vector from a matrix
sumbasis basis for sum of subspaces
swapcol swap two columns in a matrix
swaprow swap two rows in a matrix
sylvester Sylvester matrix of two polynomials
toeplitz Toeplitz matrix
trace trace of a matrix
vandermonde Vandermonde matrix
vecpotent vector potential of a vector field
vectdim number of components in a vector
wronskian Wronskian matrix
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10. MULTIVARIABLE AND VECTOR
CALCULUS

10.1 Vectors
In Chapter 9, we saw how to define and manipulate vectors using the Lin-

earAlgebra and linalg packages. We will use the linalg package in this chapter
because it contains more functions for handling vectors.

10.1.1 Vector operations

Let’s define two vectors

�u = (1,−4, 5),
�v = (2, 3, 7).

We are able to add and subtract vectors and perform scalar multiplication:

> u := vector([1,-4,5]);

u := [1,−4, 5]

> v := vector([2,3,7]);

v := [2, 3, 7]

> u + v;
u + v

> evalm(u + v);
[3,−1, 12]

> evalm(u - v);
[−1,−7,−2]

> evalm(5*u - 3*u);
[2,−8, 10]

Remember, we must use the evalm function when doing vector operations. We
found

�u + �v = (3,−1, 12),
�u − �v = (−1,−7,−2),

5�u − 3�v = (2,−8, 10).

237
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10.1.2 Length, dot product, and cross product

We use the norm function from the linalg package to compute the length of
a vector.

> with(linalg):
> u := vector([x,y,z]);

u := [x, y, z]

> v := vector([2,-5,6]);

v := [2,−5, 6]

> norm(u);
max(|x| , |y| , |z|)

> norm(u,2); √
(|x|)2 + (|y|)2 + (|z|)2

> norm(v,2); √
65

In linalg the default norm is the infinity norm. To obtain the length of a vector
�u, we use the command norm(�u, 2). For �v = (2,−5, 6), we found the length
||�v|| =

√
65.

To find the dot product of two vectors, we use the dotprod function from
the linalg package.

> with(linalg):
> U := vector([u[1],u[2],v[2]]);

U := [u1, u2, v2]

> V := vector([v[1],v[2],v[2]]);

V := [v1, v2, v2]

> dotprod(U,V);
u1 v1 + u2 v2 + u3 v3

> a := vector([1,2,3]);
[1, 2, 3]

> b := vector([-3,5,7]);
[−3, 5, 7]

> dotprod(a,b);
28
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Notice how maple defined the dot product in terms of the conjugate to cover
complex vectors. If the vector is real, this corresponds to the usual dot product.
For �a = (1, 2, 3), �b = (−3, 5, 7) we found that

�a ·�b = 28.

To find the angle between two vectors �u, �v, use the function angle(�u, �v)
in the linalg package. Find the angle θ between �u = (2, 1, 2) and �v = (1, 1, 0):

> with(linalg):
> u := vector([2,1,2]);
> v := vector([1,1,0]);
> angle(u,v);
> simplify(%);

Did you get θ = π
4 ?

To find the cross product of two vectors, we use the crossprod function. We
find the cross product of �u = (1, 2, 3) and �v = (5,−2, 1).

> with(linalg):
> u := vector([1,2,3]);

u := [1, 2, 3]

> v := vector([5,-2,1]);

v := [5,−2, 1]

> w := crossprod(u,v);
[8, 14,−12]

We found that
�w = �u × �v = (8, 14,−12).

Now try

> dotprod(u,w);
> dotprod(v,w);

What did you find? What does this imply about the three vectors �u, �v, and �w?

10.1.3 Plotting vectors
To plot vectors, we use the arrow function in the plottools package. More

details of the plottools package can be found in Section 14.1. When plotting a
two-dimensional vector, the syntax of the arrow function has the form

arrow( [a, b], �v, wb, wh, hh)

This plots an arrow (vector) in the direction �v with initial point (a, b). Here wb
is the width of the body of the arrow, wh is the width of the head of the arrow,
and hh is ratio of the head to the body of the arrow.
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To plot the vector �v = [2, 3] try

> with(plottools):
> with(plots):
> v := vector([2,3]);

v := [2, 3]

> vec := arrow([0,0],v,.1,.2,.2,color=red):
> display(vec):

0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2

Figure 10.1 Plot of a two-dimensional vector.

Here our initial point was [0,0], so that the vector is drawn from the origin.
When plotting a three-dimensional vector, the syntax of the arrow function

has the form

arrow( [a, b, c], �v, wb, wh, hh)
arrow( [a, b, c], �v, �m, wb, wh, hh)

This plots an arrow (vector) in the direction �v with initial point (a, b). As before,
wb is the width of the body of the arrow, wh is the width of the head of the
arrow, and hh is ratio of the head to the body of the arrow. The vector �m
specifies the plane containing the vector. This plane passes through the point
(a, b, c) and has normal vector �n = �v × (�v × �m). The vector �m will be a normal
vector for this plane if it is orthogonal to �v. Try the following

> with(plots):
> with(plottools):
> with(linalg):
> u := normalize(vector([1,2,3]));
> v := normalize(vector([5,-2,1]));
> w := crossprod(u,v);
> uvec:=arrow([0,0,0],u,w,.1,0.2,.1,color=red):
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> vvec:=arrow([0,0,0],v,w,.1,.2,.1,color=blue):
> wvec:=arrow([0,0,0],w,u,.1,.2,.1,color=green):
> utext:=textplot3d([u[1],u[2],u[3]," u "],color=black):
> vtext:=textplot3d([v[1],v[2],v[3]," v "],align=LEFT,

color=black):
> wtext:=textplot3d([w[1],w[2],w[3]," u x v "],align=LEFT,

color=black):
> c := sphere([0,0,0], 0.1,color=black):
> display(uvec,utext,vvec,vtext,wvec,wtext,c,

scaling=constrained,axes=boxed,orientation=[25,60]);
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Figure 10.2 Illustrating vectors in space.

10.2 Lines and planes
Besides linalg, another useful package here is geom3d. The geom3d package

handles computations for geometry in three-dimensional Euclidean space. We
will need only a few functions from this package. An overview of this package
can be found in Section 17.7.9.

10.2.1 Lines

We find the vector equation of the line � passing through the points P (1, 2, 3)
and Q (4,−7, 2). First we define the points P and Q:

> with(geom3d):
> point(P,1,2,3);

P

> point(Q,4,-7,2);
Q
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Next, we define the line � that passes through P and Q:

> line(l,[P,Q]);
l

Now we use Equation function to find the equation of the line:

> Equation(l,t);
[1 + 3 t, 2 − 9 t, 3 − t]

Here t is the parameter used in the vector equation. Thus the vector equation
of the line � is

�r = (1 + 3t)�i + (2 − 9t)�j + (3 − t)�k.

Alternatively, we could have found the vector
−→
PQ, which is the direction of the

required line. Try

> P := vector([1,2,3]);
> Q := vector([4,-7,2]);
> PQ := evalm(Q - P);

Did you obtain
−→
PQ = (3,−9,−1)?

In our next example, we find the distance d between the point Q (1, 2, 3) and
the line given parametrically by x = 2t, y = 1 − 3t, z = 2 + 5t. The distance d
is given by

d =
||�L ×−→

PQ||
||�L||

,

where �L is the direction vector of the line and P is any point on the line. We
take P (0, 1, 2) by putting t = 0. Here �L = (2,−3, 5). Try

> with(linalg):
> Q := vector([1,2,3]);
> P := vector([0,1,2]);
> L := vector([2,-3,5]);
> PQ := Q - P;
> LPQ := crossprod(L,PQ);
> dLPQ := norm(LPQ,2);
> dL := norm(L,2);
> dist := dLPQ/dL;

Did you obtain

d =
7√
19

?

10.2.2 Planes

The equation of a plane takes the form

ax + by + cz = d.
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In the previous section we used the Equation function in the geom3d package
to find the equation of a line. We can find the equation of a plane in a similar
fashion. Let’s find the equation of the plane P passing through the three points
P0 (1, 1, 1), P1 (2, 1, 3), P2 (3, 2, 1). First we define the three points:

> with(geom3d):
> point(P0,1,1,1):
> point(P1,2,1,3):
> point(P2,3,2,1):

If x, y, z denote the variables of our coordinate system, the plane P through
the three points P0, P1, P2 is given by plane(P, [P0, P1, P2], [x, y, z]).
We define the plane P and find its equation:

> plane(P,[P0,P1,P2],[x,y,z]):
> Equation(P);

−3 − 2x + 4 y + z = 0

We find that the equation of the plane is

−2x + 4y + z = 3.

Let �N be the normal vector of a plane P. The distance d between a point
Q and the plane P is given by

d =

∣∣∣ �N · −→PQ
∣∣∣

|| �N ||
,

where P is any point on the plane P. We find the distance d between the point
Q (1, 2, 3) and the plane with equation

−2x + 4y + z = 3.

Here �N = (−2, 4, 1), and we take P (0, 0, 3) which is clearly a point on the plane.
Try

> with(linalg):
> P := vector([0,0,3]);
> Q := vector([1,2,3]);
> N := vector([-2,4,1]);
> PQ := Q - P;
> NPQ := dotprod(N,PQ);
> dist := abs(NPQ)/norm(N,2);

Did you obtain

d =
2
√

21
7

?
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10.3 Vector-valued functions
We can represent a vector-valued function of t,

�F (t) = f1(t)�i + f2(t)�j + f3(t)�k,

as a vector whose components are functions of t. Let

�F (t) =�i + t�j +
√

t�k,

�G(t) = sin t�i + cos t�j + t�k.

We use maple to find the cross product (�F × �G)(t):

> with(linalg):
> F := vector([1, t, sqrt(t)]);

F := [1, t,
√

t]

> G := vector([sin(t), cos(t), t]);

G := [sin(t), cos(t), t]

> crossprod(F,G);

[t2 −
√

t cos(t),
√

t sin(t) − t, cos(t) − t sin(t)]

We found that

(�F × �G)(t) = (t2 −
√

t cos(t))�i + (
√

t sin(t) − t)�j + (cos(t) − t sin(t))�k.

Now try finding (�F + �G)(t) and (�F · �G)(t):

> F + G;
> dotprod(F,G);

10.3.1 Differentiation and integration of vector functions
Probably the best way to compute the derivative of a vector-valued function

in maple is to map diff with respect to t onto the vector:

> F := vector([f[1](t),f[2](t),f[3](t)]);

[f1(t), f2(t), f3(t)]

> map(diff,F,t);

[
d

dt
f1(t),

d

dt
f2(t),

d

dt
f3(t)]

Suppose the position vector of an object at time t is given by

�r(t) = 2 cos t�i + 3 sin t�j + t�k.
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We use maple to find the velocity �v(t) and acceleration �a(t):

> r := vector([2*cos(t), 3*sin(t), t]);

r := [2 cos(t), 3 sin(t), t]

> v := map(diff,r,t);

v := [−2 sin(t), 3 cos(t), 1]

> a := map(diff,v,t);

a := [−2 cos(t),−3 sin(t), 0]

Indefinite and definite integration of a vector-valued function of t can be
done in similar fashion by replacing diff with int. Let

�r(t) = t2�i + ln(1 + t)�j +
√

1 − t�k.

Use maple to find ∫
�r(t) dt,

and ∫ 1

0

�r(t) dt :

> r := vector([t∧2, ln(1+t), sqrt(1-t)]);
> map(int,r,t);
> map(int,r,t=0..1);

Did you obtain ∫ 1

0

�r(t) dt =
1
3
�i + (2 ln 2 − 1)�j +

2
3

�k?

10.3.2 Space curves
In Section 6.2.3 we saw how to plot space curves using the spacecurve

function in the plots package. Try plotting the helix parameterized by

�r(t) = cos t�i + 3 sin t�j + t�k, 0 ≤ t ≤ 4π.

> with(plots):
> spacecurve([cos(t),3*sin(t),t],t=0..4*Pi,color=black,

thickness=3, numpoints=200, axes=boxed,
orientation=[30,65]);

Now consider a point moving through space whose direction vector �r(t) is given
by

�r(t) = cos t�i + sin t�j + t�k, 0 ≤ t ≤ 4π.
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We can visualize this moving point using the animate3d function. To help plot
this moving point, we define three functions:

> fx:=(rho,phi,theta)->rho*sin(phi)*cos(theta);

fx := (ρ, φ, θ) �→ ρ sin(φ) cos(θ)

> fy:=(rho,phi,theta)->rho*sin(phi)*sin(theta);

fy := (ρ, φ, θ) �→ ρ sin(φ) sin(θ)

> fz:=(rho,phi,theta)->rho*cos(phi);

fz := (ρ, φ, θ) �→ ρ cos(φ)

The reader should recognize these three functions as giving the (x, y, z) coordi-
nates of a point with the given spherical coordinates (ρ, φ, θ). To plot a sphere
of radius 1 try

> plot3d([fx(1,phi,theta),fy(1,phi,theta),fz(1,phi,theta)],
phi=-Pi..Pi,theta=0..2*Pi);

We now produce an animation of a sphere (radius 1/10) moving along the helix:

> with(plots):
> S := spacecurve([cos(t),sin(t),t],t=0..4*Pi,color=black,

numpoints=200,axes=boxed):
> A:= animate3d([cos(t)+fx(1/10,phi,theta),sin(t)+

fy(1/10,phi,theta), t+ fz(1/10,phi,theta)],phi=-Pi..Pi,
theta=0..2*Pi,t=0..4*Pi, frames=32,
scaling=constrained):

> display(S,A,scaling=constrained,orientation=[60,30]);
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Figure 10.3 Animation of a point on a helix.
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Click on the display, press , and watch the point go up the helix. Now let’s
compute the length of our helix. In general, the length L of a curve parameterized
by �r(t), a = let ≤ b, is given by

L =
∫ b

a

||�r ′(t)|| dt.

> with(linalg):
> r := vector([cos(t),sin(t),t]);

[cos(t), sin(t), t]

> dr := map(diff,r,t);

[− sin(t), cos(t), 1]

> nr := simplify(norm(dr,2));√
1 + (|sin(t)|)2 + (|cos(t)|)2

> L := int(nr,t=0..4*Pi);

4π
√

2

10.3.2 Tangents and normals to curves
First we define some simple maple functions that will prove useful when

simplifying and manipulating vector-valued functions. Often a vector-valued
function is written in the form

�r(t) = f1(t)�i + f2(t)�j + f3(t)�k,

where �i, �j, �k are the usual standard basis vectors for R3. We could represent
the three vectors �i, �j, �k by unknowns i, j, k. Here is an example.

> r := t -> 6*t*i + 3* sqrt(2)*t∧2*j + 2*t∧3*k;

r := t �→ 6 ti + 3
√

2t2j + 2 t3k

See how we defined the function

�r(t) = 6t�i + 3
√

2t2�j + 2t3 �k.

We define four functions. Enter the following maple functions into a text file
vecfuncs and save it.
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r2vec := r -> vector([coeff(r,i,1),coeff(r,j,1),
coeff(r,k,1)]):

normv := v -> radsimp(sqrt(factor(v[1]∧2+v[2]∧2+
v[3]∧2))):

vec2r := v -> v[1]*i + v[2]*j + v[3]*k:
rsimp := rt -> collect(numer(rt),[i,j,k])/denom(rt):

So you should have a text file called vecfuncs containing these four functions.
Alternatively, you can type these functions directly into a maple worksheet.

The function r2vec(r) converts a vector-valued function

�r(t) = f1(t)�i + f2(t)�j + f3(t)�k,

into the form
[f1(t), f2(t), f3(t)].

Here is an example.

> read vecfuncs:
> r := t -> 6*t*i + 3* sqrt(2)*t∧2*j + 2*t∧3*k:
> vec := r2vec(r(t));

vec := [6 t, 3
√

2t2, 2 t3]

The function vec2r(v) does the opposite of r2vec.

> vec2r(vec);
6 ti + 3

√
2t2j + 2 t3k

The function normv(v) computes the usual norm of a vector �v = v1
�i+v2

�j+v3
�k:

||�v|| =
√

v2
1 + v2

2 + v2
3 .

We compute ||�r(t)||.
> normv(vec); √

2t
√

18 + 9 t2 + 2 t4

We found that
||�r(t)|| =

√
2t
√

18 + 9 t2 + 2 t4.

You should verify this calculation by hand. We could have used the norm function
in the linalg package. Try

> with(linalg):
> norm(2,vec);

and you will see why we chose to use normv instead. We will use the rsimp
function to simplify a vector-valued function. For our function �r(t) we will
compute the unit tangent vector �T , which is defined by

�T (t) =
�r ′(t)

||�r ′(t)|| .
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First we compute the derivative �r ′(t).

> rp := diff(r(t),t);

rp := 6 i + 6
√

2tj + 6 t2k

We found that
�r ′(t) = 6�i + 6

√
2t�j + 6t2 �k.

Now we compute the norm ||�r ′(t)||, but first we use r2vec to convert �r to
component form.

> rpv := r2vec(rp);
rpv := [6, 6

√
2t, 6 t2]

> n := normv(rpv);
n := 6 + 6 t2

We found that
||�r ′(t)|| = 6(1 + t2).

Now we are ready to compute the unit tangent vector �T (t).

> read vecfuncs:
> T := rp/n;

T :=
6 i + 6

√
2tj + 6 t2k

6 + 6 t2

> T := rsimp(T);

T :=
i +

√
2tj + t2k

1 + t2

Notice how we used our function rsimp to simplify �T (t) to find that

�T (t) =
�i +

√
2t�j + t2 �k

1 + t2
.

To check our answer we make sure that ||�T (t)|| = 1.

> normv(r2vec(T));
1

Now we are ready to compute the principal normal vector

�N(t) =
�T ′(t)

||�T ′(t)||
.

First we compute the derivative �T ′(t).
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> nt := diff(T,t);

nt :=
√

2j + 2 tk

1 + t2
− 2

(
i +

√
2tj + t2k

)
t

(1 + t2)2

> nt := rsimp(nt);

nt :=
−2 ti +

(√
2 −

√
2t2

)
j + 2 tk

(1 + t2)2

> nn := normv(r2vec(nt));

nn :=
√

2
1 + t2

> N := nt/nn;

N := 1/2

(
−2 ti +

(√
2 −

√
2t2

)
j + 2 tk

)√
2

1 + t2

So according to maple we have

�N(t) = 1/2

(
−2t�i +

(√
2 −

√
2t2

)
�j + 2t�k

)√
2

1 + t2
.

To check our results we make sure that || �N(t)|| and that �T · �N = 0.

> normv(r2vec(N));
1

> with(linalg):
> dotprod(r2vec(T),r2vec(N),orthogonal);

−
√

2t

(1 + t2)2
+

t
(√

2 −
√

2t2
)

(1 + t2)2
+

t3
√

2
(1 + t2)2

> normal(%);
0

We used the dotprod function (with the orthogonal option) in the linalg pack-
age to compute the dot product �T · �N . Observe that after using normal, we see
that the dot product simplifies to 0 as expected.

10.3.3 Curvature
The curvature κ of a curve parameterized by a vector-valued function �r(t) is

given by

κ(t) =
||�T ′(t)||
||�r ′(t)|| .
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In the previous section we considered

�r(t) = 6t�i + 3
√

2t2�j + 2t3 �k.

In the previous section we computed nn := ||�T ′(t)|| and n := ||�r ′(t)||. Con-
tinue the calculation and compute the curvature.

> kappa := normal(nn/n);

κ := 1/6
√

2
(1 + t2)2

For the example above, verify the formula

κ =
||�v × �a||
||�v||3 ,

where, as usual, �v(t) = �r ′(t), and �a(t) = �v ′(t).

> read vecfuncs:
> r := t -> 6*t*i + 3* sqrt(2)*t∧2*j + 2*t∧3*k:
> v := r2vec(diff(r(t),t));
> a := r2vec(diff(r(t),t,t));
> with(linalg):
> crossprod(v,a);
> normv(%)/normv(v)∧3;
> normal(%);

Remember, the file vecfuncs was created in the previous section and contains
the r2vec and normv functions among other things.

10.4 The gradient and directional derivatives
For a real-valued function f(x, y, z), the gradient of f is defined by

grad f(x, y, z) =
∂f

∂x
�i +

∂f

∂y
�j +

∂f

∂z
�k.

In maple it is computed using the grad function in the linalg package. We
compute the gradient of f(x, y, z) = x3 + sin(x + yz2).

> with(linalg):
> f := x∧3 + sin(x +y*z∧2);

f := x3 + sin(x + yz2)

> grad(f, [x,y,z]);

[3x2 + cos(x + yz2), cos(x + yz2)z2, 2 cos(x + yz2)yz]
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We found that

grad f = (3x2 + cos(x + yz2))�i + cos(x + yz2)z2�j + 2 cos(x + yz2)yz�k.

If �u is a unit vector, then the directional derivative of f at (x0, y0, z0) is given
by

D�uf(x0, y0, z0) = grad f(x0, y0, z0) · �u.

As an example we compute the directional derivative of f(x, y, z) = xy + 3yz3

at (1,−1, 2) in the direction of �v =�i + 2�j + 3�k.

> with(linalg):
> f := x*y+ 3*y*z∧3;

f := xy + 3 yz3

> v := vector([1,2,3]);

v := [1, 2, 3]

> u := normalize(v);

u := [1/14
√

14,
1
7

√
14, 3/14

√
14]

> grad(f,[x,y,z]);
[y, x + 3 z3, 9 yz2]

> g := subs(x=1,y=-1,z=2,%);

g := [−1, 25,−36]

> dotprod(g,u);

−59
14

√
14

We found that
D�uf(1,−1, 2) = −59

√
14.

10.5 Extrema

10.5.1 Local extrema and saddle points

In this section we consider the problem of determining the nature of critical
points of a function f(x, y). We determine the critical points of the function
f(x, y) = x3 − 3yx + y3.

> f := (x,y) -> x∧3 - 3*y*x + y∧3;

f := (x, y) �→ x3 − 3 yx + y3
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> criteqs := {diff(f(x,y),x)=0, diff(f(x,y),y)=0};

criteqs :=
{
3x2 − 3 y = 0,−3x + 3 y2 = 0

}
> solve(criteqs, {x,y});

{y = 0, x = 0} {y = 1, x = 1}
{
y = RootOf ( Z 2 + Z + 1, label = L2 ),

x = −1 − RootOf ( Z 2 + Z + 1, label = L2 )
}

We solved the equations
∂f

∂x
=

∂f

∂y
= 0,

to find the critical points (x, y) = (0, 0), (1, 1). We use the second partials
test to determine the nature of the critical points (x0, y0). This involves the
discriminant of f at (x0, y0) given by

D(x, y) =
∣∣∣∣ fxx(x0, y0) fxy(x0, y0)
fxy(x0, y0) fyy(x0, y0)

∣∣∣∣ .
This matrix of second-order partials is called the Hessian. We use the hessian
function in the linalg package. We are now ready to determine the nature of the
critical points of our function f(x, y) given above.

> f := (x,y) -> x∧3 - 3*y*x + y∧3;

f := (x, y) �→ x3 − 3 yx + y3

> with(linalg):
> h := hessian(f(x,y), [x,y]);

h :=

[
6x −3

−3 6 y

]

> det(h);
36 yx − 9

> des := unapply(%,x,y);

des := (x, y) �→ 36 yx − 9

> des(0,0);
−9

> des(1,1);
27
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We find D(0, 0) = −9 < 0, so that (0, 0) is a saddle point of f . We can confirm
this by plotting the function f(x, y) near the point (0, 0).

> f := (x,y) -> x∧3 - 3*y*x + y∧3;
> plot3d(f(x,y),x=-0.1..0.1,y=-0.1..0.1,axes=boxed,

style=patch,orientation=[20,70]);
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Figure 10.4 A saddle point.

Also, D(1, 1) = 27 > 0 and fxx(1, 1) = 6 > 0, so that f has a local minimum at
(1, 1). Plot f(x, y) near (1, 1):

> plot3d(f(x,y),x=0.9..1.1,y=0.9..1.1,axes=boxed,
style=patch,orientation=[20,70]);

Did your plot confirm that f has a local minimum near (1, 1)?

10.5.2 Lagrange multipliers

Lagrange multipliers are used to calculate extreme values of a function sub-
ject to a constraint. In particular, if the function f(x, y, z), subject to the
constraint g(x, y, z) = c, has an extreme value at (x0, y0, z0), then

grad f(x0, y0, z0) = λ grad g(x0, y0, z0),

for some scalar λ. This number λ is called the Lagrange multiplier.
We find the minimum distance between the surface xy + xz = 4 and the

origin (0, 0, 0) using Lagrange multipliers. We let

f(x, y, z) = x2 + y2 + z2.

We want the minimum value of the function f(x, y, z) subject to the constraint
g(x, y, z) = xy + xz = 4.
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> with(linalg):
> f := x∧2 +y∧2 + z∧2;

f := x2 + y2 + z2

> g := x*y + x*z;
g := xy + xz

> grad(f,[x,y,z])-lambda*grad(g,[x,y,z]);

[2x, 2 y, 2 z] − λ [y + z, x, x]

> evalm(%);
[2x − λ (y + z) , 2 y − λx, 2 z − λx]

> map(V->V=0,%):
> convert(%,set):
> EQNS := % union {g=4};

EQNS := {2x − λ (y + z) = 0, 2 y − λx = 0, 2 z − λx = 0, xy + xz = 4}

The set EQNS contains the equations we must solve. They correspond to the
equations

grad f(x, y, z) = λ grad g(x, y, z),
g(x, y, z) = 4.

We set

> EnvExplicit := true;
true

so that the solutions will be more explicit.

> SOL := solve(EQNS,x,y,z,lambda);

SOL :=
{{

λ =
√

2, x = 2
3
4 , z = 21/4, y = 21/4

}
,{

λ = −
√

2, x = −2
1√
−
√

2
, z = −

√
−
√

2, y = −
√
−
√

2

}
,{

z =
√

−
√

2, y =
√
−
√

2, λ = −
√

2, x = 2
1√
−
√

2

}
,{

λ =
√

2, z = −21/4, y = −21/4, x = −2
3
4

}}
The only real solutions occur when

(x, y, z) = ±(2
3
4 , 2

1
4 , 2

1
4 ).
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> subs(SOL[1],sqrt(f)); √
4 21/4

> radsimp(%);
2 21/4

The minimum distance is 2
5
4 .

10.6 Multiple integrals

10.6.1 Double integrals
As an example, we compute the double integral∫ 1

0

∫ 1

√
y

sin(x3) dx dy =
∫∫
R

sin(x3) dx dy,

where R is the region given by

0 ≤ y ≤ 1,
√

y ≤ x ≤ 1.

Try

> I1 := Int(Int(sin(x∧3),x=sqrt(y)..1),y=0..1);

I1 :=
∫ 1

0

∫ 1

√
y

sin(x3)dx dy

> value(%);

Did you get a terrible mess? It is clear, we should reverse the order of integration:∫∫
R

sin(x3) dx dy =
∫ 1

0

∫ x2

0

sin(x3) dy dx.

> I2:=Int(Int(sin(x∧3),y=0..x∧2),x=0..1);

I2 :=
∫ 1

0

∫ x2

0

sin(x3)dy dx

> value(%);

−1
3

cos(1) +
1
3

We found that ∫∫
R

sin(x3) dx dy =
1
3
(1 − cos 1).
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Check your answer.

> evalf(I1);
> evalf(I2);

10.6.2 Triple integrals

As an example, we compute the triple integral

∫∫∫
S

z2
√

x2 + y2 dV =
∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ √
1−x2−y2

−
√

1−x2−y2
z2
√

x2 + y2dz dy dx,

where S is the unit ball centered at the origin. Try

> I1:=Int(z∧2*sqrt(x∧2+y∧2),z=-sqrt(1-x∧2-y∧2)..
sqrt(1-x∧2-y∧2)):

> I2:=Int(I1,y=-sqrt(1-x∧2)..sqrt(1-x∧2)):
> I3:=Int(I2,x=-1..1);

∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ √
1−x2−y2

−
√

1−x2−y2
z2
√

x2 + y2dz dy dx

> value(%);

Did you get another mess? The inner integral I2 can be written as an elliptic
integral, which leaves I3 unevaluated. We try converting to cylindrical coordi-
nates.

> f:=z∧2*r;

z2r

> I1:=Int(f*r,z=-sqrt(1-r∧2)..sqrt(1-r∧2)):
> I2:=Int(I1,r=0..1):
> I3:=Int(I2,theta=0..2*Pi);

∫ 2 π

0

∫ 1

0

∫ √
1−r2

−
√

1−r2
z2r2dz dr dθ

> value(I3);

1/24π2

We found that

∫∫∫
S

z2
√

x2 + y2 dV =
∫ 2 π

0

∫ 1

0

∫ √
1−r2

−
√

1−r2
z2r(r dz dr dθ) =

π2

24
.
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Let’s try doing this integral in spherical coordinates:

r = ρ sin φ,

x = r cos θ = ρ sin φ cos θ,

y = r sin θ = ρ sin φ sin θ,

z = ρ cos φ,

dV = ρ2 sinφdρ dφ dθ.

> f :=z∧2*r;
f := z2r

> f := subs(r=rho*sin(phi),z=rho*cos(phi),f);

f := ρ3 (cos(φ))2 sin(φ)

> d := rho∧2*sin(phi):
> I1:=Int(f*d,phi=0..Pi):
> I2:=Int(I1,rho=0..1):
> I3:=Int(I2,theta=0..2*Pi);

I3 :=
∫ 2 π

0

∫ 1

0

∫ π

0

ρ5 (cos(φ))2 (sin(φ))2 dφ dρ dθ

> value(%);
1/24π2

Again, we found that ∫∫∫
S

z2
√

x2 + y2 dV =
π2

24
.

10.6.3 The Jacobian
The Jacobian of a transformation is used to calculate a change of variables

in multiple integrals. We use the jacobian function in the linalg package. As
an example, we show that in spherical coordinates

dV = ρ2 sin φdρ dφ dθ,

which was a formula we used in the previous section.

> r := rho*sin(phi):
> x := r*cos(theta):
> y := r*sin(theta):
> z := rho*cos(phi):
> f := vector([x,y,z]);

f := [ρ sin(φ) cos(θ), ρ sin(φ) sin(θ), ρ cos(φ)]
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> with(linalg):
> jacobian(f,[rho,phi,theta]);⎡⎢⎣

sin(φ) cos(θ) ρ cos(φ) cos(θ) −ρ sin(φ) sin(θ)

sin(φ) sin(θ) ρ cos(φ) sin(θ) ρ sin(φ) cos(θ)

cos(φ) −ρ sin(φ) 0

⎤⎥⎦
> det(%);

(sin(φ))3 (cos(θ))2 ρ2 + (sin(φ))3 (sin(θ))2 ρ2

+ρ2 (cos(φ))2 (cos(θ))2 sin(φ) + ρ2 sin(φ) (sin(θ))2 (cos(φ))2

> simplify(%);
sin(φ)ρ2

We found that
∂(x, y, z)
∂(ρ, φ, θ)

= ρ2 sin φ,

which implies that
dV = ρ2 sin φdρ dφ dθ.

10.7 Vector field

10.7.1 Plotting a vector field
To plot a two-dimensional vector field, we use the fieldplot function in the

plots package. See Section 6.1.10 for an example. To plot a three-dimensional
vector field, we use the fieldplot3d function in the plots package. See Section
6.2.8 for an example.

10.7.2 Divergence and curl
To compute divergence we use the diverge function in the linalg package,

and to compute the curl we use the curl function. We compute the divergence
and curl of the vector field

�F = xy�i + y2z2�j + xyz�k.

> F := vector([x*y,y∧2*z∧2,x*y*z]);

F := [xy, y2z2, xyz]

> with(linalg):
> diverge(F,[x,y,z]);

y + 2 yz2 + xy
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> curl(F, [x,y,z]);

[xz − 2 y2z,−yz,−x]

We found that

div �F = y + 2 yz2 + xy,

curl �F = (xz − 2 y2z)�i − yz�j − x�k.

10.7.3 Potential functions
The function Φ(x, y, z) is a potential function of the vector field �F (x, y, z) if

grad Φ = �F .

The function potential in the linalg package determines whether a given vector
field has a potential function and calculates one if it exists. We compute a
potential function for the vector field

�F = (yz + z3 − 4 y2)�i + (xz − 8 yx)�j + (yx + 3xz2)�k.

> with(linalg):
> F := vector([y*z+z∧3-4*y∧2, x*z-8*y*x, y*x+3*x*z∧2]);

F := [yz + z3 − 4 y2, xz − 8 yx, yx + 3xz2]

> potential(F,[x,y,z],’Phi’);

true

> Phi; (
yz + z3 − 4 y2

)
x

The call potential(F,[x,y,z],’Phi’) assigns the potential function the name
Phi if it exists. We found that �F does have a potential function

Φ = x
(
yz + z3 − 4 y2

)
.

Check your answer:

> grad(Phi,[x,y,z])-F;
> evalm(%);
> simplify(%);

Were you able to verify that grad Φ = �F?
A vector field �G is a vector potential of a vector field �F if �F = curl �G. The

maple function vecpotent in the linalg package determines whether a given
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vector field has a vector potential and calculates one if it exists. We find a
vector potential for the vector field

�B = (x − y)�i − y�j − x�k.

> with(linalg):
> B := vector([x-y,-y,-x]);

B := [x − y,−y,−x]

> vecpotent(B,[x,y,z],’G’);

true

> evalm(G);
[−yz + xy,−xz + yz, 0]

We found that �G = (xy − yz)�i + (yz − xz)�j is a vector potential for �B. Now
check the answer:

> curl(G,[x,y,z]);

10.8 Line integrals
Let �F (x, y, z) be a vector field and C a smooth, oriented curve parameterized

by �r(t). The line integral∫
C

�F · d�r =
∫ b

a

�F (�r(t)) · �r ′(t) dt.

We calculate the work done by the force field

�F (x, y) = 2xy�i + (x − y)�j,

in moving a particle once around the unit circle C (x2+y2 = 1) counterclockwise.
The circle is parameterized by

�r(t) = cos t�i + sin t�k,

where 0 ≤ t ≤ 2π. The work done is given by the line integral

W =
∫
C

�F · d�r.

> with(linalg):
> F := (x,y) -> vector([2*x*y,x-y]);

F := (x, y) �→ [2xy, x − y]
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> r := t -> vector([cos(t),sin(t)]);

r := t �→ [cos(t), sin(t)]

> dr := map(diff,r(t),t);

dr := [− sin(t), cos(t)]

> Int(dotprod(F(r(t)[1],r(t)[2]),dr,orthogonal),t=0..2*Pi);∫ 2 π

0

−2 cos(t) (sin(t))2 + (cos(t) − sin(t)) cos(t)dt

> value(%);
π

We found that
W =

∫
C

�F · d�r = π.

10.9 Green’s theorem
Green’s theorem states that∫

C

M(x, y) dx + N(x, y) dy =
∫∫
R

(
∂N

∂x
− ∂N

∂y

)
dA,

where C is a piecewise, smooth curve that encloses a simply connected region
R in the plane. In the previous section, we calculated the work done by a force
field using a line integral. We calculate this line integral using Green’s theorem.
Here, ∫

C
�F · d�r =

∫
C

M(x, y) dx + N(x, y) dy,

where M(x, y) = 2xy, N(x, y) = x−y. We apply Green’s theorem with R being
the unit circle given in polar coordinates by the inequalities

0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

Thus we write the double integral in polar coordinates and use dA = r dr dθ:

> M := 2*x*y;
M := 2xy

> N := x - y;
N := x − y

> diff(N,x)-diff(M,y);
1 − 2x
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> subs(x=cos(theta),y=sin(theta),%);

1 − 2 cos(θ)

> Int(Int(%*r,r=0..1),theta=0..2*Pi);∫ 2 π

0

∫ 1

0

(1 − 2 cos(θ)) rdr dθ

> value(%);
π

We found that
W =

∫∫
R

(1 − 2x) dA = π,

confirming our earlier result.

10.10 Surface integrals
Let R ⊂ R2 and suppose �r : R −→ R3 gives a parameterization of a surface

Σ. In other words, a point (x, y, z) on the surface is given by three functions:

x = r1(u, v),
y = r2(u, v),
z = r3(u, v).

Let G : Σ −→ R. The surface integral of G over Σ is given by∫∫
Σ

G(x, y, z) dS =
∫∫
R

G(�r(u, v)) |Tu × Tv| dA,

where Tu = ∂x
∂u

�i + ∂y
∂u

�j + ∂z
∂u

�k, and Tv = ∂x
∂v

�i + ∂y
∂v

�j + ∂z
∂v

�k.
We compute the surface area of a generic torus parameterized by

x = (R + r cos u) cos v,

y = (R + r cos u) sin v,

z = r sin u,

where 0 ≤ u, v ≤ 2π. This is the torus obtained by rotating a circle centered at
(R, 0, 0) radius r (in the xz-plane) about the z-axis. Try plotting an example
with R = 3, r = 1:

> x:=(3+cos(u))*cos(v);
> y:=(3+cos(u))*sin(v);
> z:=sin(u);
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> plot3d([x,y,z],u=0..2*Pi,v=0..2*Pi,scaling=constrained,
orientation=[45,65]);

Figure 10.5 A torus.

We now compute the surface area of our generic torus T :

> with(linalg):
> x:=(R+r*cos(u))*cos(v);

x := (R + r cos(u)) cos(v)

> y:=(R+r*cos(u))*sin(v);

y := (R + r cos(u)) sin(v)

> z:=r*sin(u);
z := r sin(u)

> rv:=vector([x,y,z]);

rv := [(R + r cos(u)) cos(v), (R + r cos(u)) sin(v), r sin(u)]

> Tu := map(diff,rv,u);

Tu := [−r sin(u) cos(v),−r sin(u) sin(v), r cos(u)]

> Tv := map(diff,rv,v);

Tv := [− (R + r cos(u)) sin(v), (R + r cos(u)) cos(v), 0]

> cp := crossprod(Tu,Tv);

cp := [−r cos(u) (R + r cos(u)) cos(v),−r cos(u) (R + r cos(u)) sin(v),

−r sin(u) (cos(v))2 (R + r cos(u)) − r sin(u) (sin(v))2 (R + r cos(u))]
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> simplify(dotprod(cp,cp,orthogonal)):
> n := radsimp(sqrt(factor(%)));

n := r (R + r cos(u))

> int(int(n,u=0..2*Pi),v=0..2*Pi);

4Rπ2r

We find that

Surface Area =
∫∫
T

1 dS =
∫ 2π

0

∫ 2π

0

|Tu × Tv| du dv

=
∫ 2π

0

∫ 2π

0

r (R + r cos(u)) du dv = 4π2 R r.

10.10.1 Flux of a vector field
As above, let R ⊂ R2 and suppose �r : R −→ R3 gives a parameterization

of an oriented surface Σ, with unit normal �n(u, v) at the point �r(u, v). Let
�F : Σ −→ R3 be a vector field on Σ. The flux of �F over Σ is given by∫∫

Σ

�F · d�S =
∫∫
Σ

�F · �n dS =
∫∫
R

�F · (Tu × Tv) dA,

where Tu, Tv are defined as above.
As an example, we find the flux of the vector field

�F (x, y, z) = y4�i + z4�j + x4 �k,

over the unit hemisphere x2 + y2 + z2 = 1, z ≥ 0. We use spherical coordinates
to parameterize the unit sphere:

�r(φ, θ) = sinφ cos θ�i + sin φ sin θ�i + cos φ�k,

where 0 ≤ θ ≤ 2π, and 0 ≤ φ ≤ π/2. First we compute Tφ × Tθ:

> with(linalg):
> x:=sin(phi)*cos(theta);

x := sin(φ) cos(θ)

> y:=sin(phi)*sin(theta);

y := sin(φ) sin(θ)
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> z:=cos(phi);
z := cos(φ)

> rv:=vector([x,y,z]);

rv := [sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)]

> Tphi := map(diff,rv,phi);

Tphi := [cos(φ) cos(θ), cos(φ) sin(θ),− sin(φ)]

> Ttheta := map(diff,rv,theta);

Ttheta := [− sin(φ) sin(θ), sin(φ) cos(θ), 0]

> cp := simplify(crossprod(Tphi,Ttheta));

cp := [−
(
−1 + (cos(φ))2

)
cos(θ),−

(
−1 + (cos(φ))2

)
sin(θ),

cos(φ) sin(φ)]

We found

Tφ × Tθ = sin2 φ cos θ�i + sin2 φ sin θ�j + cos φ sin φ�k.

We are now ready to compute the flux:

> F := (x,y,z) -> vector([y∧4,z∧4,x∧4]);

F := (x, y, z) �→ [y4, z4, x4]

> dp := dotprod(F(x,y,z),cp,orthogonal);

dp := − (sin(φ))4 (sin(θ))4
(
−1 + (cos(φ))2

)
cos(θ)−

(cos(φ))4
(
−1 + (cos(φ))2

)
sin(θ) + (sin(φ))5 (cos(θ))4 cos(φ)

> int(int(dp,phi=0..Pi/2),theta=0..2*Pi);

1/8π

We found

Flux =
∫ 2π

0

∫ π/2

0

�F · (Tφ × Tθ) dφ dθ =
π

8
.
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10.10.2 Stoke’s theorem

Stoke’s theorem states that∫
C

�F · d�r =
∫∫
Σ

curl �F · d�S,

where Σ is an oriented surface bounded by a simple closed curve C with positive
orientation, and �F is a vector field.

We apply Stoke’s theorem to the problem considered in the previous section.
Luckily, the vector field

�F (x, y, z) = y4�i + z4�j + x4 �k,

has a vector potential.

> with(linalg):
> F := (x,y,z) -> vector([y∧4,z∧4,x∧4]);

F := (x, y, z) �→ [y4, z4, x4]

> vecpotent(F(x,y,z),[x,y,z],G);

true

> evalm(G);

[
1
5

z5 − x4y,−y4z, 0]

We found that
curl �G = �F ,

where
�G =

(
1
5

z5 − x4y

)
�i − y4z�j.

We check our answer.

> curl(G,[x,y,z]);
[y4, z4, x4]

Let Σ be the upper unit hemisphere x2 + y2 + z2 = 1, z ≥ 0. Then by Stoke’s
theorem, we have ∫∫

Σ

�F · d�S =
∫∫
Σ

curl �G · d�S =
∫
C

�G · d�r,

where C is the positive unit circle x2 +y2 = 1 in the xy-plane. We use this result
to compute the flux integral:
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> r:=t->vector([cos(t),sin(t),0]);

r := t �→ [cos(t), sin(t), 0]

> dr := map(diff,r(t),t);

dr := [− sin(t), cos(t), 0]

> rsubs := J -> subs({x=cos(t),y=sin(t),z=0},J);

rsubs := J �→ subs({x = cos(t), y = sin(t), z = 0}, J);

> GG := map(rsubs,G);

GG := [− (cos(t))4 sin(t), 0, 0]

> Gdr := dotprod(GG,dr,orthogonal);

Gdr := (cos(t))4 (sin(t))2

> int(Gdr,t=0..2*Pi);
1/8π

We found

Flux =
∫∫
Σ

�F · d�S =
∫
C

�G · d�r,=
∫ 2π

0

cos4 t sin2 t dt =
π

8
,

which confirms the result obtained in the previous section.

10.10.3 The divergence theorem
The divergence theorem states that∫∫

Σ

�F · d�S =
∫∫
Σ

�F · �n dS =
∫∫∫

D

div �F dV,

where D is a simple solid region whose boundary surface Σ is oriented by the
normal �n directed outward from D, and �F is a vector field.

We verify the divergence theorem for the vector field

�F (x, y, z) = x3�i + y3�j + z3 �k,

over the solid unit sphere D, x2 + y2 + z2 ≤ 1. In spherical coordinates this is
given by 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, 0 ≤ ρ ≤ 1. Clearly,

div �F = 3(x2 + y2 + z2) = 3ρ2.
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We compute the divergence integral.

> divF := 3*rho∧2;
divF := 3 ρ2

> dV := rho∧2*sin(phi);

dV := ρ2 sin(φ)

> int(int(int(divF*dV,theta=0..2*Pi),phi=0..Pi),rho=0..1);

12
5

π

We found that ∫∫∫
D

div �F dV =
12π
5

.

Let Σ be the unit sphere x2 + y2 + z2 = 1. The surface integral∫∫
Σ

�F · d�S =
∫∫
R

�F · (Tφ × Tθ) dA,

where Tφ, Tθ are given in Section 10.10.1 and R is given by 0 ≤ φ ≤ π,
0 ≤ θ ≤ 2π. In Section 10.10.1 we found that

Tφ × Tθ = sin2 φ cos θ�i + sin2 φ sin θ�j + cos φ sin φ�k.

We are now ready to compute the surface integral:

> with(linalg):
> x:=sin(phi)*cos(theta):
> y:=sin(phi)*sin(theta):
> z:=cos(phi):
> rv:=vector([x,y,z]):
> Tphi := map(diff,rv,phi):
> Ttheta := map(diff,rv,theta):
> cp := simplify(crossprod(Tphi,Ttheta)):
> F := (x,y,z) -> vector([x∧3,y∧3,z∧3]):
> dp := dotprod(F(x,y,z),cp,orthogonal):
> int(int(dp,phi=0..Pi),theta=0..2*Pi);

12
5

π

We found that ∫∫
Σ

�F · d�S =
12π
5

,

and thus ∫∫∫
D

div �F dV =
12π
5

=
∫∫
Σ

�F · d�S,

confirming the divergence theorem for our example.
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11.1 Arithmetic of complex numbers
In maple the complex number i (also known as j to electrical engineers) is

represented by the symbol I.

> I∧2;

−1

Observe that I∧2 returned −1 as expected. Arithmetic of complex numbers is
easy for maple:

> z1 := 2 + 3*I;

z1 := 2 + 3 I

> z2 := 4 - I;

z2 := 4 − I

> z1 + z2;

6 + 2 I

> z1 - z2;

−2 + 4 I

> z1 * z2;

11 + 10 I

> z1/z2;
5
17

+
14
17

I

> abs(z1); √
13

> Re(z1);

2

> Im(z1);

3

> conjugate(z1);

2 − 3 I

271
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For z1 = 2 + 3i and z2 = 4 − i, maple easily found that

z1 + z2 = 6 + 2i,
z1 − z2 = −2 + 4i,

z1 z2 = 11 + 10i,
z1

z2
=

5
17

+
14
17

i,

|z1| =
√

13,
�z1 = 2,
�z2 = 3,

z1 = 2 − 3i.

Notice that all complex arithmetic was performed automatically. In maple the
functions Re and Im give the real and imaginary parts, respectively. Naturally,
conjugate is the conjugate function.

Now try:

> z := x + I*y;
z := x + Iy

> Re(z);
Re(x + Iy)

> Im(z);
Im(x + Iy)

Notice this time that Re(z) did not return x for the real part of z = x+ iy. The
problem is that we have not told maple that x and y are real. Try again:

> assume(x,real);
> assume(y,real);
> z := x + y*I;

z := x∼ + y∼I

> Re(z);
x∼

> Im(z);
y∼

Alternatively, we can use the evalc function. This function attempts to split
a complex number into its real and imaginary parts. First we restart:

> restart;
> x,y;

x, y

Now try
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> z := x + I*y;
x + Iy

> evalc(Re(z));
x

> evalc(Im(z));
y

> evalc(abs(z)); √
x2 + y2

> evalc(conjugate(z));
x − Iy

Note that the evalc function assumed that x and y were real.

11.2 Polar form
To convert the complex number z to polar form we use the command

convert(z,polar). Let’s find the polar form of z =
√

3 + i:

> z := sqrt(3) + I;
z :=

√
3 + I

> convert(z,polar);

polar(2,
1
6

π)

This means that

z =
√

3 + i = 2 eπi/6 = 2 (cos π/6 + i sin π/6).

In general, polar(r,θ) corresponds to the complex number r eiθ. We use evalc
to convert polar form to Cartesian form:

> w := polar(sqrt(2),Pi/4);

w := polar(
√

2,
1
4

π)

> evalc(w);
1 + I

We found √
2 eπi/4 = 1 + i.

In maple the principal value of the argument is given by the argument
function.

> argument(1-I);

−1
4

π
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> argument(polar(4,5*Pi/7));

5/7π

> argument(polar(4,12*Pi/7));

−2
7

π

We found that

Arg (1 − i) = −π

4
,

Arg (4 e5π/7) =
5π

7
,

Arg (4 e12π/7) = −2π

7
.

A related function is arctan. For real numbers a, b, arctan(b,a) returns
Arg (a + bi).

> argument(sqrt(3) - I);

−1
6

π

> arctan(-1,sqrt(3));

−1
6

π

11.3 nth roots
As an example, let’s find the 4th roots of −16i. We use the solve function:

> solve(z∧4=-16*I);

(−16 I)1/4, I(−16 I)1/4,−(−16 I)1/4,−I(−16 I)1/4

More explicit solutions would be nice. Let’s try simplify:

> map(simplify,[%]);

[(−16 I)1/4, I(−16 I)1/4,−(−16 I)1/4,−I(−16 I)1/4]

Let’s try evalc and simplify:

> solve(z∧4=-16*I):
> map(simplify,[%]):
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> map(evalc,%):
> map(simplify,%);

[2 cos(
1
8

π) − 2 I sin(
1
8

π), 2 sin(
1
8

π) + 2 I cos(
1
8

π),

−2 cos(
1
8

π) + 2 I sin(
1
8

π),−2 sin(
1
8

π) − 2 I cos(
1
8

π)]

That’s better. Looks like we should have used polar form. Try

> p := convert(-16*I,polar);
> solve(z∧4 = p);
> map(simplify,[%]);

In any case, the 4th roots of −16i are

z = ±2 (cos π
8 ± i sin π

8 ).

11.4 The Cauchy-Riemann equations and harmonic functions
Let z = x + iy, and suppose

f(z) = u(x, y) + i v(x, y),

is analytic on some domain. Then the Cauchy-Riemann equations,

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −∂u

∂y
,

hold on this domain. The converse holds, assuming all the partial derivatives
are continuous. As an example, we show, using maple, that f(z) = z7 satisfies
the Cauchy-Riemann equations.

> z := x + I*y;
x + iy

> u := evalc(Re(z∧7));

x7 − 21x5y2 + 35x3y4 − 7xy6

> v := evalc(Im(z∧7));

7x6y − 35x4y3 + 21x2y5 − y7

We see that
f(z) = z7 = u + i v,

where

u = x7 − 21x5y2 + 35x3y4 − 7xy6,

v = 7x6y − 35x4y3 + 21x2y5 − y7.
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> diff(u,x)-diff(v,y);
0

> diff(v,x)+diff(u,y);
0

We see that the function f(z) = z7 satisfies the Cauchy-Riemann equations and
is thus analytic because the partial derivatives are clearly continuous.

A real-valued function u(x, y) is harmonic if it satisfies Laplace’s equation

∂2

∂x2
u +

∂2

∂y2
u = 0,

and u(x, y) has continuous first- and second-order partial derivatives. The left
side of the equation above is the Laplacian of u(x, y). This can be computed
using the laplacian function in the linalg package. We use maple to show that

u(x, y) = cos3 x cosh3 y − 3 cos x cosh y sin2 x sinh2 y,

is harmonic.

> with(linalg):
> u:=cos(x)∧3*cosh(y)∧3-3*cos(x)*cosh(y)*sin(x)∧2*sinh(y)∧2;

(cos(x))3 (cosh(y))3 − 3 cos(x) cosh(y) (sin(x))2 (sinh(y))2

> laplacian(u,[x,y]);
0

We see that u(x, y) satisfies Laplace’s equation and is harmonic because the first-
and second-order partial derivatives are clearly continuous.

If u(x, y) is harmonic on a simply connected domain, then there is a harmonic
function v(x, y) such that

f(z) = u(x, y) + i v(x, y)

is analytic. The function v(x, y) is called the harmonic conjugate of u(x, y). We
use maple to find a harmonic conjugate of our function u(x, y) above.

We want
∂u

∂x
=

∂v

∂y
,

so that
v =

∫
∂u

∂x
dy.

> u:=cos(x)∧3*cosh(y)∧3-3*cos(x)*cosh(y)*sin(x)∧2
*sinh(y)∧2;

(cos(x))3 (cosh(y))3 − 3 cos(x) cosh(y) (sin(x))2 (sinh(y))2
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> v:=simplify(int(diff(u,x),y)+ K(x));

−4 (cos(x))2 sin(x) sinh(y) (cosh(y))2 + (cos(x))2 sin(x) sinh(y)

+ sin(x) sinh(y) (cosh(y))2 − sin(x) sinh(y) + K(x)

We also require that
∂v

∂x
= −∂u

∂y
.

> simplify(diff(v,x)+diff(u,y));

d

dx
K(x)

We can take K(x) = 0 and

v(x, y) = − sin x sinh y
(
4 cos2 x cosh2 y − cos2 x − cosh2 y + 1

)
,

is a harmonic conjugate of u(x, y). Do you recognize the analytic function

f(z) = u(x, y) + i v(x, y)?

11.5 Elementary functions
maple knows the complex exponential function

ez = ex (cos y + i sin y) ,

where z = x + i y.

> z := x + I*y;
z := x + I y

> evalc(exp(z));
ex cos(y) + iex sin(y)

> exp(3/2*ln(2) + Pi/4*I);

e
3
2 ln(2)+ 1

4 iπ

> evalc(%);
2 + 2 i

We found that for z = 3
2 ln 2 + π

4 i, ez = 2(1 + i).
maple knows the complex trigonometric functions.

> z := x + I*y;
z := x + I y
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> evalc(sin(z));

sin(x) cosh(y) + i cos(x) sinh(y)

> evalc(cos(z));

cos(x) cosh(y) + −i sin(x) sinh(y)

> cos(ln(2)*I);

5/4

We found that cos(i ln 2) = 5
4 . Try the following:

> z := x + I*y;
> evalc(tan(z));
> evalc(cot(z));
> evalc(sec(z));
> evalc(csc(z));
> evalc(cosh(z));
> evalc(sinh(z));

maple knows the principal value of the complex logarithm

Log z = ln |z| + iArg z.

> z := x + I*y;

z := x + I y

> log(z);

ln(x + I y)

> evalc(%);

1/2 ln(x2 + y2) + I arctan(y, x)

> log(-1);

Iπ

> log(I);

1/2 Iπ

> w :=log(exp(2+101*I*Pi/3));

ln(e2+ 101
3 Iπ)

> evalc(w);

2 − 1
3

Iπ
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We found

Log (−1) = π i,

Log (i) =
πi

2
,

Log (e2+101πi/3) = 2 − 1
3

iπ.

Now try

> z:=x+I*y;
> evalc(exp(log(z)));
> evalc(log(exp(z)));

Did you get the results you expected?
maple is able to compute complex exponents.

> z := I∧(2*I);
z := I2 I

> evalc(z);
e−π

Here maple computed the principal value of i2i.

i2i = e2i Log i = e2i(πi/2) = e−π.

11.6 Conformal mapping
Let D ⊂ C. A mapping f : D −→ C is conformal if it preserves angles in

size and sense. If f(z) is analytic and f ′(z) is nonzero on D, then the mapping
f is conformal. The conformal function in the plots package is used to plot the
image of rectangular regions under a complex function f(z). The syntax of the
conformal function has the form

conformal(f, z=z1..z2)
conformal(f, z=z1..z2, grid=[m,n])
conformal(f, z=z1..z2, grid=[m,n], numxy=[a,b])

Here f is an expression in the variable z. This plots the image of a rectangle
with corners at z = z1, z2. It actually plots the image of horizontal and vertical
grid lines in the rectangle. The option grid=[m,n] specifies the size of the grid.
The option numxy=[a,b] specifies the number of points to plot on the image of
each grid line.

We plot the image of the rectangle R = [−1, 1] × [0, 1] under the mapping
w = z2. First we plot the rectangle R:

> with(plots):
> conformal(z,z=(-1)..(1+I),grid=[11,6],labels=[x,y],

scaling=constrained);
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0.2

0.4

0.6

0.8

1

–1 –0.5 0.5 1

x

y

Figure 11.1 Rectangle R in the xy-plane.

Now we plot the image under the mapping w = z2:

> with(plots):
> conformal(z∧2,z=(-1)..(1+I),grid=[11,6],labels=[u,v],

scaling=constrained);

–2

–1

1

2

–1 –0.5 0.5 1

u

v

Figure 11.2 Image of R under w = z2 in the uv-plane.

Try plotting the image of a rectangle [0, 1] × [0, 1] under the mapping w =
e2πiz.

> with(plots):
> conformal(exp(2*Pi*I*z),z=0..(1+I));
> conformal(exp(2*Pi*I*z),z=0..(1+I),grid=[20,20],

numxy=[30,30]);

With maple 7, the plots package contains a new function conformal3d, that
projects a conformal map onto the Riemann sphere. Try plotting the image of
the rectangle [−2, 2]× [0, 2], under that map w = z2, onto the Riemann sphere:
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> with(plots):
> conformal3d(z∧2,z=-2..2+2*I,grid=[40,40]);

We now consider the problem of plotting the image of a curve C under a
complex mapping f(z). Suppose C is parameterized by

x = x(t), y = y(t),

0 ≤ t ≤ b. Then the image f(C) is parameterized by

u = �(f(x(t) + i y(t)), v = �(f(x(t) + i y(t)), (a ≤ t ≤ b),

in the uv-plane. As an example we consider the Joukowski airfoil. Here

f(z) = z +
1
z
.

> f := z -> z + 1/z;
f := z �→ z + z−1

> factor(diff(f(z),z));

(z − 1) (z + 1)
z2

We see that f(z) is conformal except at z = ±1. Now we consider any circle
centered on the imaginary axis that passes through ±1. Let z = b i be the center.
Then the circle is parameterized by

x =
√

1 + b2 cos θ, y = b +
√

1 + b2 sin θ,

where 0 ≤ θ ≤ 2π. Try plotting the circle with b = 1.

> b := 1:
> x := sqrt(1+b∧2)*cos(t);
> y := b + sqrt(1+b∧2)*sin(t);
> plot([x,y,t=0..2*Pi],scaling=constrained);

Did you get the correct circle? Now we plot the image of this circle under the
mapping w = f(z) = z + 1/z.

> z := x + I*y;
> u := simplify(evalc(Re(f(z))));
> v := simplify(evalc(Im(f(z))));
> plot([u,v,t=0..2*Pi],scaling=constrained);

Did you get a single arc joining the points z = ±2? For the Joukowski airfoil we
must a consider a circle passing through z = −1 but whose center is slightly to
the right of the imaginary axis. The proc JoukowskiP(b, ε) plots the image of
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the circle center b + iε and passing through −1, under the mapping w = f(z) =
z + 1/z.

> JoukowskiP := proc(b,epsilon)
> local r,x,y,z,u,v,t:
> r := sqrt( (1+epsilon)∧2 + b∧2):
> x := r*cos(t)+epsilon:
> y := b + r*sin(t):
> z := x + I*y:
> u := simplify(evalc(Re(z + 1/z))):
> v := simplify(evalc(Im(z + 1/z))):
> return plot([u,v,t=0..2*Pi]):
> end proc:
We plot the Joukowski airfoil with b = ε = 1/10.

> with(plots):
> display(JoukowskiP(1/10,1/10),scaling=constrained,

thickness=2);

0.2

0.4

–2 –1 1 2

Figure 11.3 The Joukowski airfoil.

Try plotting the airfoil for other values of b and ε.

> display(JoukowskiP(0,1/10),scaling=constrained);
> display(JoukowskiP(1,1/10),scaling=constrained);
> display(seq(JoukowskiP(k/5,1/10),k=0..5),

scaling=constrained);

11.7 Taylor series and Laurent series
If f(z) is analytic for |z − z0| < r, then f(z) has a Taylor series expansion

f(z) =
∞∑

n=0

f (n)(z0)
n!

(z − z0)n,

valid for |z−z0| < r. In maple, the first T terms of the Taylor series of f(z) near
z = z0 is computed using the command taylor(f(z), z=z0, T). The function

f(z) =
2 − z

(1 − z)2
,

is analytic for z �= 1. We compute the first few terms of the Taylor expansion
near z = 0.
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> f := (2-z)/(1-z)∧2;

f :=
2 − z

(1 − z)2

> taylor(f, z=0, 10);

2 + 3 z + 4 z2 + 5 z3 + 6 z4 + 7 z5 + 8 z6 + 9 z7 + 10 z8 + 11 z9 + O
(
z10

)
It would seem that

f(z) =
2 − z

(1 − z)2
=

∞∑
n=0

(n + 2) zn,

for |z| < 1. Because our function f(z) is analytic at z = 2 we compute a Taylor
expansion near z = 2.

> taylor(f, z=2);

−(z − 2) + 2 (z − 2)2 − 3 (z − 2)3 + 4 (z − 2)4 − 5 (z − 2)5 + O
(
(z − 2)6

)
It would seem that

f(z) =
2 − z

(1 − z)2
=

∞∑
n=1

(−1)nn (z − 2)n,

for |z − 2| < 1. Our function f(z) is not analytic at z = 1. See what happens
when we use taylor near z = 1.

> taylor(f, z=1, 10);

Error, does not have a taylor expansion, try series()

However, f(z) does have a Laurent series expansion near z = 1 in powers of
(z − 1).

> S := series(f, z=1,10);

S := (z − 1)−2 − (z − 1)−1

It would seem that the Laurent series has only two terms,

f(z) =
2 − z

(1 − z)2
= (z − 1)−2 − (z − 1)−1

.

This is easy to check.

> S := series(f, z=1,10);
> normal(f - S);
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Did this simplify to 0? The problem is that S is still a series.

> whattype(S);
series

First we must convert S to a polynomial.

> P := convert(S, polynom);

1
(z − 1)2

− 1
(z − 1)

> normal(f - P);
0

In general, if f(z) is analytic on an annulus, r1 < |z − z0| < r2, then f(z)
has a Laurent series expansion of the form

f(z) =
∞∑

n=−∞
an(z − z0)n,

valid for r1 < |z − z0| < r2. We use the series function to compute Laurent
series.

The function
g(z) =

−2z + 3
z(z − 1)(z − 2)

,

is analytic for z �= 1, 2. We compute Laurent series expansions for g(z) in powers
of z. There are three different Laurent series because there are three possible
annuli centered at z = 0: 0 < |z| < 1, 1 < |z| < 2, and |z| > 2.

0 < |z| < 1

> g := (-2*z + 3)/z/(z-1)/(z-2);

g :=
−2 z + 3

z (z − 1) (z − 2)

> series(g, z=0, 6);

3
2
z−1 +

5
4

+
9
8
z +

17
16

z2 +
33
32

z3 +
65
64

z4 +
129
128

z5 + O
(
z6
)

It would seem that

g(z) =
−2z + 3

z(z − 1)(z − 2)
=

∞∑
n=−1

(
1 +

1
2n+2

)
zn,

for 0 < |z| < 1.
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1 < |z| < 2

To compute the Laurent expansion on this region, we first need the partial
fraction expansion of g(z).

> PF := convert(g, parfrac, z);

PF :=
3
2

1
z
− 1

z − 1
− 1

2
1

z − 2

We assign names to each term of the partial fraction expansion.

> g1 := op(1,PF);

g1 :=
3
2

1
z

> g2 := op(2,PF);

g2 := − 1
z − 1

> g3 := op(3,PF);

g3 := −1
2

1
z − 2

Thus
g(z) = g1(z) + g2(z) + g3(z),

where g1(z) = 3/(2z), g1(z) = −1/(z − 1), and g3(z) = −1/(2(z − 2)). The
function g2(z) is analytic for z �= 1, so we need the Laurent series expansion
valid for |z| > 1. The function g2(1/z) is analytic for 0 < |z| < 1, so we compute
its Laurent expansion near z = 0.

> gg2 := subs(z=1/z,g2);

gg2 := − 1
z−1 − 1

> series(gg2, z=0);

−z − z2 − z3 − z4 − z5 + O
(
z6
)

So it seems that

g2(z) = −
∞∑

n=1

1
zn

,

for |z| > 1. The function g3(z) is analytic for |z| < 2, so we compute the series
expansion near z = 0.

> series(g3, z=0);

1
4

+
1
8
z +

1
16

z2 +
1
32

z3 +
1
64

z4 +
1

128
z5 + O

(
z6
)
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Thus it seems that
g3(z) =

∑
n=0

1
2n+2

zn,

for |z| < 2. We have the Laurent expansion

g(z) =
−2z + 3

z(z − 1)(z − 2)
=

−2∑
n=−∞

zn +
∞∑

n=−1

1
2n+2

zn,

for 1 < |z| < 2.

|z| > 2

The remaining region to consider is given by |z| > 2. We leave this as an exercise
for the reader. The extra computation involves computing the Laurent series of
g3(z) valid for |z| > 2, because we already have the Laurent series of g2(z) for
|z| > 1.

11.8 Contour integrals
Let C be a piecewise, smooth curve with parameterization z(t) = x(t)+i y(t),

a ≤ t ≤ b. Let f : C −→ C be a continuous function. The contour integral of
f(z) over the contour C is given by∫

C

f(z) dz =
∫ b

a

f(z(t)) z′(t) dt,

where
z′(t) = x′(t) + i y′(t).

Let C be the parabolic contour y = x2, 0 ≤ x ≤ 1. C is parameterized by
z(t) = t + i t2, 0 ≤ t ≤ 1. We compute the contour integral of f(z) = �(z2) over
C:

> f := z -> Re(z∧2);
f := z �→ Re(z2)

> Z := t-> t + I*t∧2;

Z := t �→ t + it2

> dZ := diff(Z(t),t);
1 + 2 it

> Int(f(Z(t))*dZ,t=0..1)=
> int(evalc(f(Z(t))*dZ),t=0..1);∫ 1

0

Re(
(
t + It2

)2
) (1 + 2 It) dt =

2
15

+
1
6

I

We found ∫
C

�(z2) dz =
2
15

+
1
6

i.
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11.9 Residues and poles
A complex function f(z) has a singularity at z = z0 if f(z) is not analytic

at z0. In maple the singular function will return points at which a function
or expression is not defined. Let

f(z) =
(ez2 − 1)
z4(z − 1)3

.

Clearly, f has singularities at z = 0, 1.

> f := z -> (exp(z∧2) - 1)/z∧4/(z-1)∧3;

f := z �→ ez2 − 1
z4 (z − 1)3

> singular(f(z));

{z = 0} {z = 1} {z = −∞}{z = ∞}

To determine the nature of these singularities, we compute a Laurent expansion
near each singularity.

> series(f(z),z=0);

−z−2 − 3 z−1 − 13
2

− 23
2

z + O
(
z2
)

We see that f has a double pole at z = 0.

> f := z -> (exp(z∧2) - 1)/z∧4/(z-1)∧3:
> series(f(z),z=1);

(
e1 − 1

)
(z − 1)−3 +

(
−2 e1 + 4

)
(z − 1)−2 +

(
5 e1 − 10

)
(z − 1)−1 − 26

3
e1+

20 +
(

89
6

e1 − 35
)

(z − 1) +
(
−341

15
e1 + 56

)
(z − 1)2 + O

(
(z − 1)3

)
We see that f has a pole of order 3 at z = 1.

Suppose f(z) has an isolated singularity at z = z0. The residue of f(z) at
z = z0 is the coefficient of (z − z0)−1 in the Laurent series expansion of f(z)
near z = z0. This is given in maple by the command residue(f(z), z=z0).
We compute the residue of our function f(z) above at each singularity.

> residue(f(z),z=0);
−3

> residue(f(z),z=1);
5 e1 − 10
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We found

Res
z=0

f(z) = −3,

Res
z=1

f(z) = 5e − 10.

This agrees with the Laurent series computations of f(z) near z = 0 and z = 1
done earlier.

As an application we compute the contour integral∫
C

f(z) dz =
∫
C

(ez2 − 1)
z4(z − 1)3

dz,

where C is the simple counterclockwise circle |z| = 2. The function f(z) is
analytic on the contour, and inside the countour except for singularities at z =
0, 1. By Cauchy’s residue theorem∫

C

f(z) dz = 2πi
(
Res
z=0

f(z) + Res
z=1

f(z)
)

.

> CI := 2*Pi*I*(residue(f(z),z=0)+residue(f(z),z=1));

CI := 2 Iπ
(
−13 + 5 e1

)
> evalf(CI);

3.715933220 I

We found ∫
C

f(z) dz = 2 iπ (5 e − 13) ≈ 3.715933220 i.

We check this result by computing the integral using brute force. The contour
C is parameterized by z(t) = 2eit, 0 ≤ t ≤ 2π.

> Z := t -> 2*exp(I*t);

Z := t �→ 2 e(It)

> dZ := diff(Z(t),t);
dZ := 2 Ie(It)

> CI2 := int(evalc(f(Z(t))*dZ),t=0..2*Pi);
> evalf(CI2);

−.88 10−11 + 3.715933233 I

maple was unable to evaluate this integral, so we found an approximation us-
ing evalf. This approximation agrees with the result found using the residue
theorem.
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12. OPENING, SAVING, AND EXPORTING

WORKSHEETS

In Section 1.8 we saw how to save our work in a maple worksheet. In Section
12.1 we will learn how to open an existing worksheet. In Section 12.2 we will
learn how to save a worksheet as an mws file and as a text file of different types.
In Section 12.3 we will see how to open a maple text file, and in Section 12.4
we consider maple’s export features.

12.1 Opening an existing worksheet
To learn how to open an existing worksheet, we need a worksheet that was

created elsewhere. Quite often one acquires new worksheets from the Web. A
rich source of maple worksheets is the Maple Application Center page with url:
http://www.mapleapps.com
See Appendix A for more information. Use your favorite browser to download
the following mws (maple worksheet) file:
http://www.math.ufl.edu/∼frank/maple-book/mwsfiles/ch11 1.mws

You can open a url by clicking on . Save this file on your computer as
ch11 1.mws.

Now start maple if you haven’t done so already and click on . An Open
window should appear. In the File name box, type the name of the file you just
downloaded. You may have to search for it first. Then press Open . The new
worksheet should open. See Figure 12.1 below.

Figure 12.1 A downloaded worksheet.
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The new worksheet is a worksheet version of the first part of Chapter 11 of this
book. Notice that we have defined two complex numbers, z1 and z2. Now scroll
down to the bottom of the worksheet. You will see

(z1) = 2 − 3i

>
>
Click after a maple prompt, type “z1;” and press Return .

> z1;
z1

Notice that z1 did not return the complex number 2 - 3 I. The problem is that
although we have opened a worksheet, the commands in the worksheet have not

been executed. To execute the commands in the worksheet, press . This
time each command in the worksheet is reexecuted and we get

> z1;
2 + 3 I

Add the following to the worksheet:

> 1/z1 + 1/z2;
86
221

− 38
221

I

12.2 Saving a worksheet
To save our new worksheet, click on File, then Save As.... A Save As

window should appear. In the File Name box type ch11 1a, and press Save .
Our worksheet has been saved as the file ch11 1a.mws. This can be opened in a

later maple session by pressing .
Our worksheet can also be saved in different text formats. Again we click on

File, and then Save As.... In the Save As window, click on in the Save as
type box. We see all the possible types:
Maple Worksheet
Maple Text
HTML Source
Rich Text Format
Text
LaTeX Source

Now select Maple text , type ch11 1a in the File name box, and press Save .
This time our worksheet was saved as the text file ch11 1a.txt. Open a text
editor and take a look at this file.
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# 11 Complex Analysis
#
# 11.1 Arithmetic of complex numbers
# In MAPLE the complex number i (also known as j to electrical
# engineers)
# is represented by the symbol I.
> I∧2;

-1
# Observe that I∧2 returned -1 as expected. Arithmetic of complex
# numbers is easy for MAPLE:
#
> z1 := 2 + 3*I;

z1 := 2 + 3 I

Notice that everything in the worksheet has been translated into easy-to-read
text. maple command lines begin with the maple prompt >. Output of com-
mands is converted to text and centered. Lines of text in the worksheet all begin
with comment symbol #.

Now let’s save again but this time select HTML Source . This time when
you press Save an HTML Options window should open. When saving a
worksheet in HTML there are options for how maple output is saved. The
Image Location box is used to specify a subdirectory where images will be saved.
Click next to GIF, deselect the Use Frames option, and press OK . There should
be a new file ch11 1a.html. Use your favorite Web browser to open it. What
you will see looks like a maple worksheet but it is just a Web document. Each
piece of maple output has been saved as a gif file in the images subdirectory.
Any animated plots will be saved as animated gifs. Anyway, it is handy for
posting your work on the Web so that others can view it. Instead of GIF you
can select one of the MathML options. Hopefully sometime soon Web browsers
will understand MathML.

To save your worksheet as a LaTeX file, select LaTeX Source . You will get
a TeX file named ch11 1a.tex. Most output will be saved as LaTeX commands.
Any graphics or plots will be saved as EPS files.

12.3 Opening a MAPLE text file
Opening a maple text file is similar to opening a worksheet. We will open

the file ch11 1a.txt, which was created in the previous section. Click on . An

Open window should appear. In the Files of type box type select Maple text ,

type ch11 1a.txt in the File name box, and then press Open . A Text Format

Choice window will open. Under Text Format select Maple Text , and press

OK . Lines that begin with # appear as text in the worksheet. Lines that begin
with > appear as maple command lines. maple output is not included in the
worksheet.
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We cannot read this text file using read. Look what happens:

> read "ch11 1a.txt";

on line 7, syntax error, > unexpected

The problem is that lines that begin with the maple prompt > will cause an
error. If you are keen to use the read command, you must strip out the prompts.
On a UNIX machine you could do something like

grep ’∧>’ ch11 1a.txt | sed ’s/∧>//’ > ch11 1b.txt

This bit of UNIX code selects maple command lines, strips out the maple
prompts, and saves the result in the file ch11 1b.txt.

> read "ch11 1b.txt";
−1

This time reading was successful. maple commands are executed. Output
appears in the worksheet, but the maple commands do not. For the regular use
of read, see Section 7.10.3.

All of the maple commands used in this book are available on the Web as
maple text files. The following url contains links to these files:
http://www.math.ufl.edu/∼frank/maple-book/mtxtfiles/index.html
Use your favorite browser to go to this page and click on the link ch11-maple.txt.
This will give you the maple text file containing all the maple commands used
in Chapter 11. Save it as ch11-maple.txt and open it in a maple session.

12.4 Exporting worksheets and LaTeX
In Section 12.2 we saw how a maple worksheet can be saved as a .mws file

and opened in a later session. We also saw how it can be saved as different types
of text files. An alternative method is to use the Export As submenu. Click on
File, click on Export As, slide to the right, and a submenu should appear:

HTML...
HTML with MathML...
LaTeX...
Maple Text...
Plain Text...
RTF...

These are basically the same choices we got in Section 12.2 when we used Save
As.... In fact, when you make a selection in the Export As submenu, a Save As
window will appear, and we proceed as before. Try selecting LaTeX... to save
the worksheet as a LaTeX file.

Selecting RTF... converts a worksheet to an rtf (rich text format) file. This
can be used later in a Microsoft� Word document.
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We can export a maple worksheet as MathML by selecting
HTML with MathML... . When you make this selection, a Save As window

will appear. In the Save as type box select HTML Source . Press Save

and an HTML Options window will open. Try selecting MathML 2.0 with
WebEQ. Press OK and the worksheet will be saved as an html file with embed-
ded MathML using WebEQ. This time maple output is converted to MathML.
This avoids saving output as gif files which can use a lot of memory. Even if
your browser does not support MathML, maple output can be viewed using
WebEQ. For more information, see the Web site:
http://www.maplesoft.com/standards/MathML/info.html

We can convert maple output into LaTeX directly in the worksheet using
the latex function. Try

> with(linalg):
> A:=matrix(3,3,(i,j)->sin(Pi*i*j/6));
> latex(A);
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13. DOCUMENT PREPARATION

maple has many features for creating documents. It is possible to add
maple output to text and create technical documents. There are also facilities
for adding headings; changing fonts; inserting expandable subsections, book-
marks, and hyperlinks.

We now demonstrate some of these features with a specific example. Suppose
we have the following

Problem. Reduce the weight of a ball bearing with a diameter of 2 cm by 50%
by drilling a hole through the center. Determine the diameter of the required
drill bit.

This problem can be solved easily in maple by computing a certain integral
and solving an equation. Start maple and type in the following.

> v:=Int(4*Pi*x*sqrt(1-x∧2),x=0..r);

v :=
∫ r

0

4π x
√

1 − x2dx

> v:=value(v);

v := −4
3

π
(
1 − r2

) 3
2 +

4
3

π

> rrs:=solve(v=2*Pi/3,r);

rrs :=

√
1 − 1

2
2(1/3), −

√
1 − 1

2
2(1/3)

> 2*radsimp(%[1]); √
4 − 2 2(1/3)

> evalf(%);
1.216617401

The desired diameter is

2r =
√

2
√

2 − 21/3 ≈ 1.217 cm.

You may be wondering what is going on in this problem. We can make a much
clearer document by adding text.

13.1 Adding text
First we add some text to our document. Click the cursor on the first line

of maple input. Then in the Insert menu, select Execution Group and Before

295
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Cursor. A maple prompt > should appear above the first line of input. Now

click on and type

Reduce the volume of a ball bearing with a diameter of 2 cm by 50%
by drilling a hole through the center. Determine the diameter of
the required drill-bit.

To create a new paragraph, click on and then . Type

First we observe that the ball bearing is the solid obtained by
rotating a circle of radius 1cm about the y-axis. If we let
r be the radius of the drill-bit then, by the shell method, the
volume of material removed is given by

Now we would like to add some in-line math.

13.2 Inserting math into text
In the Insert menu, select Standard Math and a ? should appear. Type

Int(4*Pi*x*sqrt(1-x∧2),x=0..r)

What was maple input should now appear as math in your document. Click on

and type

. We compute the integral

Let’s add a title.

13.3 Adding titles and headings
Click on the first line of the worksheet. In the Insert menu, select

Execution Group and Before Cursor. Then click on . In the box

select P Title . Now type

The Ball Bearing Problem

The document should now have a title. Press enter and type your name

William E. Wilson

Your name should now be underneath the title. Press enter again. To make a
heading this time, we select P Heading 2 . Type

Statement of the problem

To underline this heading, select Statement of the problem with the left

mouse button, and click on .
Now make a heading entitled Solution for the next paragraph. Start by

clicking on the line “First we . . . ”.
Let’s move some of the maple computations into a new subsection.
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13.4 Creating a subsection
Use the first mouse button to highlight the maple inputs

v:=Int(4*Pi*x*sqrt(1-x∧2),x=0..r);

and

v:=value(v);

together with their output. Now click on . A little button should appear.
Try clicking on it. Pretty neat! Now see if you can add a heading to this
subsection using the P Heading 3 selection.

Next we shall add some more text and math by cutting and pasting.

13.5 Cutting and pasting
First we create a new region. Click on the vertical bar attached to and

click on and then . There should now be a new text region below the
new subsection. Now type

Our computation gave

At this point, we would like to add an equation to our document. This time we

will use the mouse to cut and paste. First click on and type

> ’v’ =

Instead of retyping maple input, we move the cursor to the maple output above
and use the mouse to highlight

−4
3
(
1 − r2

)3/2
π +

4
3

π

Use the mouse or hot keys to copy the selection and paste it to the right of
the equal sign. The hot keys are system dependent. In Windows, use Control
C to copy and Control V to paste. Observe how the displayed math has been
converted to maple input. Now type a semicolon and press enter:

> ’v’ =-4/3*(1-r∧2)∧(3/2)*Pi+4/3*Pi;

v = −4
3
(
1 − r2

)3/2
π +

4
3

π

Now click the mouse on the maple input line

> ’v’ =-4/3*(1-r∧2)∧(3/2)*Pi+4/3*Pi;

and hit Control Delete and this line should now be erased. Finally, add enough
text and equations so that the document is complete. A rendition of how it might
appear is given below. This worksheet can be downloaded using the url:
http://www.math.ufl.edu/∼frank/maple-book/mwsfiles/bbprob.mws
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The Ball Bearing Problem

William E. Wilson

Statement of the problem

Reduce the volume of a ball bearing with a diameter of 2 cm by 50% by drilling
a hole through the center. Determine the diameter of the required drill-bit.

Solution

First we observe that the ball bearing is the solid obtained by rotating a circle of
radius 1cm about the y-axis. If we let r be the radius of the drill-bit then, by the

shell method, the volume v of material removed is given by
∫ r

0

4π x
√

1 − x2dx.

We compute the integral.

Computation

> v:=Int(4*Pi*x*sqrt(1-x∧2),x=0..r);

v :=
∫ r

0

4π x
√

1 − x2dx

> v:=value(v);

v := −4
3
(
1 − r2

)3/2
π +

4
3

π

Our computation gave

v = −4
3
(
1 − r2

)3/2
π +

4
3

π

We solve the equation

−4
3
(
1 − r2

)3/2
π +

4
3

π =
2
3

π

Computation

to find that the required diameter is

2r =
√

2
√

2 − 21/3

which is approximately 1.217 cm.

13.6 Bookmarks and hypertext
A bookmark is a name that marks a location in a worksheet. Selecting this

name will move the cursor to the specified location. To create a bookmark at
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the last equation in our document, click the cursor on the equation. Then, in
the View menu, select Bookmarks and then Edit Bookmark... . An Add
or Modify Bookmark window should appear. In the Bookmark Text box,
type a word, say, ANSWER and click on OK . Although the worksheet appears
no different, it now has a single bookmark. We can access this bookmark by
selecting Bookmarks in the View menu. Now ANSWER should appear in the
submenu:

Edit Bookmark...
ANSWER

Select ANSWER and the cursor will move to the specified location. Try moving
the cursor to a different place in the worksheet and select ANSWER again.

Now we will use our bookmark to create a hyperlink in our worksheet. A
hyperlink is a link from one location in the worksheet to a different location in
the worksheet or to a different worksheet altogether. The presence of a hyperlink
is indicated by green underlined text. Clicking on this text will move the cursor
to the new location. In our worksheet we will attach a hyperlink from the word
diameter in the statement of the problem to our bookmark ANSWER.

Move the cursor to the word diameter near the top of the worksheet and
in the Insert menu select HyperLink . . . . A HyperLink Properties window
should appear:

Figure 13.1 Hyperlink Properties window.

In the Link Text box, type diameter, and click to the left of Worksheet. Then

click on near the Book Mark box and select ANSWER (or type ANSWER in

the box). Finally, click on OK . The worksheet should now contain a green
diameter. You will need to delete the old “diameter.” Try clicking on diameter.
The cursor should move to the last equation in the worksheet where we placed
the bookmark ANSWER. This worksheet (with the hyperlink and bookmark) can
be downloaded using the url:
http://www.math.ufl.edu/∼frank/maple-book/mwsfiles/bbprob2.mws

Try adding a hyperlink to a different worksheet. First create a new work-
sheet, say, shell.mws, which contains a description of the shell method. Then
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attach a hyperlink to the phrase “shell method” in the original worksheet.
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14. MORE GRAPHICS

In Chapter 6 we studied maple’s basic plot functions plot, and plot3d, as
well as the plots package. There are a few more packages used for plotting and
creating graphics. They are DEtools, plottools, geometry, geom3d, and statplots.
See Section 8.7.1 for the plotting functions in the DEtools package. statplots is
part of the stats package that we will examine in Chapter 16. In this chapter we
will concentrate mainly on the plottools, geometry, and geom3d packages.

14.1 The plottools package
To see the functions in the plottools package type

> with(plottools);

14.1.1 Two-dimensional plot objects

In this section we examine the functions in the plotools package for generating
two-dimensional plot objects. Each function produces a PLOT data structure that
can be rendered using the display function in the plots package.

arc

The function arc([a,b], r, θ1..θ2) gives the arc of a circle centered at (a, b),
radius r, and angle θ satisfying θ1 ≤ θ ≤ θ2. We plot a one-quarter circle
centered at the origin, radius 1, and in the second and third quadrants. See
Figure 14.1.

> with(plottools):
> qc := arc([0,0],1,Pi/2..Pi):
> plots[display](qc, scaling=constrained);

0

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.6 –0.4 –0.2

Figure 14.1 Arc of a circle.
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arrow

The arrow function is used to plot vectors. See Section 10.1.3 for some examples.

circle

The function circle([a,b],r) gives the circle centered at (a, b), with radius r.
Try

> with(plottools):
> circle([1,0],1):
> plots[display](%, scaling=constrained);

curve

The function curve( [[x1,y1], [x2,y2], . . . ,[xn,yn]]) gives a sequence of
straight line segments joining the points (x1, y1), . . . , (xn, yn).

> with(plottools):
> pts := [[0, 0], [.93, .80], [1.2, .95], [1.6, 1.],

[.31, .30], [.62, .60]] :
> curve(pts):
> plots[display](%);

disk

The function disk([a,b],r) gives a disk centered at (a, b), with radius r. We
plot a sequence of disks with varying center, radii, and shade of red.

> with(plottools):
> disk seq := seq(disk([cos(t*Pi/10),sin(t*Pi/10)],t/30,

color=COLOR(RGB,t/5,0,0)),t=1..5):
> plots[display](disk seq, scaling=constrained);

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 14.2 A sequence of disks.
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hyperbola

The function hyperbola( [x0, y0], a, b, x1..x2) gives the hyperbola with
equation

(x − x0)2

a2
− (y − y0)2

b2
= 1,

where x1 ≤ x ≤ x2.

> with(plottools):
> hyperbola([2,1], 1, 1, -3..3):
> plots[display](%);

–5

0

5

10

–5 5 10

Figure 14.3 Hyperbola.

ellipse

The function ellipse( [x0, y0], a, b) gives the ellipse with equation

(x − x0)2

a2
+

(y − y0)2

b2
= 1.

Try plotting a pink oval:

> with(plottools):
> ellipse([2,1], 1, 2, filled=true, color=pink):
> plots[display](%, scaling=constrained);

ellipticArc

is the elliptic version of the circular arc function. The function ellipticArc(
[x0, y0], a, b, θ1..θ2) gives the elliptic arc

x = x0 + a cos θ, y = y0 + b sin θ,
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where θ1 ≤ θ ≤ θ2. Try

> with(plottools):
> ellipticArc([0,1], 2, 1, 0..Pi/3,filled=true,

color=turquoise):
> plots[display](%,scaling=constrained);

line

The function line( [a,b], [c,d]) gives the line segment joining the points
(a, b) and (c, d). Try

> with(plottools):
> line([3,1],[1,4]):
> plots[display](%);

pieslice

The function pieslice( [a,b], r, θ1..θ2) gives the sector of a circle centered
at (a, b), radius r, and where θ1 ≤ θ ≤ θ2.

> with(plottools):
> pie := pieslice([0,0],1,Pi/6..Pi/3,color=khaki):
> plots[display](%,scaling=constrained);
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0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

Figure 14.4 The sector of a circle.

point

The function point([x,y]) gives the point (x, y). Try

> with(plottools):
> p:=point([2,3]):
> plots[display](p);
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polygon

The function polygon( [[x1,y1], [x2,y2], . . . ,[xn,yn]]) creates a polygon
by joining the points (x1, y1), . . . , (xn, yn).

> with(plottools):
> polyg := polygon([[0,0],[1,2],[1,1]]);
> plots[display](polyg);

Let’s plot a regular pentagon:

> with(plottools):
> pt := t -> [cos(t),sin(t)]:
> pts := [seq(pt(2*Pi*k/5+Pi/10),k=0..4)]:
> pentagon := polygon(pts, color=coral):
> plots[display](pentagon,axes=none,scaling=constrained);

Figure 14.5 A pentagon.

rectangle

The function rectangle( [a,b], [c,d]) gives a rectangle whose sides are par-
allel to the coordinate axes and has vertices at the specified points. Try

> with(plottools):
> polyg := rectangle([0,0],[1,2]);
> plots[display](polyg, color=blue, scaling=constrained);

14.1.2 Three-dimensional plot objects

cone

The cone function produces a right circular cone. The syntax has the form
cone([a,b,c], r, h), where (a, b, c) is the vertex, r is the radius of the circular
top, and h is the height. The parameters r and h are optional, and have a default
value 1.

> with(plottools):
> cone1 := cone([0,0,0],1,2):
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> plots[display](cone1, color=wheat, scaling=constrained,
orientation=[50,75]);

Figure 14.6 A cone.

cuboid

The function cuboid([x1,y1,z1], [x2,y2,z2]) produces a cube where (x1, y1,
z1), (x2, y2, z2) are opposite vertices.

> with(plottools):
> cube := cuboid([0,0,0],[1,1,1],color=black):
> plots[display](cube,scaling=constrained,axes=boxed,

style=wireframe,thickness=3,orientation=[40,75]);
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Figure 14.7 A cube.
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cylinder

The cylinder function produces a right circular cylinder. The syntax has the
form cylinder([a,b,c], r, h), where (a, b, c) is the center of the base, r is
the radius, and h is the height.

> with(plottools):
> c := cylinder([0,0,0], 3,6):
> plots[display](c, scaling=constrained,orientation=[50,75]);

Let’s plot a sequence of cylinders:

> cyl := t -> cylinder([cos(t),sin(t),0],0.2,t):
> cylseq := seq(cyl(2*Pi*k/10),k=1..10):
> plots[display](cylseq);

Figure 14.8 A sequence of cylinders.

dodecahedron

The function dodecahedron([a,b,c], s) gives a dodecahedron centered at
(a, b, c) and scale factor s. In section 6.2.8 we saw how to plot a dodec-
ahedron using the polyhedraplot function in the plots package, with the
polytype=dodecahedron option. The docdecahedron function is really this
polyhedraplot function in disguise. Try

> with(plottools):
> dd :=dodecahedron([0,0,0],1):
> plots[display](dd,scaling=constrained);
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hemisphere

The function hemisphere([a,b,c], r) produces the bottom half of a sphere
centered at (a, b, c) with radius r.

> with(plottools):
> hs := hemisphere([0,0,0],12):
> plots[display](hs, scaling=constrained, axes=boxed,

orientation=[40,70]);

hexahedron

A hexahedron is really a cube. The function hexahedron([a,b,c], s) produces
a cube centered at (a, b, c) with scale factor s. Try

> with(plottools):
> hex1 := hexahedron([0,0,0],1,color=green):
> plots[display](hex1,scaling=constrained,axes=boxed);
> cub1 := cuboid([1,1,-1],[-1,-1,1],color=red):
> plots[display](cub1,scaling=constrained,axes=boxed);

hex1 and cub1 should produce the same polyhedron except for color.

icosahedron

The function icosahedron([a,b,c], s) gives an icosahedron centered at
(a, b, c) and scale factor s. In section 6.2.8 we saw how to plot a icosa-
hedron using the polyhedraplot function in the plots package, with the
polytype=icosahedron option. The icosahedron function is really this
polyhedraplot function in disguise. Try

> with(plottools):
> ic :=icosahedron([0,0,0],1):
> plots[display](ic,scaling=constrained);

octahedron

The function octahedron([a,b,c], s) gives an octahedron centered at (a, b, c)
and scale factor s. This function is really plots[polyhedraplot] with the
polytype=octahedron option.

> with(plottools):
> oc := octahedron([0,0,0],1,color=black,thickness=3):
> plots[display](oc,style=wireframe,scaling=constrained,

orientation=[30,75]);
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Figure 14.9 An octahedron.

semitorus

A torus can be obtained by rotating a circle radius r about a vertical axis.
The function semitorus([a,b,c], θ1..θ2, r, R) gives part of torus whose
generating circle has radius r, (a, b, c) is the center of the torus, and R is the
distance between the center of the generating circle and the axis of rotation. We
plot a quarter-torus together with a circle:

> with(plottools):
> qtor := semitorus([0,0,0], Pi..3*Pi/2, 1, 4):
> circ := plots[spacecurve]([4*cos(t),4*sin(t),0],t=0..2*Pi,

color=black,thickness=3):
> plots[display](qtor, circ,scaling=constrained, style=patch,

axes=boxed,orientation=[50,75]);
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Figure 14.10 A quarter-torus.
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sphere

The function sphere([a,b,c], r) gives a sphere with center (a, b, c) and radius
r. We plot a sphere centered at the origin and radius 1:

> with(plottools):
> sph := sphere([0,0,0],1):
> plots[display](sph,scaling=constrained,orientation=[30,60]);

tetrahedron

The function tetrahedron([a,b,c], s) gives a tetrahedron centered at (a, b, c)
and scale factor s. This function is really plots[polyhedraplot] with the
polytype=tetrahedron option.

> with(plottools):
> tet := tetrahedron([0,0,0],1):
> plots[display](tet,scaling=constrained,orientation=[80,80]);

Figure 14.11 A tetrahedron.

torus

The function torus([a,b,c], r, R) gives a torus centered at (a, b, c). It is
equivalent to semitorus([a,b,c], 0..2*Pi, r, R). See the semitorus func-
tion above. Try

> with(plottools):
> tor := torus([0,0,0], 1, 4):
> plots[display](tor, scaling=constrained, style=patch,

axes=boxed,orientation=[50,75]);
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14.1.3 Transformation of plots

In this section we consider functions in the plottools package that transform
two- or three-dimensional plot objects.

cutin

The function cutin shrinks each polygonal face of a polyhedron by a specified
factor. As an example, we perform this operation on a tetrahedron.

> with(plottools):
> tet:=tetrahedron([0,0,0],1):
> plots[display](cutin(tet,2/3),orientation=[70,75]);

Figure 14.12 A cut tetrahedron.

Figure 14.13 A tetrahedron with holes.

cutout

The function cutout cuts a hole in each polygonal face of a polyhedron. The
hole is similar in shape to the original face. As an example, we perform this
operation on a tetrahedron.

> with(plottools):
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> tet:=tetrahedron([0,0,0],1):
> plots[display](cutout(tet,1/3),orientation=[85,75]);

The resulting plot is given above in Figure 14.13.

homothety

The homothety function is a special case of the scale function given below,
where the scaling for each coordinate is the same. For two-dimensional plot
objects p, homothety(p,a) is the same as scale(p,a,a). For three-dimensional
plot objects p, homothety(p,a) is the same as scale(p,a,a,a). As an example
we use homothety to rescale a dodecahedron so that its vertices coincide with a
stellated icosahedron. See below for the stellate function.

> with(plottools):
> ico := icosahedron():
> stel ico:=stellate(ico,2):
> scaled dodec:=homothety(dodecahedron([0,0,0],1),1.75):
> wf:=plots[display](scaled dodec,scaling=constrained,

style=wireframe,color=black,thickness=3):
> plots[display](wf,stel ico,scaling=constrained);

Figure 14.14 A dodecahedron and a stellated icosahedron.

project

This function can project a two-dimensional object onto a line. It can project
a three-dimensional object onto a line or a plane. If p is a three-dimensional
plot object, then project(p, [[a1,b1,c1],[a2,b2,c2],[a3,b3,c3]]) gives the
projection of p onto the plane determined by the points (a1, b1, c1), (a2, b2, c2),
(a3, b3, c3). When a vertical cone is projected onto the xy-plane, we get a disk.
Try
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> with(plottools):
> cn :=cone([0,0,0]):
> pcn :=project(cn,[[0,0,0],[0,1,0],[1,0,0]]):
> plots[display](cn,pcn);

reflect

This function can reflect a two-dimensional object in a line. It can project a
three-dimensional object in a plane. If p is a three-dimensional plot object, then
reflect(p, [[a1,b1,c1],[a2,b2,c2],[a3,b3,c3]]) gives the reflection of p in
the plane determined by the specified points. We plot a cone and its reflection
in the xy-plane.

> cone1 :=cone([0,0,0]):
> cone2 :=reflect(cone1,[[0,0,0],[0,1,0],[1,0,0]]):
> plots[display](cone1,cone2,orientation=[45,75],

scaling=constrained);

Figure 14.15 Reflecting on a cone.

rotate

The rotate function can rotate a two-dimensional plot object about a point,
and a three-dimensional plot object about a line. For a two-dimensional plot
object p, the syntax takes the form

rotate(p, θ)
rotate(p, θ, [a,b])

Here θ is the angle of rotation, and (a, b) is the center of rotation. The default
center of rotation is the origin. Try plotting a hyperbola and its rotation about
the origin through an angle of 9o.

> with(plottools):
> hyp := hyperbola([0,0],1,1,-2..2):
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> hyprot := rotate(hyp,Pi/20):
> plots[display](hyp,hyprot);

Next we plot a sequence of rotated hyperbolas in Figure 14.16.

> with(plottools):
> hyp := hyperbola([0,0],1,1,-2..2):
> hypseq := seq(rotate(hyp,Pi*k/20),k=0..10):
> plots[display](hypseq);
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Figure 14.16 A rotating sequence of hyperbolas.

Now try changing the center of rotation:

> hypseq2:=seq(rotate(hyp,Pi*k/20,[1,0]),k=0..10):
> plots[display](hypseq2);

For a three-dimensional plot object p, the syntax of the rotate function has
the form:

rotate(p, α, β, γ)
rotate(p, α, [[a1,b1,c1],[[a2,b2,c2]])

When specified, α, β, γ denote rotation about the x-, y- and z-axis respectively.
In the second form, the axis of rotation is the line joining the points (a1, b1, c1)
and (a2, b2, c2). We obtain a sequence of cones by rotating a cone in the xz-plane.

> with(plottools):
> cone1 := cone([0,0,0],1,3):
> yax := [[0,0,0],[0,1,0]]:
> cone seq := seq(rotate(cone1,2*Pi*k/10,yax),k=1..10):
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> plots[display](cone seq,scaling=constrained,
orientation=[50,60]);

Figure 14.17 A rotating sequence of cones.

scale

The scale function is used to rescale a two- or three-dimensional plot object.
For a two-dimensional object p, the syntax takes the form

scale(p,a,b)
scale(p,a,b,[c,d])

In the first form the rescaling corresponds to the transformation (x, y) �→
(ax, by); i.e., a rescaling about the point (0, 0). In the second form it corre-
sponds to the transformation (x, y) �→ (a(x− c)+ c, b(y−d)+d); i.e., a rescaling
about the point (c, d). For a three-dimensional object p, the syntax is analogous.

scale(p,a,b,c)
scale(p,a,b,c,[x,y,z])

We next plot a cylinder together with its image under a rotation and rescaling.

> with(plottools):
> cyl1:=cylinder([0,0,0],0.4,3):
> yax:=[[0,0,0],[0,1,0]]:
> cyl2:=scale(rotate(cyl1,Pi/5,yax),1/2,1/2,1/2):
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> plots[display](cyl1,cyl2,scaling=constrained,orientation=
[60,60]);

Figure 14.18 Rotated and rescaled cylinder.

stellate

In maple the stellate function produces a new polyhedron by adding a pyra-
mid to each polygon face. The syntax has the form

stellate(p, h)

where p is the original polyhedron or three-dimensional plot object and h is the
height of the stellate. For h > 1, the stellate is directed away from the origin,
otherwise it is directed toward the origin. We produce a stellated icosahedron.

> with(plottools):
> stel icosa := stellate(icosahedron([0,0,0],1),4):
> plots[display](stel icosa,scaling=constrained);

Figure 14.19 A stellated icosahedron.

Try making a stellated docdecahedron.
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> with(plottools):
> plots[display](stellate(dodecahedron([0,0,0],1),3),

scaling=constrained);

transform

The transform function is used to perform a general transformation on a two- or
three-dimensional plot object. We show how it works for three-dimensional plot
objects. Two-dimensional plot objects are similar. To apply the transformation

F (x, y, z) = (f1(x, y, z), f2(x, y, z), f3(x, y, z))

to a three-dimensional plot object p, we define the maple function

F := transform( (x,y,z) -> [f1(x,y,z), f2(x,y,z), f3(x,y,z)])
Then the transformed object is obtained by the command F(p). As an example,
we plot the image of surface parameterized by

x = sin u, y = cos v, , z = cos u + v − 1,

where 0 ≤ u, v ≤ 2π, under the map

F (x, y, z) = (x2, y2, z2).

> with(plottools):
> p:=plot3d([sin(x),cos(y),cos(x+y-1)],x=0..2*Pi,y=0..2*Pi):
> F:=transform((x,y,z)->[x∧2,y∧2,z∧2]):
> plots[display](F(p));

Figure 14.20 Transformation of a surface.
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translate

The translate function is used to translate two- and three-dimensional plot
objects. For two-dimensional plot objects p, the syntax is of the form

translate(p,a,b)

This corresponds to the translation (x, y) �→ (x+a, y+b). For three-dimensional
plot objects p, the syntax is of the form

translate(p,a,b,c)

This corresponds to the translation (x, y, z) �→ (x+ a, y + b, z + c). We translate
a fixed line y = x by a sequence of rotating vectors and give the result in Figure
14.21.

> with(plottools):
> line := plot(x,x=0..1):
> line seq:=seq(translate(line,cos(Pi*t/32),sin(Pi*t/32)),

t=0..16):
> plots[display](line seq,scaling=constrained);
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Figure 14.21 A sequence of translations.

14.2 The geometry package
The geometry package is used for doing two-dimensional Euclidean geometry.

An overview of this package will be given in Section 17.7.8. There are two
functions in the package for defining regular polygons and regular star polygons.
The function RegularPolygon( p, n, pt, r) defines p as a regular n-gon
with center pt and radius r of the circumscribed circle. Let’s plot a regular
nonagon. First we use the point function to define the center C = (0, 0) of the
nonagon.
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> with(geometry):
> point(C,0,0);

C

We can retrieve the coordinates of C using the coordinate function.

> coordinates(C);

[0, 0]

We define g as a regular nonagon, centered at C with r = 1.

> RegularPolygon(g,9,C,1);

g

You can find out a lot about this n-gon using the detail function. Try

> detail(g);

Finally, to draw the nonagon, we use the draw function.

> draw(g,axes=none);

Figure 14.22 A regular nonagon.

Let p, q be positive, relatively prime integers. A star regular p/q-gon is a
geometric shape obtained by connecting every qth vertex of a regular p-gon.
We use the StarRegularPolygon function. The syntax is analogous to the
RegularPolygon function. We construct a star regular 17/7-gon:

> with(geometry):
> RegularStarPolygon(sgon,17/7,point(o,0,0),1):
> draw(sgon,axes=none);
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Figure 14.23 A star regular 17/7-gon.

14.3 The geom3d package

The geom3d package is used for doing three-dimensional Euclidean geometry.
We used the geom3d package briefly in Section 10.2 to compute equations of lines
and planes. In this section we mainly concentrate on the plotting capabilities of
the geom3d package.

14.3.1 Regular polyhedra

The geom3d functions for defining regular polyhedra are:

GreatDodecahedron GreatIcosahedron
GreatStellatedDodecahedron RegularPolyhedron
SmallStellatedDodecahedron cube
dodecahedron hexahedron
icosahedron octahedron
tetrahedron

Most of these functions are covered by the plottools package. We include some
examples of the remaining functions. The RegularPolyhedron function can be
used to define any of the regular polyhedra listed using a Schlafli symbol. See
?geom3d for more details.

> with(geom3d):
> GreatDodecahedron(gdh,point(O,0,0,0),1):
> draw(gdh,orientation=[60,60]);
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Figure 14.24 A great dodecahedron.

> with(geom3d):
> GreatIcosahedron(gih,point(O,0,0,0),1):
> draw(gih,orientation=[75,65]);

Figure 14.25 A great isocahedron.

> with(geom3d):
> GreatStellatedDodecahedron(gsdh,point(O,0,0,0),1):
> draw(gsdh,orientation=[70,20]);
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Figure 14.26 A great stellated dodecahedron.

> with(geom3d):
> SmallStellatedDodecahedron(ssdh,point(O,0,0,0),1):
> draw(ssdh);
> draw(ssdh,orientation=[70,20]);

Figure 14.27 A small stellated dodecahedron.

A general tetrahedron can defined using the gtetrahedron function. If A,
B, C, D are four points, then gtetrahedron(gt, [A,B,C,D]) defines the
tetrahedron gt with the specified vertices. Try

> with(geom3d):
> point(P1,0,0,0), point(P2,0,1,0):
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> point(P3,1,0,0), point(P4,0,1/2,1):
> gtetrahedron(gt, [P1,P2,P3,P4]):
> draw(gt);

14.3.2 Quasi-regular polyhedra

There are two quasi-regular polyhedra: the cuboctahedron and the icosido-
decahedron. The corresponding maple functions have the same name.

> with(geom3d):
> cuboctahedron(coh,point(O,0,0,0),1):
> draw(coh,orientation=[40,25]);

Figure 14.28 A cuboctahedron.

Figure 14.29 An icosidodecahedron.
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> with(geom3d):
> icosidodecahedron(idh,point(O,0,0,0),1):
> draw(idh,orientation=[80,20]);

The resulting plot is given above in Figure 14.29.

14.3.3 The Archimedean solids

The Archimedean solids are convex polyhedra whose faces are regular poly-
gons of at least two types. There are 13 Archimedean solids. Their maple
names are given below:

GreatRhombicuboctahedron GreatRhombiicosidodecahedron
SmallRhombicuboctahedron SmallRhombiicosidodecahedron
SnubCube SnubDodecahedron
TruncatedCuboctahedron TruncatedDodecahedron
TruncatedHexahedron TruncatedIcosahedron
TruncatedIcosidodecahedron TruncatedOctahedron
TruncatedTetrahedron

We plot a few examples in Figures 14.30 to 14.32.

> with(geom3d):
> TruncatedIcosidodecahedron(tid,point(P,0,0,0),1):
> draw(tid);

Figure 14.30 A truncated icosidodecahedron.

> SmallRhombicuboctahedron(srco,point(P,0,0,0),1):
> draw(srco);

© 2002 by Chapman & Hall/CRC



More Graphics 325

Figure 14.31 A small rhombicuboctahedron.

> TruncatedIcosahedron(tic,point(P,0,0,0),1):
> draw(tic);

Figure 14.32 A truncated icosahedron.

To plot all the Archimedean solids try

> archset:={GreatRhombicuboctahedron,
GreatRhombiicosidodecahedron,
SmallRhombicuboctahedron, SmallRhombiicosidodecahedron,
SnubCube, SnubDodecahedron, TruncatedCuboctahedron,
TruncatedDodecahedron, TruncatedHexahedron,
TruncatedIcosahedron, TruncatedIcosidodecahedron,
TruncatedOctahedron, TruncatedTetrahedron};

> with(geom3d):
> for a in archset do
> printf(" \n");
> a(gon,point(P,0,0,0),1):
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> printf(cat(convert(a,string),"\n"));
> draw(gon);
> end do;

The duals of the Archimedean solids are also in the geom3d package. Their
maple names are given below:

HexakisIcosahedron HexakisOctahedron
PentagonalHexacontahedron PentagonalIcositetrahedron
PentakisDodecahedron RhombicDodecahedron
RhombicTriacontahedron TetrakisHexahedron
TrapezoidalHexecontahedron TrapezoidalIcositetrahedron
TriakisIcosahedron TriakisOctahedron
TriakisTetrahedron

We plot a few examples in Figures 14.33 to 14.35.

> with(geom3d):
> TrapezoidalHexecontahedron(thc,point(P,0,0,0),1):
> draw(thc);

Figure 14.33 A trapezoidal hexecontahedron.

> HexakisOctahedron(hoc,point(P,0,0,0),1):
> draw(hoc);
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Figure 14.34 A hexakis octahedron.

> TrapezoidalIcositetrahedron(tict,point(P,0,0,0),1):
> draw(tict);

Figure 14.35 A trapezoidal icositetrahedron.
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To get a list of maple’s standard library functions, type

> ?index,function

There are 152 functions in all.

15.1 Overview of mathematical functions
To obtain a list of the mathematical functions, type

> ?inifcn

There are 118 functions not including the trigonometric and hyperbolic func-
tions and their inverses. These are the initially known functions. There are
additional mathematical functions in various packages.

Below we list these 118 functions:

abs - absolute value of real or complex number

AiryAi, AiryAiZeros, AiryBi, AiryBiZeros - Airy wave functions and their
negative real zeros

AngerJ - Anger J function

argument - argument of a complex number

bernoulli - Bernoulli numbers and polynomials

BesselI, BesselJ - modified Bessel functions and Bessel functions of the first
kind

BesselJZeros - nonnegative real zeros of Bessel J

BesselK, BesselY - modified Bessel functions and Bessel functions of the
second kind

BesselYZeros - positive real zeros of Bessel Y

Beta - Beta function

binomial - binomial coefficients

ceil - smallest integer greater than or equal to a number

Chi - hyperbolic cosine integral

Ci - cosine integral

conjugate - conjugate of a complex number or expression

csgn - complex “half-plane” signum function

dilog - dilogarithm function

329

© 2002 by Chapman & Hall/CRC



330 The Maple Book

Dirac - Dirac delta function

Ei - exponential integrals

EllipticCE, EllipticCK, EllipticCPi, EllipticE, EllipticF, EllipticK,
EllipticModulus, EllipticNome, EllipticPi - Complete, incomplete, and
complementary elliptic integrals and related functions

erf - error function

erfc - complementary error function and its iterated integrals

erfi - imaginary error function

euler - Euler numbers and polynomials

exp - exponential function

factorial - factorial function

floor - greatest integer less than or equal to a number

frac - fractional part of a number

FresnelC, Fresnelf, Fresnelg, FresnelS - Fresnel integrals and auxiliary
functions

GAMMA - Gamma and incomplete Gamma functions

GaussAGM - Gauss arithmetic geometric mean

HankelH1, HankelH2 - Hankel functions (Bessel functions of the third kind)

harmonic - partial sum of the harmonic series

Heaviside - Heaviside step function

hypergeom - generalized hypergeometric function

ilog10, ilog - integer logarithms

Im - imaginary part of a complex number

JacobiAM, JacobiCN, JacobiCD, JacobiCS, JacobiDN, JacobiDC, JacobiDS,
JacobiNC, JacobiND, JacobiNS, JacobiSC, JacobiSD, JacobiSN - Jacobi el-
liptic functions

JacobiTheta1, JacobiTheta2, JacobiTheta3, JacobiTheta4 - Jacobi theta
functions

JacobiZeta - Jacobi Zeta function

KelvinBer, KelvinBei, KelvinHer, KelvinHei, KelvinKer, KelvinKei -
Kelvin functions

KummerM, KummerU - Kummer functions

LegendreP, LegendreQ - Legendre functions
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LerchPhi - Lerch’s Phi function

Li - logarithmic integral

ln - natural logarithm

lnGAMMA - log-Gamma function

log - logarithm to arbitrary base

log10 - log to the base 10

LommelS1, LommelS2 - Lommel functions

MeijerG - a modified MeijerG function

max, min - maximum/minimum of a sequence of real values

pochhammer - pochhammer symbol

polar - polar representation of complex numbers

polylog - polylogarithm function

Psi - polygamma function

Re - real part of a complex number

round - nearest integer to a number

signum - sign of a real or complex number

Shi - hyperbolic sine integral

Si - sine integral

sqrt - square root

Ssi - shifted sine integral

StruveH, StruveL - Struve functions

surd - nonprincipal root function

trunc - nearest integer to a number in the direction of 0

LambertW - Lambert W function

WeberE - Weber E function

WeierstrassP - Weierstrass P-function

WeierstrassPPrime - Derivative of Weierstrass P-function

WeierstrassZeta - Weierstrass zeta-function

WeierstrassSigma - Weierstrass sigma-function

WhittakerM, WhittakerW - Whittaker functions

Zeta - Riemann and Hurwitz zeta functions
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15.2 Bessel functions
maple knows the Bessel functions of the first, second, and third kinds. To

obtain a list of these functions, type

> ?Bessel

The Bessel functions of the first kind Jn(x) and the second kind Yn(x) are
given in maple by BesselJ(n,x) and BesselY(n,x), respectively. They satisfy
Bessel’s equation:

x2 y′′ + x y′ + (x2 − n2) y = 0.

maple can compute derivatives and series expansions of the Bessel functions
and can also compute floating-point approximations:

> diff(BesselJ(n,x),x);

−BesselJ(n + 1, x) +
nBesselJ(n, x)

x

> evalf(BesselJ(3,0.8));

0.01024676633

> series(BesselJ(3,x),x,10);

1
48

x3 − 1
768

x5 +
1

30720
x7 − 1

2211840
x9 + O

(
x10

)
We see that maple knows the formula

d

dx
Jn(x) = −Jn+1(x) +

n

x
Jn(x).

We found

J3(0.8) ≈ .01024676633,

J3(x) =
1
48

x3 − 1
768

x5 +
1

30720
x7 − 1

2211840
x9 + O

(
x10

)
maple can also compute real zeros of Jn(x) and Yn(x). BesselJZeros(n, m)
BesselYZeros(n, m) give the mth real positive zero of Jn(x), Yn(x), respec-
tively. We compute the first real positive zero of J3(x).

> BesselJZeros(3,1);
BesselJZeros(3, 1)

> evalf(%);
6.380161896

We found that the first positive real zero of J3(x) is approximately 6.380161896.
Let’s plot the first ten zeros of J3(x) and J4(x) on the number line. See Figure
15.1.
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> zpts3 := [seq([evalf(BesselJZeros(3,n)),0],n=1..10)]:
> zpts4 := [seq([evalf(BesselJZeros(4,n)),0],n=1..10)]:
> p1 := plot(zpts3,style=point,symbol=circle,color=blue):
> p2 := plot(zpts4,style=point,symbol=cross,color=red):
> plots[display](p1,p2,axes=none);

Figure 15.1 Real zeros of J3(x) and J4(x).

The zeros of J3(x) are marked by a blue circle, and those of J4(x) are marked
by a red cross. What do you notice?

The modified Bessel functions of the first kind and second kind In(x) and
Kn(x) are given in maple by BesselI(n,x) and BesselK(n,x), respectively.
They satisfy the modified Bessel equation

x2 y′′ + x y′ − (x2 + n2) y = 0.

There are Bessel functions of the third kind, usually known as Hankel func-
tions. The Hankel functions of the first and second kinds are defined by

H(1)
n (x) = Jn(x) + i Yn(x),

H(2)
n (x) = Jn(x) − i Yn(x).

In maple they are given by HankelH1(n,x) and HankelH2(n,x) respectively.

15.3 The Gamma function
The Gamma function Γ(z) can be defined in terms of a certain infinite prod-

uct

Γ(z) =
1
z

∞∏
n=1

{(
1 +

1
n

)z (
1 +

z

n

)−1
}

,

for z �= 0,−1,−2, . . . . The Gamma function Γ(z) is an analytic function (of a
complex variable z), except for simple poles at z = 0,−1,−2, . . . . For �z > 0,
the Gamma function is given by

Γ(z) =
∫ ∞

0

e−t tz−1 dt.

In maple the Gamma function is given by GAMMA(z). Let’s plot a graph of the
Gamma function Γ(x) for real x. See Figure 15.2.

> plot(GAMMA(x),x=-4..4,y=-10..10,discont=true);
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Figure 15.2 The graph of the Gamma function.

The Gamma function interpolates the factorial function

Γ(n) = (n − 1)!,

when n is a positive integer. We compute some values of the Gamma function.

> GAMMA(10) = 9!;
362880 = 362880

> GAMMA(1/2); √
π

> GAMMA(1/3);

2/3
π
√

3
Γ( 2

3 )

> evalf(%);
2.678938537
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> GAMMA(-1+I);
Γ(−1 + i)

> evalf(%);
−0.1715329199 + 0.3264827482 I

We found that

Γ(10) = 362880 = 9!,
Γ(1/2) =

√
π,

Γ(1/3) =
2π

√
3

3Γ(2/3)
≈ 2.678938537,

Γ(−1 + i) ≈ −.1715329199 + .3264827482 i

We can convert factorials and binomial coefficients to values of the Gamma
function using the convert function.

> fn := n!;
n!

> bnk:=binomial(n,k);

bnk := binomial(n, k)

> gfn := convert(fn,GAMMA);

Γ(n + 1)

> gbnk := convert(bnk,GAMMA);

Γ(n + 1)
Γ(k + 1)Γ(n − k + 1)

maple found that

n! = Γ(n + 1),(
n

k

)
=

Γ(n + 1)
Γ(k + 1)Γ(n − k + 1)

.

Of course, here n and k are nonnegative integers satisfying 0 ≤ k ≤ n. We can
also convert back. Try

> convert(gfn,factorial);
> convert(gbnk,binomial);

See ?convert[GAMMA] for more information.
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The beta function β(x, y) is defined by

β(x, y) =
∫ 1

0

tx−1(1 − t)y−1 dt,

for �x > 0, �y > 0. In maple it is given by Beta(x,y).

> Beta(x,y);
β(x, y)

> convert(%,GAMMA);
Γ(x)Γ(y)
Γ(x + y)

> int(t∧(x-1)*(1-t)∧(y-1),t=0..1);

Γ(x)Γ(y)
Γ(x + y)

maple knows that

β(x, y) =
Γ(x)Γ(y)
Γ(x + y)

.

In maple the log Gamma function Log Γ(z) is given by lnGAMMA(z). This
is the principal value of the log of Γ(z).

> lnGAMMA(-3/2);

lnGAMMA(−3
2
)

> evalf(%);
0.8600470154 − 6.283185307 I

> taylor(lnGAMMA(z+1),z=0,6);

−γ z + 1/12π2z2 − 1
3

ζ(3)z3 +
1

360
π4z4 − 1

5
ζ(5)z5 + O

(
z6
)

We found that Log Γ(−3/2) ≈ .8600470154 − 6.283185307 i. We found the first
few terms of the Taylor expansion of Log Γ(z + 1) near z = 0.

Log Γ(z + 1) = −γ z + 1/12π2z2 − 1
3

ζ(3)z3 +
1

360
π4z4 − 1

5
ζ(5)z5 + O

(
z6
)
.

Here γ is Euler’s constant

γ = lim
n→∞

(
n∑

k=1

1
k

)
− ln(n),

which is given in maple by gamma. Also, ζ(n) is the Riemann zeta function,
given in maple by Zeta. See Section 15.9.
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The Psi function Ψ(z) is the logarithmic derivative of the Gamma function

Ψ(z) =
Γ ′(z)
Γ(z)

.

In maple it is given by Psi(z).

> diff(lnGAMMA(z),z);
Ψ(z)

Naturally, maple found that

d

dz
Log Γ(z) = Ψ(z).

maple knows certain values of the Psi function.

> Psi(1/6);

−γ − 2 ln(2) − 3
2

ln(3) − 1
2

π
√

3

maple knows that

Ψ(1/6) = −γ − 2 ln(2) − 3
2

ln(3) − 1
2

π
√

3.

Try

> Psi(1/2);
> Psi(1/4);
> Psi(3/4);
> exp(Psi(1/6)+Psi(5/6)+2*gamma);
> simplify(%);

The nth derivative of the Psi function is given in maple by Psi(z,n).

> Psi(1,2);

−1 +
1
6

π2

maple knows that
Ψ ′′(1) = −1 +

1
6

π2.

15.4 Hypergeometric functions
Let p, q be nonnegative integers. The generalized hypergeometric function

pFq is given by

pFq

(
a1, a2, · · · , ap

b1, b2, · · · , bq

; z

)
=

∞∑
n=0

(a1)n(a2)n · · · (ap)n

(b1)n(b2)n · · · (bq)n

zn

n!
,
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where (a)n is the Pochhamer symbol

(a)n = a(a + 1) · · · (a + n − 1) =
Γ(a + n)

Γ(a)
.

In maple, this hypergeometric function is given by

hypergeom([a1,a2, . . . ,ap], [b1,b2, . . . ,bq], z).

The Pochhammer symbol (a)n is given in maple by pochhammer(a,n). The
Gaussian hypergeometric function F (a, b, c; z) is given by

F (a, b, c; z) = 2F1

(
a, b

c
; z

)
.

Most of the special functions used by physicists and engineers are special cases
of hypergeometric functions.

> simplify( hypergeom([ ],[ ],z) );

ez

> simplify( hypergeom([a],[ ],z) );

(1 − z)−a

> simplify( hypergeom([ ],[3/2],-z∧2/4) );

sin(z)
z

> simplify( hypergeom([ ],[1/2],-z∧2/4) );

cos(z)

> simplify( hypergeom([ ],[a],-z∧2/4) );

− (−2 aBesselJ(a, z) + BesselJ(a + 1, z)z) Γ(a)2a−1z−a

> simplify( hypergeom([1,1],[2],-z) );

ln(1 + z)
z

maple knows the results

ez = 0F0(z),

(1 − z)−a = 1F0

(
a

− ; z

)
,

sin z = z 0F1

(
−
3
2

; −z2

4

)
,

cos z = 0F1

(
−
1
2

; −z2

4

)
,

za
0F1

(−
a

; −z2

4

)
= − (−2 a Ja(z) + z Ja+1(z)) Γ(a)2a−1

ln(1 + z) = z 2F1

(
1, 1

2
; −z

)
.
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maple knows some hypergeometric summation theorems.

> simplify( hypergeom([a,b],[c],1) );

Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

It knows the Gauss summation

2F1

(
a, b

c
; 1

)
=

Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

,

for �(c − a − b) > 0. Try

> simplify( hypergeom([a,b,c],[1+a-b,1+a-c],1) );
> simplify( hypergeom([a,1+a/2,b,c,d],

[a/2,1+a-b,1+a-c,1+a-d],1) );

Certain series can be evaluated using convert with the hypergeom option.

> Sum(pochhammer(a,n)*pochhammer(b,n)/pochhammer(c,n)/n!,
n=0..infinity);

∞∑
n=0

pochhammer(a, n)pochhammer(b, n)
pochhammer(c, n)n!

> convert(%,hypergeom);

pochhammer(a, 0)pochhammer(b, 0)Γ(c)Γ(c − a − b)
pochhammer(c, 0)Γ(c − a)Γ(c − b)

> simplify(%);
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

maple found (eventually) that

∞∑
n=0

(a)n(b)n

(c)n n!
=

Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

,

which is just Gauss’s summation of a 2F1.

15.5 Elliptic integrals
The incomplete elliptic integral of the first kind F (z, k) is given by

F (z, k) =
∫ z

0

dt√
(1 − t2)(1 − k2t2)

.
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In maple it is given by EllipticF(z,k). Here 0 < k < 1 is called the modulus.
The incomplete elliptic integral of the second kind E(z, k) is given by

E(z, k) =
∫ z

0

√
1 − k2t2√
1 − t2

dt.

In maple it is given by EllipticE(z,k). The incomplete elliptic integral of the
third kind Π(z, ν, k) is given by

Π(z, ν, k) =
∫ z

0

dt

(1 − νt2)
√

(1 − k2t2)(1 − t2)
.

In maple it is given by EllipticPi(z,nu,k).
The complete elliptic integrals of the first and second kind, respectively, are

given by

K(k) = F (1, k),
E(k) = E(1, k).

They are given in maple by EllipticK and EllipticE, respectively. There are
complementary integrals K ′ and E′, which are integrals in the complementary
variable k′ =

√
1 − k2

K ′(k) = K(k′),
E′(k) = E(k′).

In maple these are given by EllipticCK and EllipticCE. We compute the first
few terms of the Taylor expansion of K(k) near k = 0.

> taylor(EllipticK(k),k=0,10);

1
2

π +
1
8

π k2 +
9

128
π k4 +

25
512

π k6 +
1225
32768

π k8 + O
(
k10

)
We found that

K(k) = π

(
1
2

+
1
8
k2 +

9
128

k4 +
25
512

k6 +
1225
32768

k8 + · · ·
)

.

Try

> taylor(EllipticK(k)-Pi/2*hypergeom([1/2,1/2],[1],k∧2),
k=0,100);

maple knows the derivatives of the elliptic integrals. We compute the derivative
of E(k).

> diff(EllipticE(k),k);

−EllipticK(k)
k

+
EllipticE(k)

k
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maple knows that
d

dk
E(k) =

E(k) − K(k)
k

.

Try

> diff(EllipticK(k),k);

The nome q = q(k) is defined by

q = e−πK′(k)/K(k).

In maple, it is given by EllipticNome(k). The inverse function is called the
modulus and is given in maple by EllipticModulus(q). This function can be
given in terms of Jacobi’s theta functions

k =
ϑ2

2(0, q)
ϑ2

3(0, q)
.

See Section 15.7 for definition and computation of the theta-functions. We com-
pute an example.

> k := 0.35;
0.35

> q := EllipticNome(k);

0.008166668955

> EllipticModulus(q);
0.3500000000

We found that the nome corresponding to k = 0.35 is q ≈ .008166668955.

15.6 The AGM
The arithmetic-geometric mean (AGM) iteration of Gauss is the following

two-term recursion:

an+1 =
an + bn

2
,

bn+1 =
√

an bn.

If a0 = a, b0 = b, then both sequences {an}, {bn}, converge to the same limit
M(a, b). The function M(a, b) is given in maple by GaussAGM(a,b).

> g1 := 1/GaussAGM(1,sqrt(2));(
GaussAGM(1,

√
2)
)−1
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> g2 := 2/Pi*int(1/sqrt(1-t∧4),t=0..1);

1/2
β(1

4 , 1/2)
π

> evalf(g1,12);
0.834626841678

> evalf(g2,12);
0.834626841675

This numerical result was observed by Gauss on May 30, 1799. He commented in
his diary that this result “will surely open up a whole new field of analysis.” See
Jon and Peter Borwein’s book 3 for a fascinating account of Gauss’s AGM and
its connection with elliptic integrals, hypergeometric functions, theta functions,
and approximations to π. Try

> evalf(g1-g2,100);

15.7 Jacobi’s theta functions
There are four types of theta-functions

ϑ1(z, q) = 2 q
1
4

∞∑
n=0

(−1)n
qn(n+1) sin((2n + 1) z),

ϑ2(z, q) = 2 q
1
4

∞∑
n=0

qn(n+1) cos((2n + 1) z),

ϑ3(z, q) = 1 + 2
∞∑

n=1

qn2
cos(2 nz),

ϑ4(z, q) = 1 + 2
∞∑

n=1

(−1)n
qn2

cos(2nz).

A good reference is Whittaker and Watson’s book 4. In maple, these four
functions are given by JacobiTheta1, JacobiTheta2, JacobiTheta3, and
JacobiTheta4, respectively.

> Digits:=30:
> z:=rand(0..2000)()/2000.;

0.0240000000000000000000000000000

> q:=rand(0..1000)()/1001.;

0.366633366633366633366633366633

> f1 := JacobiTheta1(z,q)∧2*JacobiTheta4(0,q)∧2:
> f2 := JacobiTheta3(z,q)∧2*JacobiTheta2(0,q)∧2:
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> f3 := JacobiTheta2(z,q)∧2*JacobiTheta3(0,q)∧2:
> f1 - f2 + f3;

8.0 × 10−29

This result suggests that

ϑ2
1(z, q)ϑ2

4(0, q) = ϑ2
3(z, q)ϑ2

2(0, q) − ϑ2
2(z, q)ϑ2

3(0, q).

Try verifying the result for other values of z, q. Unfortunately, at this point
maple is unable to compute series expansions of the theta-functions.

15.8 Elliptic functions
There are three basic Jacobi elliptic functions: sn (u, k), dn (u, k), and

cn (u, k). These are given in maple by JacobiSN(u,k), JacobiCN(u,k), and
JacobiDN(u,k), respectively. They arise as inverse functions of incomplete el-
liptic integrals and are doubly periodic (elliptic) functions. For example,

u =
∫ sn (u,k)

0

dt

(1 − t2)(1 − k2t2)
.

Let’s verify this result for u = 1.0 and k = 0.5:

> u:=1.0:
> k:=0.5:
> s:=JacobiSN(u,k);

0.8226355779

> EllipticF(s,k);
0.9999999996

The value of EllipticF(JacobiSN(u,k),k) should be u. Here we obtained
0.9999999996, which is close enough to the correct value 1.0.

The other Jacobi elliptic functions in maple are JacobiAM, JacobiCD,
JacobiCS, JacobiDC, JacobiDS, JacobiNC, JacobiND, JacobiNS, JacobiSC, and
JacobiSD.

An alternative approach to elliptic functions is due to Weierstrass. The
Weierstrass ℘-function is defined by

℘(z) = ℘(z; Ω) =
1
z2

+
∑
ω∈Ω
ω 	=0

(
1

(z − ω)2
− 1

ω2

)
.

Here Ω is a lattice in C

Ω = {mω1 + nω2 : m,n ∈ Z},
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where ω2/ω1 /∈ R. There are two important invariants

g2 = g2(Ω) = 60
∑
ω∈Ω
ω 	=0

1
ω4

,

g3 = g3(Ω) = 140
∑
ω∈Ω
ω 	=0

1
ω6

.

The invariants g2, g3 uniquely determine the lattice Ω. In maple the Weier-
strass ℘ is given in terms of g2, g3. The function WeierstrassP(z, g2, g3)
corresponds to ℘(z; Ω). We compute the Laurent series of ℘(z) near z = 0.

> series(WeierstrassP(z,g2,g3),z,10);

z−2 + 1/20 g2 z2 + 1/28 g3 z4 +
1

1200
g22z6 +

3
6160

g2 g3 z8 + O
(
z10

)
We found that

℘(z) =
1
z2

+
1
20

g2z
2 +

1
28

g3z
4 +

1
1200

g2
2z6 +

3
6160

g2g3z
8 + · · ·

In maple the derivative of ℘-function ℘′(z) is given by WeierstrassPPrime.

> diff(WeierstrassP(z,g2,g3),z);

WeierstrassPPrime(z, g2, g3)

Try

> WeierstrassPPrime(z,g2,g3)∧2 - 4*WeierstrassP(z,g2,g3)∧3
+ g2*WeierstrassP(z,g2,g3):

> series(%,z,20):
> normal(%);

What did you get?
The Weierstrass zeta-function ζ(z) is defined by

ζ(z) = ζ(z; Ω) =
1
z

+
∑
ω∈Ω
ω 	=0

(
1

(z − ω)
+

1
ω

+
z

ω2

)
.

This is not to be confused with the Riemann zeta-function of Section 15.9.

> diff(WeierstrassZeta(z,g2,g3),z);

−WeierstrassP(z, g2, g3)

maple knows that
ζ ′(z) = −℘(z).
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The Weierstrass σ-function is defined by

σ(z) = σ(z; Ω) = z
∏
ω∈Ω
ω 	=0

{(
1 − z

ω

)
exp

(
z

ω
+

z2

2ω2

)}
.

> diff(WeierstrassSigma(z,g2,g3),z);

WeierstrassZeta(z, g2, g3)WeierstrassSigma(z, g2, g3)

maple knows that
σ′(z)
σ(z)

= ζ(z).

15.9 The Riemann zeta-function
The Riemann zeta-function ζ(z) is given by

ζ(z) =
∞∑

n=1

1
nz

,

for �(z) > 1. The zeta-function has analytic continuation to the whole complex
plane except for a simple pole at z = 1. For even integers n, it is known that
ζ(n) is a rational multiple of πn:

> for n from 2 by 2 to 10 do
> print(zeta(n)=Zeta(n));
> end do;

ζ(2) =
1
6

π2

ζ(4) =
1
90

π4

ζ(6) =
1

945
π6

ζ(8) =
1

9450
π8

ζ(10) =
1

93555
π10

The function Zeta(n,z) gives the nth derivative of the zeta-function, and
Zeta(n,z,a) gives the nth derivative of the Hurwitz zeta function

ζ(z, a) =
∞∑

n=0

1
(n + a)z

.
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We plot the absolute value of the zeta-function on the line �(z) = 1/2. See
Figure 15.3.

> plot(abs(Zeta(1/2+t*I)), t= 0..40);

0

0.5

1

1.5

2

2.5

3

10 20 30 40
t

Figure 15.3 The graph of |ζ(1/2 + i t)|, 0 ≤ t ≤ 40.

15.10 Orthogonal polynomials
The orthogonal polynomial package is orthopoly.

> with(orthopoly);
[G,H,L, P, T, U ]

The functions in the package are used to define eight orthogonal polynomials:

G(n,a,x) Gegenbauer polynomial
H(n,x) Hermite polynomial
L(n,x) Laguerre polynomial
L(n,a,x) generalized Laguerre polynomial
P(n,x) Legendre polynomial
P(n,a,b,x) Jacobi polynomial
T(n,x) Chebyshev polynomial (first kind)
U(n,x) Chebyshev polynomial (second kind)

As an example, we compute the general second-degree Jacobi polynomial.
The Jacobi polynomials P

(a,b)
n (x) are orthogonal on the interval [−1, 1] with

respect to the weight function w(x) = (1− x)a(1 + x)b, where a, b are constants
greater than −1.

© 2002 by Chapman & Hall/CRC



Special Functions 347

> with(orthopoly):
> P(2,a,b,x);

1
8

a2 − 1
8

a − 1
4

ab − 1
2
− 1

8
b +

1
8

b2 +
1
4

(3 + a + b) (a − b) x

+
1
8

(4 + a + b) (3 + a + b) x2

We found that

P
(a,b)
2 (x) =

1
8

a2 − 1
8

a − 1
4

ab − 1
2
− 1

8
b +

1
8

b2 +
1
4

(3 + a + b) (a − b) x

+
1
8

(4 + a + b) (3 + a + b) x2.

15.11 Integral transforms
The inttrans package contains many functions for computing integral trans-

forms.

> with(inttrans);

[addtable, fourier, fouriercos, fouriersin,hankel,hilbert, invfourier,
invhilbert, invlaplace, invmellin, laplace,mellin, savetable]

We have seen the laplace, invlaplace functions in Section 8.6. These two
functions compute Laplace and inverse Laplace transforms. In Section 8.6 we
also saw how to use the addtable function.

15.11.1 Fourier transforms

Suppose f(x) is a function defined on (−∞,∞). The Fourier transform of
f(x) is given by

F (x) =
∫ ∞

−∞
f(t) e−itx dt.

In maple it is given by fourier(f(t),t,x). As an example, we compute the
Fourier transform of f(t) = e−t2/2.

> with(inttrans):
> f := exp(-t∧2/2);

f := e−
1
2 t2

> F := fourier(f,t,x);

F :=
√

2
√

πe−
1
2 x2
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We find that the Fourier transform of f(t) = e−t2 is

F (x) =
√

2π e−x2/2.

The inverse Fourier transform of F (x) is

f(t) =
1
2π

∫ ∞

−∞
F (x) eitx dx.

In maple it is given by invfourier(F(t),t,x). We check our work by com-
puting the inverse Fourier transform.

> with(inttrans):
> F := sqrt(2*Pi)*exp(-x∧2/2);

F :=
√

2πe−
1
2 x2

> f := invfourier(F,x,t);

f := e−
1
2 t2

We found that the inverse Fourier transform of F (x) =
√

2πe−x2/2 is f(t) =
e−t2/2 as expected.

The function

F (x) =

√
2
π

∫ ∞

0

f(t) cos xt dt,

is called the Fourier cosine transform of f(t), and the function

Φ(x) =

√
2
π

∫ ∞

0

f(t) sin xt dt,

is called the Fourier sine transform of f(t). In maple these transforms are given
by fouriercos(f(t),t,x) and fouriersin(f(t),t,x), respectively. For a > 0
we compute the Fourier cosine and sine transforms of f(t) = e−at.

> with(inttrans):
> assume(a>0):
> f := exp(-a*t);

f := e−a∼ t

> F := fouriercos(f,t,x);

F :=
√

2a∼
√

π (a∼2 + x2)

> Phi := fouriersin(f,t,x);

Φ :=
√

2x√
π (a∼2 + x2)
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We found that the Fourier cosine and sine transforms of f(t) = e−at are

F (x) =

√
2
π

a

a2 + x2
,

Φ(x) =

√
2
π

x

a2 + x2
,

respectively. There is no need to define invfouriercos and invfouriersin,
since the Fourier cosine and sine transforms are inverses of each other. Confirm
this by trying

> fouriercos(F,x,t);
> radsimp(%);
> fouriersin(Phi,x,t);
> radsimp(%);

15.11.2 Hilbert transform

The Hilbert transform of a function f(x) is defined as the principal value
integral

F (x) =
1
π

PV
∫ ∞

−∞

f(t)
t − x

dt =
1
π

lim
y→∞

∫ y

−y

f(t)
t − x

dt.

This is given in maple by hilbert(f(t),t,x). We compute the Hilbert trans-
form of

f(t) =
1

1 + t2
.

> with(inttrans):
> f := 1/(1+t∧2);

f :=
1

1 + t2

> hilbert(f,t,x);

− x

x2 + 1

We found that the Hilbert transform is

F (x) = − x

1 + x2
.

The inverse Hilbert transform is simply the negative of the Hilbert transform.
We confirm this for our example.

> with(inttrans):
> F := -x/(1 + x∧2);

F := − x

1 + x2
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> invhilbert(F,x,t);
1

1 + t2

> hilbert(F,x,t);

− 1
1 + t2

15.11.3 Mellin transform
The Mellin transform of a function f(t) is

F (s) =
∫ ∞

0

f(t) ts
dt

t
.

This is given in maple by mellin(f(t),t,s). We compute the Mellin transform
of f(t) = sin t.

> with(inttrans):
> mellin(sin(t),t,s);

Γ(s) sin(
1
2

π s)

We found that the Mellin transform of f(t) = sin t is

F (s) = Γ(s) sin(πs/2).

The inverse Mellin transform is given by

f(t) =
1

2πi

∫ c+i∞

c−i∞
F (s)t−s ds.

Here c is a sufficiently large real constant.

> with(inttrans):
> F := GAMMA(s)*sin(Pi*s/2);

F := Γ(s) sin(
1
2

π s)

> invmellin(F,s,t);

invmellin(Γ(s) sin(
1
2

π s), s, t)

We see that maple was unable to recognize the inverse Mellin transform of F (s).
We try computing the inverse Mellin transform of Γ(s).

> with(inttrans):
> F := GAMMA(s);

Γ(s)
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> invmellin(F,s,t);
Invmellin can transform GAMMA(t) if Re(t)<>0, Re(t) > -1

maple needs to know a range for the constant c before it can compute the
integral in the inverse Mellin transform.

> with(inttrans):
> F := GAMMA(s);

Γ(s)

> invmellin(F,s,t,0..infinity);

e−t

The command invmellin(F,s,t,0..infinity) tells maple to assume that
c > 0. We found that the inverse Mellin transform of Γ(s) is f(t) = e−t. Try
checking this by computing the Mellin transform of f(t) = e−t:

> with(inttrans):
> f := exp(-t);
> mellin(f,t,s);

15.12 Fast Fourier transform
Let n + 1 = 2m, and ω = exp(2πi/(n + 1)), so that ω is a primitive (n +

1)th root of unity. Suppose we are given a sequence S = {ak}n
k=0} of complex

numbers. The fast fourier transform (FFT) of S is the sequence {αj}n
j=0, where

αk =
n∑

k=1

aj ωj .

In maple the sequence S is entered as two arrays of real and imaginary parts x
and y. The FFT of S is computed using the maple command FFT(m,x,y). Let
S be the sequence

S = {1, 2, 3, 4, 5, 6, 7, 8}.

We compute the FFT of S. Here m = 3 because our sequence has length 8 = 23.

> x := array([seq(k,k=1..8)]);

x := [1, 2, 3, 4, 5, 6, 7, 8]

> y := array([seq(0,k=1..8)]);

y := [0, 0, 0, 0, 0, 0, 0, 0]

> FFT(3,x,y);
8
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> print(x);

[36,−4.000000002,−4.,−3.999999998,−4,−3.999999998,−4.,−4.000000002]

> print(y);

[0, 9.656854244, 4., 1.656854248, 0,−1.656854248,−4.,−9.656854244]

The arrays x and y now correspond to the real and imaginary parts of the output
sequence. The FFT of S is the sequence

{36,−4.000000002 + 9.656854244 i,−4.0 + 4.0 i,−3.999999998 + 1.656854248 i,

− 4,−3.999999998 − 1.656854248 i,−4.0 − 4.0 i,

− 4.000000002 − 9.656854244 i}

To check this calculation let

p(z) =
n∑

k=0

akzk.

Then p(ωj) = αj , for 0 ≤ j ≤ n. Check this for our example sequence S:

> omega := exp(2*Pi*I/8);
> sum((k+1)*z∧k,k=0..7):
> p := unapply(%,z);
> for k from 0 to 7 do

k, x[k+1]+I*y[k+1], evalf(p(omega∧k));
end do:

Did it check out?
In maple the inverse FFT is iFFT. Let’s compute the inverse FFT of the

output sequence found above.

> x := array([seq(k,k=1..8)]):
> y := array([seq(0,k=1..8)]):
> FFT(3,x,y):
> iFFT(3,x,y);

8

> print(x);

[1.000000000, 2.000000002, 3.000000001, 4.000000004, 5.000000000,
5.999999998, 6.999999999, 7.999999996]

> print(y);

[0., .6250000000 10−9, 0.,−.6250000000 10−9, 0.,−.6250000000 10−9, 0.,

.6250000000 10−9]
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Taking into account floating point error, this gives our original sequence as
expected.

15.13 Asymptotic expansion
To find the first n terms of the asymptotic expansion of the function f(z),

we use the command asympt(f(z), z, n). For example, below we find the first
few terms of the asymptotic expansion of the Psi function (which you should
recall as the logarithmic derivative of the gamma function).

> z:=’z’:
> asympt(Psi(z),z,3);

ln(z) − 1
2

1
z
− 1

12
1
z2

+ O(z−4)

Try finding the first few terms of the asymptotic expansion of the gamma func-
tion Γ(z).

> asympt(GAMMA(z),z,3);
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16.1 Introduction
The stats package provides basic data analysis and plotting functions. We

load the package:

> with(stats);

[anova, describe,fit , importdata, random, statevalf , statplots, transform]

As you see, there are eight subpackages: anova, describe, fit, importdata, random,
statevalf, statplots, and transform.

To illustrate various maple statistics applications, we will invoke the follow-
ing “Lamp Example” due to William E. Wilson, engineer and inventor.

Lamp Example
The proper operation of a fluorescent lamp depends on depositing an ade-

quate amount of electron emitter on the filaments located at each end of the
glass tube during the manufacturing process. The life of the fluorescent lamp is
directly proportional to the amount of deposited electron emitter. Other factors
that affect the life of a lamp include the type of gas used to fill the lamp tube
and the type of fixture into which the lamp is inserted. Two gas types are typi-
cally used in the manufacture of household fluorescent lamps: argon gas and a
neon-argon gas mixture. Three common types of fixture into which a fluorescent
lamp is inserted are the instant-start, rapid-start, and preheat fixtures.

The following three data sets have been constructed with simulated data:

Data Set 1 contains data for 200 lamps: the life of each lamp (measured in
hours) and the amount of electron emitter deposited on its filaments (measured
in milligrams).

Data Set 2 contains data for 500 lamps: the life of a fluorescent lamp (measured
in hours) and the type of gas (argon or neon-argon) used to fill the lamp.

Data Set 3 contains data for 300 lamps: the life of a fluorescent lamp (measured
in hours) and the type of fixture (rapid-start, preheat, instant-start) used to test
the lamp.

These data sets and more details about the Lamp Example are available on
the Web at
http://www.math.ufl.edu/∼frank/maple-book/lamp/index.html
Go to this page using your favorite Web browser and download the files:
data1.dat, data2.dat, data3.dat, and lamp.dat.

355
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16.2 Data sets
The first step in a maple data analysis is to create a maple data set. This

can be done by importing a preexisting data set or constructing one with maple
commands.

Let’s import Data Set 1 from the Lamp Example.

> with(stats):
> data1 := importdata("data1.dat",2):

Note that the first argument for the importdata function is the data file name
and the second is the number of columns or streams into which the data file is
split. We assign the names life and amount to the data elements.

> life := data1[1]:
> amount := data1[2]:

We can construct a data set using a statistical list:

> example dataset := [10, 20, 30, 30, 30, missing];

example dataset := [10, 20, 30, 30, 30,missing ]

The value missing indicates a missing data point. We can also use the weight
function to create the same data set.

> example dataset:=[10,20, Weight(30,3), missing];

example dataset := [10, 20,Weight(30, 3),missing ]

We can count the number of nonmissing data points in a data stream or data
set using the describe[count] function. Try some examples.

> describe[count](life);
200

> describe[count](example dataset);

3

We can also count the number of missing data points.

> describe[countmissing](life);

0

> describe[countmissing](example dataset);

1
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16.3 Numerical methods for describing data
A statistic is any quantity calculated from data. Statistics are single numbers

which estimate population characteristics as well as summarize information in a
data set. The following sections show how statistics can describe various features
of a data set.

16.3.1 Describing the center of a data set

The center of a data set gives information about its location. The most
common ways of describing the center of a data set are by reporting the mean,
median, and mode, statistics which measure central tendency. The harmonic
mean, geometric mean, and quadratic mean are other statistical measures of
central tendency.

The mean (X or arithmetic average) can be calculated using the mean func-
tion in the describe subpackage. Let’s compute the mean lamp life using data
from the Lamp Example.

> with(stats):
> data1:=importdata("data1.dat",2):
> life:=data1[1]:
> amount:=data1[2]:
> describe[mean](life);

7524.607000

> describe[mean](amount);

10.43450000

Try

> describe[mean]([10, 20, 30, 30, 30, missing]);

24

Note that the missing value was ignored!
The median is the middle of ordered data when N (the number of data

points) is odd and the average of the two middle values when N is even. Try

> describe[median](life);

7575.850000

> describe[median](amount);

10.12000000
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> describe[median]([10, 20, 30]);

20

> describe[median]([10, 20, 30, 40]);

25

The median is not as sensitive as the mean to extreme values in the data set,
as the following examples illustrate:

> describe[mean]([10, 20, 30, 40]),
describe[mean]([10, 20, 30, 1000]);

25, 265

> describe[median]([10, 20, 30, 40]),
describe[median]([10, 20, 30, 1000]);

25, 25

The mode is the most frequently occuring value in a data set.

> with(stats):
> describe[mode]([10, 20, 30, 30, 30, missing]);

30

The harmonic mean is defined to be the reciprocal of the mean of the recip-
rocals of the data. The formula for harmonic mean, H, is given by

H =
N∑N

i=1
1
xi

.

The geometric mean of a set of N numbers is the Nth root of the product of
those numbers. The formula for geometric mean, G, is given by

G =

(
N∏

i=1

xi

) 1
N

.

The quadratic mean, or root mean square, is the square root of the mean of the
squares of the data. The formula for quadratic mean, Q, is given by

Q =

√√√√ 1
N

N∑
i=1

x2
i .
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Try

> with(stats):
> H := describe[harmonicmean]([10, 20, 30, 30, 30, missing]);

H := 20

> G := describe[geometricmean]([10, 20, 30, 30, 30, missing]);

G := 54000001/5

> Q := describe[quadraticmean]([10, 20, 30, 30, 30, missing]);

Q := 8
√

10

16.3.2 Describing the dispersion of a data set
Measures of the dispersion of a data set give information about the spread or

variability of the data. The most common ways of describing the dispersion of a
data set are by reporting the range, variance, and standard deviation statistics.

The range function,describe[range], finds the minimum and the maximum
values in a data set.

> with(stats):
> describe[range]([10, 20, 30, 30, 30, missing]);

10 . . . 30

A deviation is the difference between a data point and the sample mean.
Sample variance, S2, is the sum of squared deviations divided by N − 1,

S2 =
∑N

i=1(xi − x)2

N − 1
.

The function variance, describe[variance[1]](data), computes the sample
variance of the given data.

Try

> with(stats):
> describe[variance[1]]([10, 20, 30, 30, 30, missing]);

80

The function describe[variance[0]](data) or describe[variance](data),
the default, is the sum of squared deviations divided by N , i.e.,∑N

i=1(xi − x)2

N
.
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When a data set represents the entire population, describe[variance](data)
computes the population variance. Try

> with(stats):
> describe[variance [0]]([1, 0,-1]),

describe[variance[1]]([1,0,-1]);

2/3, 1

Sample standard deviation, S, is the square root of variance,

S =

√√√√(∑N
i=1(xi − x)2

N − 1

)
.

The describe[standarddeviation[1]](data) function computes the sample
standard deviation of the given data. Try

> with(stats):
> describe[standarddeviation[1]]([10, 20, 30, 30, 30, missing]);

4
√

5

The function describe[standarddeviation[0]](data) or describe[stand-
arddeviation](data), the default, is the square root of the sum of squared
deviations divided by N , i.e.,√√√√(∑N

i=1(xi − x)2

N

)
.

Compare the following

> with(stats):
> describe[standarddeviation[0]]([1, 0,-1]),

describe[standarddeviation[1]]([1,0,-1]);

1/3
√

6, 1

Using the data from the Lamp Example, compute the range, sample variance,
and sample standard deviation of the lamp life.

> with(stats):
> data1:=importdata("data1.dat",2):
> life:=data1[1]:
> describe[range](life);
> describe[variance[1]](life);
> describe[standarddeviation[1]](life);
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The mean deviation is another measure of dispersion. The mean deviation
is the average of the absolute value of deviations, i.e.,

1
N

N∑
i=1

|xi − x|.

The describe[meandeviation](data) function computes the mean deviation
of the given data.

Try

> with(stats):
> describe[meandeviation]([10, 20, 30, 30, 30, missing]);

36
5

The statistics percentile, decile, quantile, and quartile give information
about how an ordered data set is partitioned.

The describe[percentile[p]](data) function returns the pth percentile
of a data set. Try

> with(stats):
> describe[percentile[37]]([seq(i,i=1..100)]);

37

> describe[percentile[50]]([seq(i,i=1..100)]),
describe[median]([seq(i,i=1..100)]);

50,
101
2

The describe[decile[d]](data) function returns the dth decile of a data
set. Try

> with(stats):
> describe[decile[6]]([70,10,80,20,30,40,100,50,60,90]);

60

> describe[percentile[2]]([seq(i,i=1..100)]),
describe[percentile[20]]([seq(i,i=1..100)]),
describe[decile[2]]([seq(i,i=1..100)]);

2, 20, 20

The describe[quantile[r, offset]](data)(0 < r < 1 ) function general-
izes the concept of median, quartile, percentile, etc. Select a fraction r between
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0 and 1. Sort the data. The quantile function returns the value of the precise
position rN + offset, where N is the number of data points in the data set. Try

> with(stats):
> describe[quantile[1/2]]([1,2,3]);

3/2

> describe[quantile[1/2,1/2]]([1,2,3])=
describe[median]([1,2,3]);

2 = 2

> describe[percentile[20]]([seq(i,i=1..100)])=
describe[quantile[20/100]]([seq(i,i=1..100)]);

20 = 20

> describe[percentile[21]]([seq(i,i=1..100)]),
describe[quantile[20/100,.9]]([seq(i,i=1..100)]);

21, 20.9

Quartiles divide the data set into four portions and are the 25th, 50th, and
75th percentiles of a data set. Try

> with(stats):
> describe[quartile[1]]([seq(i,i=1..100)])=

describe[percentile[25]]([seq(i,i=1..100)]);

25 = 25

> describe[quartile[2]]([seq(i,i=1..100)])=
describe[percentile[50]]([seq(i,i=1..100)]);

50 = 50

> describe[median]([seq(i,i=1..100)]);

101
2

> describe[quartile[3]]([seq(i,i=1..100)])=
describe[percentile[75]]([seq(i,i=1..100)]);

75 = 75
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The interquartile range, IQR, is a measure of dispersion which is not sensitive
to extreme values. The IQR is the difference between the upper quartile (the
75th percentile) and the lower quartile (the 25th percentile).

> with(stats):
> IQR1 := describe[quartile[3]]([10, 20, 30, 40])

- describe[quartile[1]]([10, 20,30, 40]);

20

> IQR2 := describe[quartile[3]]([10, 20, 30, 1000])
- describe[quartile[1]]([10, 20, 30, 1000]);

20

16.3.3 Describing characteristics of a data set
The describe[moment[r,origin,1]](data) function computes the various

moments of the given data about any origin. The formula for the rth moment,
Mr, about an origin is given by

Mr =
1

N − 1

N∑
i=1

(xi − origin)r.

Try

> with(stats):
> describe[moment[3,0,1]]([10,20,30])=(1/2)*(10∧3+20∧3+30∧3);

18000 = 18000

> describe[moment[4,20,1]]([10,20,30])=
describe[moment[4,mean,1]]([10,20,30]);

10000 = 10000

The describe[moment[r,origin,0]](data) (or describe[moment[r,ori-
gin]](data)) function uses the formula

Mr =
1
N

N∑
i=1

(xi − origin)r.

Try

> with(stats):
> describe[moment[3]]([10,20,30])=(1/3)*(10∧3+20∧3+30∧3);

12000 = 12000
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The formula for the describe[sumdata[r,origin]](data) (the default val-
ues for r and origin are 1 and 0, respectively) function is given by

Mr =
N∑

i=1

(xi − origin)r.

Try

> with(stats):
> describe[sumdata[3]]([10,20,30])=(10∧3+20∧3+30∧3);

36000 = 36000

> describe[sumdata]([10,20,30])=(10+20+30);

60 = 60

> 3*describe[moment[4,1,0]]([10,20,30])
= describe[sumdata[4,1]]([10,20,30]);

844163 = 844163

> ‘‘ = ( (10-1)∧4+(20-1)∧4+(30-1)∧4 );

= 844163

Skewness is defined to be the third moment about the sample mean, divided
by the third power of the standard deviation, and it measures the degree of
symmetry of a data set. A perfectly symmetric data set has a skewness of
zero. If the data set has some extremely small values, then the skewness will be
negative. If the data set has some extremely large values, then the skewness will
be positive. The formula for describe[skewness[1]](data) is given by

M3

S3
=

1
N−1

∑N
i=1(xi − X)3[

1
N−1

∑N
i=1(xi − X)2

]3 .

Try the following

> with(stats):
> describe[skewness[1]]([-1,0,1]);

0

> describe[skewness[1]]([-1,0,1000]):
> evalf(%);

0.5773483226
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The formula for describe[skewness[0]](data) or default is given by

M3

S3
=

1
N

∑N
i=1(xi − X)3[

1
N

∑N
i=1(xi − X)2

]3 .

Try

> with(stats):
> describe[skewness[1]]([-1000,0,1]):
> sk1 := evalf(%);

sk1 := −0.5773483226

> describe[skewness[0]]([-1000,0,1]):
> sk2 := evalf(%);

sk2 := −0.7071043969

> describe[skewness]([-1000,0,1]):
> sk3 := evalf(%);

sk3 := −0.7071043969

> sk1 <> sk2;
−0.5773483226 �= −0.7071043969

> ‘‘ = sk3;
= −0.7071043969

Kurtosis is defined to be the fourth moment about the sample mean divided
by the fourth power of the standard deviation, and it measures the degree of
flatness or peakedness of a data set. For the normal distribution, the kurtosis
is 3. If the distribution has a flatter top, the kurtosis is less than 3. If the
distribution has a high peak, the kurtosis is greater than 3. Refer to the formulas
for the skewness function for the definitions of describe[kurtosis[1]](data)
and describe[kurtosis[0]](data).

Using the data from the Lamp Example, find the skewness and kurtosis of
the lamp life and emitter amount variables.

> with(stats):
> data1:=importdata("data1.dat",2):
> life:=data1[1]:
> amount:=data1[2]:
> describe[skewness[1]](life),describe[skewness[1]](amount);

0.04407219456, 1.500624764

Note that the lamp life has a nearly symmetric distribution and emitter
amount is positively skewed.
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> describe[kurtosis[1]](life), describe[kurtosis[1]](amount);

2.493837420, 7.077100768

Note that the lamp life is more normally distributed than emitter amount.

The describe[coefficientofvariation[1]](data) function computes the
coefficient of variation of the given data, which is the standard deviation divided
by the mean. The coefficient of variation expresses the standard deviation as
a percent of the mean. When means are not equal to zero, the dispersion in
data sets with different units of measure can be compared by computing the
coefficient of variation for each data set.

Note that the standard deviation is the same for the following two data sets.

> with(stats):
> describe[standarddeviation[1]]([10,20,30])

= describe[standarddeviation[1]]([110,120,130]);

10 = 10

But the coefficient of variations are quite different!

> with(stats):
> data1:=importdata("data1.dat",2):
> life:=data1[1]:
> amount:=data1[2]:
> describe[coefficientofvariation[1]]([10,20,30])

<> describe[coefficientofvariation[1]]([110,120,130]);

1/2 �= 1/12

> describe[coefficientofvariation[1]](life),
describe[coefficientofvariation[1]](amount);

0.1320181761, 0.1802995240

A bivariate data set contains two measurements (say “X” and “Y”) made
on a single subject and consists of ordered (X,Y) pairs. The functions
describe[covariance](X,Y) and describe[linearcorrelation](X,Y) com-
pute the covariance and correlation of X and Y, respectively. The formula for
describe[covariance](X,Y) is given by

1
N

N∑
i=1

(xi − X)(yi − Y ).
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The formula for describe[linearcorrelation](X,Y) is∑N
i=1(xi − X)(yi − Y )√∑N

i=1(xi − X)2
√∑N

i=1(yi − Y )2
.

Try

> with(stats):
> describe[covariance]([-1,0,1],[-1,0,1]);

2
3

> describe[covariance]([-1,0,1],[1,0,-1]);

−2
3

Consider a bivariate data set that consists of the ordered pairs: (−10,−20),
(−9,−18), . . . , (0, 0), . . . (10, 20). To plot these data points, we use the
scatterplot function in the statplots subpackage. A graph is given below in
Figure 16.1.

> with(stats):
> x1:=[seq(i,i=-10..10)]:
> y1:=[seq(i*2,i=-10..10)]:
> statplots[scatterplot](x1,y1);
> describe[linearcorrelation](x1,y1);
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–20

–10

10

20

–10 –5 5 10

Figure 16.1 maple plot of data points.
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Note that the value of the linear correlation is 1. This means that the X1-Y1

values fall perfectly on a straight line and that an increase in X1 corresponds to
an increase in Y1.

Now consider a bivariate data set consisting of the ordered pairs (−10, 10),
(−9, 9), . . . , (0, 0), . . . (10, 10). Try graphing these data points and finding the
correlation coefficient.

> x2:=[seq(i,i=-10..10)]:
> y2:=[seq(-i,i=-10..10)]:
> statplots[scatterplot](x2,y2);
> describe[linearcorrelation](x2,y2);

Finally, consider a bivariate data set consisting of the ordered pairs (−2, 2),
(−2,−2), (−1, 1), (−1,−1), (0, 0), (1,−1), (1, 1), (2,−2), (2, 2). Try graphing
these data points.

> x3:=[-2,-2,-1,-1,0,1,1,2,2]:
> y3:=[2,-2,1,-1, 0,-1,1,2,-2]:
> scatterplot(x3,y3, symbol=circle, symbolsize=20, color=red);
> describe[linearcorrelation](x3,y3);

Find the linear correlation between lamp life and emitter amount.

> describe[linearcorrelation](life, amount);

0.7739070274

The lamp life is positively correlated with the amount of emitter deposited
on the filaments during the manufacturing process.

16.4 Transforming data
The subpackage transform provides various tools for transforming lists of

statistical data.

transform[statsort]

The function transform[statsort] sorts the statistical data.

> with(stats):
> transform[statsort]([15..17, 4, Weight(3,10),missing,

Weight(11..12,3),missing]);

[Weight(3, 10), 4,Weight(11 . . . 12, 3), 15 . . . 17,missing ,missing ]

transform[split[n]]

The function transform[split[n]] splits the data into n data lists of the same
weight.
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> transform[split[3]]([15..17, 4, Weight(3,10),missing,
Weight(11..12,3),missing]);

[[15 . . . 17, 4,Weight(3, 11/3)], [Weight(3,
17
3

)], [Weight(3,
2
3
),missing ,

Weight(11 . . . 12, 3),missing ]]

transform[frequency]

The transform[frequency] function computes the frequencies in the given
data.

> transform[frequency]([Weight(3,10),missing, 4,
Weight(11..12,3), 15..17,missing]);

[10, 1, 1, 3, 1, 1]

transform[cumulativefrequency]

The transform[cumulativefrequency] function computes the partial sums of
the frequencies.

> transform[cumulativefrequency]([Weight(3,10), missing, 4,
Weight(11..12,3), 15..17, missing])
=[10, 10+1, 10+1+1,10+1+1+3, 10+1+1+3+1, 10+1+1+3+1+1];

[10, 11, 12, 15, 16, 17] = [10, 11, 12, 15, 16, 17]

transform[deletemissing]

The function transform[deletemissing] removes missing data.

> transform[deletemissing]([10, missing, 20, missing,
Weight(30,3), missing]);

[10, 20,Weight(30, 3)]

transform[subtractfrom]

The function transform[subtractfrom] subtracts a number or the value of a
statistic.

> transform[subtractfrom[25]]([10, 20, 30, 40,missing])
=transform[subtractfrom[mean]]([10, 20, 30, 40,missing]);

[−15,−5, 5, 15,missing ] = [−15,−5, 5, 15,missing ]
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transform[divideby]

The function transform[divideby] divides the data by the given divisor.

> transform[divideby[25]]([10, 20, 30, 40, missing])
=transform[divideby[mean]]([10, 20, 30, 40,missing]);

[
2
5
,
4
5
,
6
5
,
8
5
,missing ] = [

2
5
,
4
5
,
6
5
,
8
5
,missing ]

transform[standardscore[n constraints]]

The function transform[standardscore[n constraints]] replaces each data
value by its standard score (z-score). The standard score of a data point x is
(x-mean)/standarddeviation. For more details about n constraints, refer to
?describe[standarddeviation].

> transform[standardscore[1]]([1,2,3])
=[(1-2)/1, (2-2)/1, (3-2)/1];

[−1, 0, 1] = [−1, 0, 1]

> data1:=importdata("data1.dat", 2):
> life:=data1[1]:
> transform[standardscore[1]](life);

The transform[apply] function applies the requested function to the given
data.

> transform[apply[x->sqrt(x)]]([100,36,30,49]);

[10, 6,
√

30, 7]

transform[multiapply]

The function transform[multiapply] applies the requested function across the
given data.

> transform[multiapply[(x,y)->5*x+y∧2]]([[1,2,3],[4,5,6]])
=[5*1+4∧2 , 5*2+5∧2 , 5*3+6∧2];

[21, 35, 51] = [21, 35, 51]

transform[moving[size, func]]

The function transform[moving[size, func]] is used to smooth the data.
The function transform[moving[n]] replaces each data point by the mean of
itself and its next n − 1 neighbors to the right.
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> with(describe):
> L := [12,3,5,2,7,20];

[12, 3, 5, 2, 7, 20]

> transform[moving[3]](L);

[
20
3

,
10
3

,
14
3

,
29
3

]

> [mean([12,3,5]), mean([3,5,2]), mean([5,2,7]),
mean([2,7,20])];

[
20
3

,
10
3

,
14
3

,
29
3

]

To use the mean function, we loaded the describe subpackage. To do the same
thing with the median, try

> L := [12,3,5,2,7,20];

[12, 3, 5, 2, 7, 20]

> transform[moving[3,median]](L);

[5, 3, 5, 7]

> [median([12,3,5]), median([3,5,2]), median([5,2,7]),
median([2,7,20])];

[5, 3, 5, 7]

transform[statvalue]

The function transform[statvalue] sets each data point’s weight to 1.

> transform[statvalue]([Weight(3,10), missing, 4,
Weight(11..12,3), 15..17, missing]);

[3,missing , 4, 11 . . . 12, 15 . . . 17,missing ]

transform[scaleweight]

The function transform[scaleweight] multiplies the weights of the data by
the given amount.

> with(stats):
> transform[scaleweight[1/2]]([Weight(3,10),missing, 4,

Weight(11..12,3), 15..17, missing]);

[Weight(3, 5),Weight(missing ,
1
2
),Weight(4,

1
2
),Weight(11 . . . 12,

3
2
),

Weight(15 . . . 17,
1
2
),Weight(missing ,

1
2
)]
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transform[tally]

The function transform[tally] tallies each data item.

> with(stats):
> transform[tally]([3, 3, 3, 3, 3, missing, 4, 11..12,

11..12, 11..12, 15..17, missing]);

[Weight(3, 5), 4,Weight(missing , 2),Weight(11 . . . 12, 3), 15 . . . 17]

transform[tallyinto](data, partition)

The function transform[tallyinto](data, partition) tallies each item into
the pattern given by partition.

> transform[tallyinto]([3, 3, 3, 3, 3, missing, 4, 11..12,
11..12, 11..12, 15..17, missing],[3..5, 11..17]);

[Weight(11 . . . 17, 4),Weight(missing , 2),Weight(3 . . . 5, 6)]

transform[classmark]

The transform[classmark] function replaces classes by their midpoint:

> transform[classmark]([1 .. 3, 4 .. 5, Weight(11..12,3)]);

[2,
9
2
,Weight(23/2, 3)]

> [(1+3)/2, (4+5)/2, (11+12)/2];

[2,
9
2
, 23/2]

16.5 Graphical methods for describing data
The subpackage statplots provides the capability to create various statistical

plots. We load the packages:

> with(stats):
> with(stats[statplots]);

[boxplot , histogram, scatterplot , xscale, xshift , xyexchange, xzexchange, yscale,

yshift , yzexchange, zscale, zshift ]

Before we go to the specific statistical plots, we will introduce three types
of utility functions (scale, shift, exchange) that can be used to modify any plot.
See Chapter 6 for more information on plotting.
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The xscale(amount, plot) function changes the scale of the x-coordinate
by multiplying every x-coordinate by the value amount. The yscale(amount,
plot) and zscale(amount, plot) functions work in the same way. Try

> pred:=plot(statevalf[pdf,normald], -3..3,color=red):
> pblue:=plot(statevalf[pdf,normald], -3..3,color=blue):
> pblue2:=xscale(2,pblue):
> plots[display](pred,pblue2);

0

0.1

0.2

0.3

0.4

–6 –4 –2 2 4 6

Figure 16.2 maple plot of two normal curves.

The red curve is a graph of the standard normal distribution and the blue curve
is a scaled version. In Figure 16.2 red appears as a solid line and blue is a dashed
line.

The xshift(amount, plot) function shifts the x-coordinates by adding
the value amount to every x coordinate. The yshift(amount, plot) and
zshift(amount, plot) functions work in the same way. Try

> pblue3:=xshift(3,pblue):
> plots[display](pred,pblue3);

The resulting plot is given below in Figure 16.3. The red (solid) curve is a graph
of the standard normal distribution and the blue (dashed) curve is a shifted
version.

The xyexchange(plot) function exchanges the x- and y-coordinates. The
xzexchange(plot) and yzexchange(plot) functions work in the same way.
> with(stats):
> with(stats[statplots]):
> p1:=plot(’exp(-abs(x))’,’x’=-2..2, color=red):
> p2:=plot(’exp(-abs(x))’,’x’=-2..2, color=blue):
> xp2:=xyexchange(p2):
> plots[display](p1,xp2);

The resulting plot is given below in Figure 16.4. The red (solid) curve is a
graph of the double exponential distribution, and the blue (dashed) curve is an
exchanged version.
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Figure 16.3 maple plot of a normal curve and an x-shifted one.
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Figure 16.4 Double exponential distribution and an xy-exchanged one.

16.5.1 Histogram

The histogram(data, area=a, numbars=n) function will plot a histogram
for a given data set. The parameter numbars allows the user to specify how
many divisions into which the data should be separated. If the data are spread
uniformly, then numbars=n should produce a histogram with n columns. When
area = a is included in the function syntax, the histogram bars are forced to
have equal width and have a total height equal to a. To make the total area of
the bars equal to the total weight of the data, use area = count.

Using Data Set 1 from the Lamp Example, try
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> with(stats):
> with(stats[statplots]):
> data1:=importdata("data1.dat",2):
> life:=data1[1]:
> histogram(life,color=green);
> histogram(life,color=green,numbars=20, area=count);
> histogram(life,color=green,numbars=10, area=1);

The resulting plots are given below in Figures 16.5, 16.6, and 16.7.
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Figure 16.5 maple plot of a histogram.
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Figure 16.6 maple plot of a histogram with area=count.
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Figure 16.7 maple plot of a histogram with area=1.

When histogram with two data sets is used, two three-dimensional his-
tograms are plotted. Using Data Set 2 from the Lamp Example, we obtain a
3-D plot of two histograms, which is given in Figure 16.8.

> data2:=importdata("data2.dat",2):
> argon:=data2[1]:
> neon argon:=data2[2]:
> histogram(argon,neon argon,color=green,numbars=20, area=count,

axes=boxed);

400050006000700080009000

0

51

Figure 16.8 3-D plot of two histograms.

16.5.2 Box plot
A box plot is a compact graph providing information about the center,

spread, and symmetry or skewness of the data. The boxplot(data, shift=s,
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width=w, format=notched) function will plot a box plot for a given data set.
The parameter shift=s centers the box plot at value s. The parameter width=w
creates a box plot with a width of w. The center line of a box plot shows the
location of the median, while the lower and upper edges of the box indicate the
first and third quartiles, respectively. Two lines extend from the central box to
the data values, which are within a distance of up to 1.5 times the interquartile
range. Box plots are quite useful for comparing data sets. Using Data Set 2
from the Lamp Example, we plot side-by-side box plots. See Figure 16.9.

> with(stats):
> with(stats[statplots]):
> life:=importdata("data2.dat",2):
> argon:=life[1]:
> neon argon:=life[2]:
> boxplot(argon,neon argon,width=1/2, shift=1);
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8000

10000

0.8 1 1.2 1.4 1.6 1.8 2 2.2

Figure 16.9 Box plot of lamp life by gas type.

Note that the lamps filled with argon gas have a longer life.
Using the parameter format=notched will create a box plot with one addi-

tional feature. The sides of the box are indented, or notched, at the median line.
Using Data Set 3 from the Lamp Example, try plotting notched box plots.

> life3:=importdata("data3.dat",3):
> instant:=life3[1]:
> preheat:=life3[2]:
> rapid:=life3[3]:
> boxplot(rapid,preheat,instant,format=notched,width=1/4,

shift=1);

You should find that the lamps tested in the rapid-start fixture have the longest
life.
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16.5.3 Scatter plot
The scatterplot function will produce a scatter plot of the points in a given

data set. There are some formats that are valid only for one-dimensional scatter
plots: jittered,projected, stacked, and symmetry.

The format=projected option for one-dimensional plots is the default.
Points are plotted at their x-value along the line y = 1. Try

> with(stats):
> with(stats[statplots]):
> scatterplot([10, 20, Weight(30,3), 40, 50, 60, Weight(70,5),

missing]);

0
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10 20 30 40 50 60 70

Figure 16.10 One-dimensional scatter plot.

Note that repeated x-values are plotted only once!
The format=jittered option for one-dimensional plots causes the points

corresponding to a particular x-value to be randomly scattered along the vertical
line at that x-value. Try

> scatterplot([10, 20, Weight(30,3), 40, 50, 60, Weight(70,5),
missing],format=jittered,symbol=circle);
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4

10 20 30 40 50 60 70

Figure 16.11 One-dimensional scatter plot with jittered format option.

The format=stacked option is the same as the jittered except that the
points are equally spaced. Repeated values are stacked vertically so that the
height of the stack gives the number of repeated values. Try
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> scatterplot([10, 20, Weight(30,3), 40, 50, 60, Weight(70,5),
missing],format=stacked,symbol=circle);
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Figure 16.12 One-dimensional scatter plot with stacked format option.

The format=symmetry option for one-dimensional plots produces a symme-
try plot of the data. In this type of plot, the data are ordered and divided into
two halves along the value of the median, X̃. Let X(1), X(2) ,X(3), . . . , X̃, . . . ,
X(N−1), X(N) denote the ordered data. Next, ordered pairs are formed from the
split data set where the abscissa is taken from the lower half and the ordinate
is taken from the upper half. The ordered pairs look like (|X1 − X̃|, |XN − X̃|),
(|X2 − X̃|, |XN−1 − X̃|), (|X3 − X̃|, |XN−2 − X̃|), etc. If the data are symmetric
(with respect to the median), then the plot will produce points on the straight
line y = x. Departure from this line indicates deviation from symmetry. Here is
a simple example:

> scatterplot([10, 20, 30, 40, 50, 60, 70],format=symmetry,
symbol=circle);
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Figure 16.13 One-dimensional scatter plot with symmetry format option.
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Since the median of the data set [10, 20, 30, 40, 50, 60, 70] is 40, the scatterplot
function above the ordered pairs (|10 − 40|, |70 − 40|), (|20 − 40|, |60 − 40|),
(|30−40|, |50−40|). The symmetry plot above shows a data set which is perfectly
symmetric. The following examples show data sets that show skewness.

> scatterplot([10, 20, Weight(30,3), 40, 50, 60, Weight(70,5),
missing],format=symmetry);

> scatterplot([10, 20, Weight(30,7), 40, 50, 60, Weight(70,3)],
format=symmetry);

In two or three dimensions the scatterplot(data1,data2,data3) function
will produce a two- or three-dimensional scatter plot with data1 plotted on the
x-axis, data2 plotted on the y-axis, and data3 plotted on the z-axis. A simple
example can be obtained by using Data Set 1 from the Lamp Example.

> data1:=importdata("data1.dat",2):
> life:=data1[1]:
> amount:=data1[2]:
> scatterplot(amount, life, symbol=circle);
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Figure 16.14 A two-dimensional scatter plot.

There are four formats that can be used for one- and two-dimensional scatter
plots: agglomerated, excised, quantile, and sunflower.

A quantile plot for one-dimensional data is a graph of the ordered pairs
with the observed data value as the ordinate and the quantile of the observed
data value as the abscissa. The scatterplot(data, format=quantile function
generates a quantile plot. Try using Data Set 1 from the Lamp Example to
generate a quantile plot.

> scatterplot(life, format=quantile);
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Figure 16.15 Quantile plot.

A quantile-quantile plot, or q-q plot, for two-dimensional data is a graph of
the data paired by quantile value. Try using Data Set 2 from the Lamp Example
to generate a quantile plot.

> data2:=importdata("data2.dat",2):
> argon:=data2[1]:
> neon argon:=data2[2]:
> scatterplot(argon, neon argon, format=quantile);
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Figure 16.16 A Quantile-Quantile plot.

A q-q plot is often used to compare sample data to data randomly generated
from a known distribution. If the sample has the same distribution, the q-q plot
will resemble a straight line. The following example shows how to generate a
q-q plot comparing lamp life data from Data Set 1 (transformed to z-scores) to
data randomly generated from a standard normal distribution.

> life zscore:=transform[standardscore](life):
> life zscore:=transform[statsort](life zscore):
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> life zquantile:=seq(life zscore[i], i=1..199):
> z score:=seq(statevalf[icdf,normald](i/200),i=1..199):
> scatterplot([life zquantile],[z score],axes=frame);
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Figure 16.17 Quantile-Quantile plot of lamp life and normal.

The format=sunflower[l] option replaces points with sunflowers. Each
sunflower has one arm for every data point. The value l specifies the maximum
length of the arms; the default value is one tenth the range of the data plotted
on the x-axis. Try

> scatterplot([10, 20, Weight(30,3), 40, 50, 60, Weight(70,5),
missing],format=sunflower[1]);

> scatterplot(life, format=sunflower);

The resulting plots are given below in Figures 16.18 and 16.19.
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Figure 16.18 Sunflower plot of sample data.
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Figure 16.19 Sunflower plot of lamp life data.

maple plotting functions can be combined to powerfully represent in a single
graph the information conveyed in several separate graphs. As an example, the
graph below combines a scatter plot and box plots for the lamp life and emitter
amount data.

> data1:=importdata("data1.dat",2):
> life:=data1[1]:
> amount:=data1[2]:
> sp:=scatterplot(amount,life):
> bp1:=boxplot(amount,width=400,color=red):
> bp1:=yshift(10500,xyexchange(bp1)):
> bp2:=boxplot(life,width=1,shift=22,color=cyan):
> plots[display]({sp,bp1,bp2},view=[6..23,5000..11000]);
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Figure 16.20 Plot of lamp life and emitter amount.

The agglomerated[n, l] and excised[n, l] are other format options for
the scatterplot function. See ?scatterplot for more information.
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16.6 Linear regression
The fit subpackage provides a tool for fitting curves to bivariate statis-

tical data. The fit[leastsquare[[x,y],y=curve,b0, b1, . . . , bk]]([x-data,
y-data]) fits the specified curve to the given data using the method of
least squares, where curve is a linear function in the unknown parameters
b0, b1, . . . , bk. The default of curve is y = ax + b. Try

> with(stats):
> fit[leastsquare[[x,y]]]([[10,20,30,40],[22,42,62,82]]);

y = 2 + 2x

> with(stats):
> data1:=importdata("lamp.dat",2):
> life:=data1[1]:
> amount:=data1[2]:
> simple fit:=fit[leastsquare[[x,y]]]([amount, life]);

y = 3260.660333 + 408.6392896x

> lamp fit:=fit[leastsquare[[x,y], y=a*x∧2+b*x+c, {a,b,c}]]
([amount,life]);

y = −54.29005649x2 + 1694.889037x − 4058.482288

The leastmediansquare is another format option for the fit function. See
?fit for more information.

16.7 ANOVA
The anova subpackage provides a tool for conducting an analysis of variance,

a method for comparing two or more population means. The anova[oneway]
function result contains the information presented in a standard ANOVA table
in the following format:

[[treatment df, treatment sum of squares, treatment mean sum of squares],
[error df, error sum of squares, error mean sum of squares],
[total df, total sum of squares]],

[treatment df, error df, F-ratio, Prob (F < F-ratio)]

A simple example of a one-way ANOVA is given below.

> with(stats):
> data3:=importdata("data3.dat",3):
> instant:=data3[1]:
> preheat:=data3[2]:
> rapid:=data3[3]:
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> life3:=[instant, preheat, rapid]:
> anova[oneway](life3);

[[2, 640574782.49, 320287391.245], [297, 295982552.72, 996574.251582],
[299, 936557335.21]][2, 297, 321.388387003, 1.0]

Because the p-value (Prob(F > F-ratio)) is clearly less than 0.05, we conclude
that the choice of lamp fixture significantly affects lamp life.

16.8 Distributions
maple has a number of well-known distributions for discrete and continuous

random variables. The following discrete distributions are available:

binomiald[n,p] discreteuniform[a,b]
empirical[list prob] hypergeometric[N1,N2,n]
negativebinomial[n,p] poisson[mu]

The following continuous distributions are available:

beta[nu1,nu2] cauchy[a,b] chisquare[nu]
exponential[alpha,a] fratio[nu1,nu2] gamma[a,b]
laplaced[a,b] logistic[a,b] lognormal[mu,sigma]
normald[mu,sigma] studentst[nu] uniform[a,b]
weibull[a,b]

See ?stats,distributions for the definitions of distribution parameters.

16.8.1 Evaluating distributions
The subpackage statevalf provides numerical evaluations of statistical func-

tions.
The functions available for discrete distributions are

dcdf discrete cumulative probability function
idcdf inverse discrete cumulative probability function
pf probability function

The functions available for continuous distributions are

cdf cumulative density function
icdf inverse cumulative density function
pdf probability density function

The various distributions take their parameters as indices to the distribu-
tions. See ?stats[distributions] for information on each available distri-
bution. The following examples show how the binomial distribution can be
evaluated.

© 2002 by Chapman & Hall/CRC



386 The Maple Book

> with(stats):
> statevalf[pf,binomiald[10,0.3]](0);

0.0282475249

> statevalf[dcdf,binomiald[10,0.3]](3);

0.6496107184

> statevalf[idcdf,binomiald[10,0.3]](0.6496);

2.0

Plot the probability density function and the cumulative density function of
the binomial distribution with n = 10 and p = 0.3.

> x:=seq(i,i=0..10):
> Binomial pdf:=seq(statevalf[pf,binomiald[10,0.3]](i),

i=0..10):
> Binomial cdf:=seq(statevalf[dcdf,binomiald[10,0.3]](i),

i=0..10):
> sp1:=scatterplot([x],[Binomial pdf],color=red,symbol=circle):
> sp2:=scatterplot([x],[Binomial cdf],color=blue,symbol=cross):
> plots[display]({sp1,sp2}, view=[0..10,0..1]);

The red circles are the points of the PDF function and the blue crosses are
the points of the CDF function.

The following examples show how the normal distribution can be evaluated:

> with(stats):
> statevalf[cdf,normald[0,1]](1.96);

0.9750021049

> statevalf[icdf,normald[0,1]](0.975);

1.959963985

> statevalf[cdf,normald](1.96);

0.9750021049

Plot the probability, cumulative, and inverse cumulative density functions of
the standard normal distribution.

> p1:= plot(statevalf[pdf,normald], -3..3, colour=green):
> p2:=plot(statevalf[cdf,normald], -3..3, colour=blue):
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> p3:=plot(statevalf[icdf,normald], 0.1..0.9, colour=red):
> plots[display]({p1,p2,p3},view=[-3..3,-1..1]);

16.8.2 Generating random distributions

The random[distribution](n) function generates n random numbers with a
given distribution. To generate a random number between 0 and 1 try

> stats[random,uniform[0,1]](1);

0.4274196691

To generate 100 random numbers from a normal distribution with mean 3
and standard deviation 2, and a histogram of the random numbers, try

> normal rando:=stats[random,normald[3,2]](20):
> stats[statplots,histogram]([normal rando], area=1, numbars=10,

color=blue);
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17. OVERVIEW OF OTHER PACKAGES

We have already seen many maple packages including Units, student, Linear-
Algebra, codegen, geom3d, geometry, inttrans, linalg, orthopoly, plots, plottools,
and stats. In this chapter we give an overview of the remaining packages. To
see a list of the available packages try

> ?index[packages]

The resulting table of package names, with their descriptions, is given below.

algcurves Algebraic curves
codegen Code generation
combinat Combinatorial functions
combstruct Combinatorial structures
context Context-sensitive menus
CurveFitting Fitting curves to data points
DEtools Differential equations tools
diffalg Differential algebra
difforms Differential forms
Domains Create domains of computation
ExternalCalling Link to external functions
finance Financial mathematics
GaussInt Gaussian integers
genfunc Rational generating functions
geom3d Euclidean three-dimensional geometry
geometry Euclidean geometry
Groebner Groebner basis calculations in skew algebras
group Permutation and finitely-presented groups
inttrans Integral transforms
liesymm Lie symmetries
linalg Linear algebra based on array data structures
LinearAlgebra Linear algebra based on rtable data structures
LinearFunctionalSystems Solving linear functional systems of equations
LinearOperators Solving operator equations, building annihilators
ListTools Manipulating lists
LREtools Manipulate linear recurrence relations
Matlab Matlab link
MathML Convert maple expressions to MathML
networks Graph networks
numapprox Numerical approximation
numtheory Number theory
Ore algebra Basic calculations in algebras of linear operators
OrthogonalSeries Series of orthogonal polynomials
orthopoly Orthogonal polynomials
padic p-Adic numbers

389
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PDEtools Tools for solving partial differential equations
plots Graphics package
plottools Basic graphical objects
PolynomialTools New polynomial tool package
polytools Polynomial tools
powseries Formal power series
process (Unix)-multiprocessing
RandomTools Random objects
RationalNormalForms Representing hypergeometric terms
RealDomain Restricting domain to real numbers
simplex Linear optimization
Sockets Network connection tools
SolveTools Solving systems of algebraic equations
Spread Spreadsheets
stats Statistics
StringTools Manipulating strings
student Student calculus
sumtools Indefinite and definite sums
tensor Tensor computations and general relativity
Units Unit conversion
XMLTools Extensible markup language tools

The Galois Fields package GF is listed as a package in maple 6 but not
in maple 7. The new packages for maple 7 are CurveFitting, ExternalCall-
ing, LinearFunctionalSystems, LinearOperators, ListTools, MathML, Orthogo-
nalSeries, PolynomialTools, RandomTools, RationalNormalForms, RealDomain,
Sockets, SolveTools, StringTools, Units, and XMLTools.

17.1 Finite fields
Any finite field F must have pk elements for some prime p. First we consider

the case when k = 1. Arithmetic in the field of p elements, Zp, coincides with
arithmetic over the integers modulo p. This is handled in maple by the functions
mod and modp. For example, let’s compute the following in Z17 = {0, 1, 2, . . . , 16}:

13 + 15,
13 − 15,
13/15,
13−1.

> 13 + 15 mod 17;
11

> 13 - 15 mod 17;
15
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> 13/15 mod 17;
2

> 13∧(-1) mod 17;
4

Thus, in Z17 we see that

13 + 15 = 11,
13 − 15 = 15,

13/15 = 2,
13−1 = 4.

maple can do calculations in the polynomial ring Zp[x]. For example, to fac-
torize a polynomial, we use the Factor function.

> P := x∧4+3*x+1;
x4 + 3x + 1

> factor(P);
x4 + 3x + 1

> Factor(P) mod 43;

(x + 16)
(
x3 + 27x2 + 41x + 35

)
Although the polynomial x4 + 3x + 1 is irreducible over Q, it does factor in Z43

as
x4 + 3x + 1 = (x + 16)

(
x3 + 27x2 + 41x + 35

)
.

Besides the Factor function there are many other functions compatible with the
mod function for doing polynomial and linear algebra calculations over Zp:

Content Det DistDeg Divide Eval
Expand Factor Factors Frobenius Gausselim
Gaussjord Gcd Gcdex Hermite Interp
Inverse Issimilar Lcm Normal Nullspace
Power Powmod Prem Primitive Primpart
Quo Randpoly Randprime Rem Resultant
Roots Smith Sprem Sqrfree taylor

maple can also handle calculations in a field Zp[α], where α is the root of an
irreducible polynomial over Zp. For example, the polynomial x2+1 is irreducible
over Z5, so we let α be a root and let F = Z5[α]. We compute 1/(1 + α) in F.

> alias(alpha=RootOf(y∧2+1)):
> Normal(1/(1+alpha)) mod 5;

2α + 3
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We see that in F,
1

1 + α
= 2α + 3.

To handle a finite field with pk elements for k > 1, we use the GF package.
This package differs from other packages in that it is not loaded with the with
function. For p a prime and k a positive integer, the function GF(p,k) creates a
table of functions and constants for doing arithmetic in the finite field GF(pk).
The finite field GF(pk) can be constructed as a finite extension Zp[α], where α
is the root of an irreducible polynomial P (x) of degree k over Zp. This can be
created in maple using the function GF(p,k,P(α)). As an example, we consider
the field GF(23).

> Factor(x∧3+x+1) mod 2;

x3 + x + 1

Since the polynomial x3 +x+1 is irreducible over Z2, we can use it to construct
GF(23).

> G8 := GF(2,3,alpha∧3+alpha+1);
G8 := module()
export ‘+‘, ‘-‘, ‘*‘, ‘/‘, ‘∧‘, input, output, inverse,
extension, variable, factors, norm, trace, order, random, size,
isPrimitiveElement, PrimitiveElement, ConvertIn, ConvertOut,
zero, one, init;
end module

On the export line above we see all the functions available. In this example,
each function f is called using G[f]. We can list the elements in the field
GF (23) = Z2[α] using the input function.

> seq(G8[input](k),k=1..8);

1, α, 1 + α, α2, 1 + α2, α + α2, 1 + α + α2, α3

G8[input](k) gives the kth element of the field. We can assign names to field
elements using the ConvertIn function. We let a = 1 + α and b = α2:

> a := G8[ConvertIn](1+alpha);

a := 1 + α

> b := G8[ConvertIn](alpha∧2);

b := α2

We can perform field operations in the obvious way.
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> G8[‘∧‘](a,4);
1 + α + α2

> G8[‘/‘](a,b);
α

> G8[‘*‘](a,b);
1 + α + α2

In the field Z2[α] we found that

(1 + α)4 = 1 + α + α2,

1 + α

α2
= α,

(1 + α)α2 = 1 + α + α2.

For more examples see ?GF.

17.2 Polynomials
In this section we discuss the factor function and the polytools and Poly-

nomialTools packages. PolynomialTools is a maple 7 package. It is an updated
version of the polytools package. Back in Chapter 3 we saw how to factor poly-
nomials over Z or Q. The factor function can also be used to factor over an
extension field of Q. In the previous section we used the Factor function to
factor polynomials over field extensions of Zp. As an example, we factor the
polynomial

P (x, y) = x4 − 4x2y2 + 4 y4 − 6x2 − 12 y2 + 9

over the fields Q, Q[
√

2], and Q[
√

2,
√

3]:

> p:= x∧4-4*x∧2*y∧2+4*y∧4-6*x∧2-12*y∧2+9;

p := x4 − 4x2y2 + 4 y4 − 6x2 − 12 y2 + 9

> factor(p);
x4 − 4x2y2 + 4 y4 − 6x2 − 12 y2 + 9

> factor(p,sqrt(2));(
x2 − 2xy

√
2 + 2 y2 − 3

)(
x2 − 3 + 2xy

√
2 + 2 y2

)
> factor(p,sqrt(2),sqrt(3));(

x −
√

3 − y
√

2
)(

x +
√

3 − y
√

2
)(

x +
√

3 + y
√

2
)(

x −
√

3 + y
√

2
)

We see that P (x, y) is irreducible over Q. Over Q[
√

2], it has the factorization

P (x, y) =
(
x2 − 2xy

√
2 + 2 y2 − 3

)(
x2 − 3 + 2xy

√
2 + 2 y2

)
,
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and over Q[
√

2,
√

3], it factors completely into linear factors

P (x, y)

=
(
x −

√
3 − y

√
2
)(

x +
√

3 − y
√

2
)(

x +
√

3 + y
√

2
)(

x −
√

3 + y
√

2
)

.

The syntax of factor has the form factor(p,K), where is p is a polynomial and
K is a set of radicals or RootOfs that generate an extension field. Let β satisfy
β3 + β + 1. We factor the polynomial

Q(x) = x6 − 2x4 − x3 + 2x2 − 1,

over Q[β]. We use RootOf to define β.

> beta := RootOf(Z∧3+Z+1);

β := RootOf( Z 3 + Z + 1)

> Q := x∧6-2*x∧4-x∧3+2*x∧2-1;

Q := x6 − 2x4 − x3 + 2x2 − 1

> factor(Q,beta);

(x4 − x3%1− x2 + x2%12 + x%1 + 1)(x2 + x%1− 1)
%1 := RootOf( Z3 + Z + 1)

Over Q[β], maple found the factorization

Q(x) = (x4 − βx + (β2 − 1)x2 + βx + 1)(x2 + βx − 1).

To factor over C, we use the complex option.

> factor(Q,complex);

(x + 1.010648068 + 0.6987007022 I) (x + 1.010648068 − 0.6987007022 I)
(x + 0.7154310100) (x − 0.6694841663 + 0.4628406978 I)
(x − 0.6694841663 − 0.4628406978 I) (x − 1.397758814)

Of course, the complex constants in this factorization have been approximated.
The polytools package contains five functions that operate on polynomials:

minpoly recipoly split splits translate

The PolynomialTools package is new to maple 7, but it is just an updated
version of the polytools package. It contains three additional functions:

Shorten PolynomialToPDE PDEToPolynomial
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For a floating-point constant c and a positive integer n, the minpoly(c,n) func-
tion returns a polynomial of degree n with small integer coefficients, one of whose
roots agrees with c. As an example, suppose we suspect that

c ≈ 0.3178372451957822447

is the root of a nice quartic polynomial.

> c := 0.3178372451957822447:
> p := polytools[minpoly](c,4);

p := 1 − 10 X 2 + X 4

> r := solve(p);

r := −
√

3 −
√

2,
√

3 +
√

2,−
√

3 +
√

2,
√

3 −
√

2

> map(evalf,[r]);

[−3.146264370, 3.146264370,−0.317837246, 0.317837246]

maple found that c is an approximate root of the polynomial p(x) = 1−10x2 +
x4. We used solve to obtain the roots x = ±

√
3 ±

√
2, which we approximated

using evalf. We are now led to conjecture that

c =
√

3 −
√

2.

For a polynomial p(x), the function recipoly(p(x),x) determines whether
p(x) is self-reciprocal; i.e., whether

p(x) = xd p(1/x),

where d is the degree of p(x).
For a polynomial p(x), the function split(p(x),x) computes a complete

factorization of p(x) in some splitting field. We find the complete factorization
of the polynomial p(x) = 1 + x2 + x4:

> P := 1 + x∧2 + x∧4;

P := 1 + x2 + x4

> polytools[split](P,x);

(x − 1 + %1)(x + %1)(x + 1 − %1)(x − %1)
%1 := RootOf( Z2 − Z + 1)
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This means that the polynomial p(x) splits in Q(ω) as

p(x) = (x − 1 + ω)(x + ω)(x + 1 − ω)(x − ω),

where ω satisfies ω2 − ω + 1. The function splits is the same as split except
that it returns the factorization in list form.

For a polynomial p(x) and a constant a, translate(p(x),x,a) returns p(x+
a). See ?polynomial for a list of all maple operations that are defined on
polynomials.

17.3 Group theory
The group theory package is group. It contains the following functions:

DerivedS LCS NormalClosure RandElement
SnConjugates Sylow areconjugate center
centralizer convert core cosets
cosrep derived elements grelgroup
groupmember grouporder inter invperm
isabelian isnormal issubgroup mulperms
normalizer orbit parity permgroup
hpermrep pres subgrel transgroup
transnames type

In the group package, groups are represented either as permutation groups or by
sets of generators and relations.

There are two ways to represent permutations. The maple list

[i1, i2, . . . , ir]

corresponds to the permutation σ(k) = ik, for 1 ≤ k ≤ r. Permutations
can also be given as products of disjoint cycles. A cycle is represented by a
list. For example, the cycle σ = (a1 a2 . . . ar) is represented in maple by the
list [a1, a2, . . . , ar]. Then products of cycles are represented by a list of lists.
For example, the permutation σ = (1 3 4)(2 7)(5 6) is represented in maple by
[[1,2,3],[2,7],[5,6]]. We can use the convert function to convert between
the two ways of representing permutations. Suppose we are given the permuta-
tion

σ =
(

1 2 3 4 5 6
3 4 6 2 5 1

)
.

We enter this into maple.

> sigma := [3,4,6,2,5,1];

σ := [3, 4, 6, 2, 5, 1]

We can convert this to a product of disjoint cycles by using the convert function
with the disjcyc option.
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> dcp := convert(sigma,’disjcyc’);

dcp := [[1, 3, 6], [2, 4]]

We found that
σ = (1 3 6) (2 4).

To convert from a product of disjoint cycles to the list form, we use the convert
function with the permlist option.

> convert(dcp,’permlist’,6);

[3, 4, 6, 2, 5, 1]

In general, the syntax takes the form

convert(dcp , ’permlist’, n)

where dcp is a product of disjoint cycles (given as a list of lists) and n is the
degree of the permutation. In our example we needed n = 6.

A permutation group is defined in maple using the permgroup function.
The syntax has the form

permgroup(n, {dcp1, dcp2, . . . , dcpk})
permgroup(n, {a1=dcp1, a2=dcp2, . . . , ak=dcpk})
Here n is the degree of the permutations, and the second argument is a set
of generators. Each generator is given as a product of disjoint cycles. In the
second form, names are assigned to the generators. We define the group G < S4

generated by σ = (1 2 3 4), and τ = (1 3) (2 4).

> with(group):
> G:=permgroup(4,sigma=[[1,2,3,4]],tau=[[1,3],[2,4]]);

G := permgroup(4, {σ = [[1, 2, 3, 4]], τ = [[1, 3], [2, 4]]})

We can compute the order of this group using groupord.

> grouporder(G);
4

We see that |G| = 4. We can list the elements of the group using the elements
function.

> elements(G);

{[], [[1, 2, 3, 4]], [[1, 3], [2, 4]], [[1, 4, 3, 2]]}

We see that
G = {e, σ, τ, (1 4 3 2)},
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where e is the identity permutation.
Groups can also be defined in terms of generators and relations using the

grelgroup function. The syntax has the form grelgroup(S,R), where S is a
set of generators and R is a set of relations. Each relation is given as a list
of certain generators or their inverses. The relation corresponds to setting the
product of the elements equal to the identity. For example, we consider the
group G with generators a, b and relations a5 = e, b2 = e, aba = b.

> with(group):
> G := grelgroup(a,b,[a,a,a,a,a],[b,b],[a,b,a,1/b]);

G := grelgroup({a, b} ,
{
[a, a, a, a, a], [b, b], [a, b, a, b−1]

}
)

> grouporder(G);
10

We found that |G| = 10.
We summarize the remaining functions in the package.

areconjugate(P, g1, g2)

Determines whether g1, g2 are conjugate in the permutation group P .

center(P)

Returns the center C(P ) of the permutation group P .

centralizer(P,g)

Returns the centralizer CP (g) of the permutation g in the permutation group
P .

core(S,P)

Computes the core of a subgroup S of a permutation group P (i.e., the largest
normal subgroup of P that is contained in S).

cosets(S,P)

Computes a complete list of right coset representatives for a subgroup S of a
group G. The groups S, G may be given as permutation groups or in terms of
generators and relations using grelgroup and subgrel.

cosrep

Expresses a given group element as an element of some right coset.

derived(P)

Returns the derived subgroup P ′ = P (1) of the permutation group P , also known
as the commutator subgroup.
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DerivedS(P)

Computes the derived series

P > P (1) > P (2) > · · ·

of a permutation group P . The series is returned as a sequence of permutation
groups.

groupmember(p,P)

Determines whether the permutation p is an element of the permutation group
P .

inter(P1, P2)

Returns the intersection of two permutation groups P1 and P2.

invperm(p)

Computes the inverse of the permutation p given as a product of disjoint cycles.

isabelian(P)

Determines whether the permutation group P is abelian.

isnormal

Determines whether a subgroup is a normal subgroup of a given group.

issubgroup(P1, P2)

Determines whether the permutation group P1 is a subgroup of the permutation
group P2.

LCS(P)

Computes the lower central series of a permutation group P .

mulperms(p1, p2)

Computes the product p1p2 of two permutations p1, p2 given as products of
disjoint cycles.

NormalClosure(S, P)

Computes the smallest normal subgroup of the permutation group P containing
the subgroup S.

normalizer(P, S)

Computes the normalizer NP (S) of S in the permutation group P .

orbit(P, k)

Computes the orbit
{σ(k) : σ ∈ P},
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for a given integer k and permutation group P .

parity

Determines the parity of a permutation group, an individual permutation, or a
permutation with a cycle type given by a partition. The function returns 1 if
the parity is even and −1 if the parity is odd. The parity of a permutation is
also called the sign of a permutation. The parity of a permutation group is even
if all of its elements are even, otherwise it is odd.

permrep

Computes a permutation representation of a group in a certain sense. See
?group[permrep] for more details.

pres

Finds a set of relations for the generators of a subgroup.

subgrel

Defines a subgroup of a given group in terms of generators.

transgroup

Returns certain information for a given transitive permutation group. See
?group[transgroup].

?transnames

Gives a page of information describing the group naming scheme used by
transgroup.

type(L, ’disjcyc’(n))

Checks whether L is a valid maple expression that describes a permutation in
Sn as a product of disjoint cycles.

The function galois computes the Galois group of a polynomial. It is not
in the group package. We compute the Galois group of the polynomial

p(x) = 2
(
x2 + 6x − 3

)3 − 27 (x + 1)3
(
x2 − 1

)
.

> p:= 2*(x∧2+6*x-3)∧3-27*(x+1)∧3*(x∧2-1);

p := 2
(
x2 + 6x − 3

)3 − 27 (x + 1)3
(
x2 − 1

)
> galois(p);

”6T11”, {”2S4(6)”, ”[23]S(3)”, ”2 wr S(3)”}, ” − ”, 48,
{”(36)”, ”(246)(135)”, ”(15)(24)”}
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This means that the Galois group G is a group of order 48,

G ∼= Z2 × S4
∼= Z2 � S3,

and as a permutation group G has generators (3 4), (2 4 6) (1 3 5) and (1 5) (2 4).
For an explanation of how the output of galois is interpreted, see
?group[transnames] and ?group[transgroup].

17.4 Combinatorics
There are three packages for doing combinatorics: combinat, combstruct,

and networks. The combinat package contains functions for counting and listing
combinatorial objects such as permutations, combinations, and partitions. The
networks package is for drawing graphs and doing graph theory calculations. The
combstruct package is used to define more abstract combinatorial structures.

17.4.1 The combinat package
The combinat package contains the following functions:
Chi bell binomial cartprod character
choose composition conjpart decodepart encodepart
fibonacci firstpart graycode inttovec lastpart
multinomial nextpart numbcomb numbcomp numbpart
numbperm partition permute powerset prevpart
randcomb randpart randperm stirling1 stirling2
subsets vectoint

Cartesian products

The cartprod function is used to define Cartesian products. The call
cartprod([S1, S2, . . . , Sk]) defines the cartesian product

S1 × S2 × · · · × Sk,

where the Sj are sets or lists. We define the Cartesian product

{1, 2, 3} × {a, b} × {A,B}.

> with(combinat):
> T := cartprod([{1,2,3},{a,b},{A,B}]);
T := table([nextvalue = (proc() ... end proc),

finished = false])

It is possible to iterate through the Cartesian product using nextvalue. We use
a while loop to generate the elements of the cartesian product.
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> with(combinat):
> C := {}:
> T := cartprod([1,2,3,a,b,A,B]):
> while not T[finished] do

C := C union T[nextvalue]():
end do:

> C;

{[1, a, B], [1, a, A], [1, b, B], [1, b, A], [2, a, B], [2, a, A], [2, b, B], [2, b, A],
[3, a, B], [3, a, A], [3, b, B], [3, b, A]}

Permutations

The permute function is used to generate permutations. When n is a positive
integer, permute(n) generates all permutations of 1, 2, . . . , n. When S is a set or
list, permute(S) generates all permutations of the elements of S. The functions
permute(n, r), and permute(S, r) generate permutations taken r at a time.
We generate the permutations of 1, 2, 3, 4 taken 2 at a time.

> with(combinat):
> permute(4,2);

[[1, 2], [1, 3], [1, 4], [2, 1], [2, 3], [2, 4], [3, 1], [3, 2], [3, 4], [4, 1], [4, 2], [4, 3]]

Try

> permute(4);
> permute([a,b,c,d],3);
> permute([a,a,c,d],3);

The randperm function generates a random permutation. Try

> randperm([a,b,c,d]);

The number of permutations of n objects taken r at a time is given by
numbperm(n,r). Try

> numbperm(12,5);
> 12!/7!;

Combinations

The choose function is used to generate combinations. Its usage is similar to
the permute function. We generate the combinations of 1, 2, 3, 4 taken two at a
time.

> with(combinat):
> choose(4,2);

[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
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We see that there are six combinations. Try

> choose([a,b,c,d,e,f],3);
> choose([a,a,c,d,d,d],3);

The number of combinations of n objects taken r at a time is given by
numbcomb(n, r). The function randcomb is used to generate random combi-
nations.

> with(combinat):
> numbcomb(12,5);
> 12!/5!/7!;
> randcomb(12,5);
> randcomb([a,b,c,d,e],3);

Partitions and compositions

A partition of a positive integer n is a representation of n as a sum of positive
integers disregarding order. The function partition(n) generates the partitions
of n. Each partition is represented by a list of its summands. We compute the
partitions of 6.

> with(combinat):
> P:=partition(6);

P := [[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 2, 2], [2, 2, 2], [1, 1, 1, 3], [1, 2, 3], [3, 3],
[1, 1, 4], [2, 4], [1, 5], [6]]

> nops(P);
11

There are 11 partitions of 6. They are

1 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 2, 1 + 1 + 2 + 2, 2 + 2 + 2,
1 + 1 + 1 + 3, 1 + 2 + 3, 3 + 3, 1 + 1 + 4, 2 + 4, 1 + 5, 6.

The numbpart function computes the number of partitions of an integer. We
compute the first few terms of the generating function P (q) for p(n), the number
of partitions of n.

> P := sum(numbpart(n)*q∧n,n=0..20);

1 + q + 2 q2 + 3 q3 + 5 q4 + 7 q5 + 11 q6 + 15 q7 + 22 q8 + 30 q9 + 42 q10

+56 q11 + 77 q12 + 101 q13 + 135 q14 + 176 q15 + 231 q16 + 297 q17

+385 q18 + 490 q19 + 627 q20

> series(1/P,q,21);

1 − q − q2 + q5 + q7 − q12 − q15 + O
(
q21

)
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What do you notice about the series expansion for the reciprocal of the gener-
ating function?

It is possible to iterate through the set of partitions. See ?decodepart,
?encodepart, ?firstpart, ?nextpart, ?prevpart, and ?lastpart for more
information. The function randpart(n) generates a random partition of n. For
a partition p, conjpart(p) gives the conjugate partition of p. For example, we
compute the conjugate partition of π : 1 + 1 + 1 + 3 + 5 + 5 + 12 + 21 + 21.

> p:= [1,1,1,3,5,5,12,21,21]:
> conjpart(p);

[2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 5, 5, 6, 6, 9]

The conjugate partition is

π′ : 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 5 + 5 + 6
+ 6 + 9.

A composition of a positive integer n is a like a partition of n except that
order counts. The function composition(n,k) generates the compositions of n
with k parts. We compute the compositions of six with three parts:

> with(combinat):
> composition(6,3);

{[4, 1, 1], [3, 2, 1], [2, 3, 1], [1, 4, 1], [3, 1, 2], [2, 2, 2], [1, 3, 2], [2, 1, 3],
[1, 2, 3], [1, 1, 4]}

> nops(%);

10

There are ten compositions of six with three parts. They are

4 + 1 + 1, 3 + 2 + 1, 2 + 3 + 1, 1 + 4 + 1, 3 + 1 + 2, 2 + 2 + 2, 1 + 3 + 2,
2 + 1 + 3, 1 + 2 + 3, 1 + 1 + 4.

The function numbcomp(n,k) returns that number of compositions of n with k
parts. Try

> numbcomp(6,3);

Sets

For a positive integer n, the function powerset(n) generates all subsets of the
integers 1, 2, . . . , n. Let’s try n = 4.
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> with(combinat):
> powerset(4);

{{} , {1} , {1, 2, 3, 4} , {2, 3, 4} , {3, 4} , {1, 3, 4} , {4} , {1, 4} , {2, 4} , {1, 2, 4} ,

{2} , {1, 2} , {3} , {1, 3} , {2, 3} , {1, 2, 3}}

> nops(%);
16

The subsets function is similar to the cartprod function. The cartprod allows
iteration through the elements of a Cartesian product. The subsets function
allows iteration through the powerset of a given set. Try

> PS := subsets({a,b,c,d});
> while not PS[finished] do

PS[nextvalue]();
end do;

Lists

Let N = {0, 1, 2, . . . } be the set of natural numbers. There is a canonical bi-
jection between lists of natural numbers of a fixed length and N. The function
inttovec(m,n) returns the mth vector of length n. For a list L, vectoint(L)
returns the corresponding natural number. We calculate the first six lists of
length 3.

> with(combinat):
> for j from 1 to 6 do

inttovec(j,3);
end do;

[1, 0, 0]
[0, 1, 0]
[0, 0, 1]
[2, 0, 0]
[1, 1, 0]
[1, 0, 1]

Other functions

Chi

Let n be a positive integer and suppose λ and ρ are partitions of n. Chi(λ,ρ)
computes the trace on any matrix in the conjugacy class corresponding to the
partition ρ in the irreducible representation of Sn corresponding to the partition
λ. Try
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> with(combinat):
> lambda := [1,1,3]:
> rho := [1,1,1,1,1]:
> Chi(lambda,rho);

bell(n)

Returns the nth Bell number Bn.

binomial

For integers 0 ≤ r ≤ n, binomial(n,r) returns the binomial coefficient
(
n
r

)
.

character

character(n) returns the character table for the symmetric group Sn. Try

> with(combinat):
> character(5);

fibonacci

fibonacci(n) gives the nth Fibonacci number. There is a related polynomial
given by fibonacci(n,x).

graycode

Let n be a positive integer. graycode(n) returns a list of all 2n n-bit integers
in Gray code order, i.e., consecutive integers in the list differ in only one place
in their binary form. Try

> with(combinat):
> g := graycode(4);
> printf(cat(‘ %.4d‘$16,‘\n‘), op(map(convert, g, binary)));

multinomial

For natural numbers n, n1, n2, . . . , nk, where n1+· · ·+nk = n, multinomial(n,
n1, n2, . . . , nk) returns the multinomial coefficient(

n

n1, n2, . . . , nk

)
=

n!
n1!n2! . . .!nk!

.

Try

> with(combinat):
> multinomial(12,3,4,5);
> 12!/3!/4!/5!;

stirling1(n,k)
stirling2(n,k)

Returns the Stirling number of the first and second kind, usually denoted by
s(n, k), and S(n, k), respectively. Here n, k are integers satisfying 0 ≤ k ≤ n.
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17.4.2 The networks package

The networks package is used for for drawing graphs and doing graph theory
calculations. The package contains the following functions:

acycpoly addedge addvertex adjacency
allpairs ancestor arrivals bicomponents
charpoly chrompoly complement complete
components connect connectivity contract
countcuts counttrees cube cycle
cyclebase daughter degreeseq delete
departures diameter dinic djspantree
dodecahedron draw duplicate edges
ends eweight flow flowpoly
fundcyc getlabel girth graph
graphical gsimp gunion head
icosahedron incidence incident indegree
induce isplanar maxdegree mincut
mindegree neighbors new octahedron
outdegree path petersen random
rank rankpoly shortpathtree show
shrink span spanpoly spantree
tail tetrahedron tuttepoly vdegree
vertices void vweight

Undirected graphs

We define a new graph G using the new function. We use the addvertex function
to define six vertices in the graph G.

> with(networks):
> G:=new():
> addvertex({A,B,C,D,E,F},G);

E,F,A,B,C,D

In maple, undirected edges correspond to two element sets of vertices. The
addedge function is used to define edges in the graph. We define seven edges:
AB, BC, DF , EF , AD, CE, and AC:

> addedge([{A,B},{B,C},{D,F},{E,F},{A,D},{C,E},{A,C}],G);

e1 , e2 , e3 , e4 , e5 , e6 , e7

We can draw the graph using the draw function. See Figure 17.1.

> draw(G);
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Figure 17.1 An undirected graph with six vertices.

To obtain detailed information about a graph, try the show function:

> show(G);

This information is not completely user-friendly, but it can be deciphered with
not too much trouble. To find the ends of an edge e in a graph G use ends(e,G).

> ends(e1,G);
{A,B}

For example, ends(e1,G) returned {A,B}. This means that edge e1 is joined by
the vertices A and B. To obtain all the vertices in a graph G, use vertices(G);
to get the edges, use end(G). Try

> vertices(G);
> ends(G);

We can make a copy of a graph using the duplicate function.

> H := duplicate(G):

We can delete edges and vertices using the delete function. We delete the
vertex A from the graph G and the edge e1 from the graph H.

> delete(A,G):
> draw(G);
> delete(e1,H):
> draw(H);

Because the edge e1 joins vertices A and B, we could have deleted it from H
using delete({A,B},H). There are many other functions. See the table at the
beginning of this section.
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Directed graphs

A directed graph is a graph wherein each edge has a head and a tail. The
directed edge from vertex A to vertex B is represented by the list [A,B]. We
construct a graph G with four vertices A, B, C, D and directed edges AB, BA,
BC, and CD:

> with(networks):
> G:=new():
> addvertex({A,B,C,D},G):
> addedge([[A,B],[B,A],[B,C],[C,D]],G);

e1, e2, e3, e4

For an edge e in a directed graph G, head(e,G), tail(e,G) return the head
and tail of e, respectively. Try

> head(e4,G);
> tail(e4,G);

Weighted graphs and flows

A weighted graph is a graph wherein weights are attached to edges. We construct
a weighted directed graph G with edges AB, AC, AD, BC, BE, CE, DE and
corresponding weights 7, 3, 10, 5, 6, 4, 12 using the addedge function.

> with(networks):
> G := new():
> addvertex({A,B,C,D,E},G):
> addedge([[A,B],[A,C],[A,D],[B,C],[B,E],[C,E],[D,E]],

names=[AB,AC,AD,BC,BE,CE,DE],
weights=[7,3,10,5,6,4,12],G);

AB,AC,AD,BC,BE,CE,DE

Notice how we used the names option to name the edges. We can obtain the
weights by using the eweight function.

> eweight(G);

table([BE = 6,BC = 5,CE = 4,AB = 7,DE = 12,AC = 3,AD = 10])

In general, to add weights w1, w2, . . . , wk to e1, e2, . . . , ek to a graph G, use
the command

addedge([e1, e2, . . . , ek], weights=[w1, w2, . . . , wk]).

Here the edges ej are either two elements sets (undirected) or lists (directed).
Edge weights can be interpreted as capacities in a network flow problem. The

weight of a directed edge corresponds to the capacity or maximum flow along
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that edge. In a flow problem the source is the vertex where the flow starts,
and the sink is the vertex where the flow ends. We calculate the maximum flow
of the network corresponding to the weighted directed graph given above, with
source A and sink E.

> flow(G,A,E);
20

The maximum flow is 20; i.e., the total flow out of the source (or into the sink) is
20. For a weighted directed graph G with source s and sink t, the maximum flow
is given by flow(G,s,t). Saturated edges are edges wherein flow has reached
capacity. These can be found by adding an extra name to the argument of the
flow function:

> flow(G,A,E,sateds):
> sateds;

{{A,B} , {A,C} , {A,D} , {E,B} , {E,C}}

We see that all edges are saturated except BC and DE. The call flow(G,A,E,
sateds) assigned the name sateds to the saturated edges.

It also possible to add weights to vertices using the addvertex function in a
similar way. As an example, we add the weights 0, 1, 2 to the vertices A, B, C
of a graph G. Try

> with(networks):
> G := new():
> addvertex({A,B,C},weights=[0,1,2],G);
> addedge([[A,B],[B,C],[A,C]],G);
> vweight(G);

There are many other functions for doing graph and network calculations.
They are given at the beginning of this section. Use the help facility to find
more information.

17.4.3 The combstruct package
The combstruct package is used to define and manipulate more abstract and

general combinatorial structures than are available in the combinat and networks
package. The package contains the following functions:

allstructs count draw finished gfeqns
gfseries gfsolve iterstructs nextstruct

The allstructs function lists all the combinatorial objects with given specifica-
tions of a given size. The count function counts objects of a given size. The draw
function returns a random combinatorial object of a given class. The functions
gfeqns, gfseries, gfsolve are used to define and solve the associated generat-
ing function problem. The functions finished, iterstructs, nextstruct are
used to iterate through combinatorial structures. For a nice introduction to this
package see the Web site:
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http://algo.inria.fr/libraries/autocomb/autocomb.html
which is the Studies in Automatic Combinatorics page of the Algorithms Project
at the Institut National de Recherche en Informatique et en Automatique (IN-
RIA), Le Chesnay, France. Click on Introductory worksheets.

17.5 Number theory
The main package for doing number theory is numtheory. Some other pack-

ages are GaussInt and padic.

17.5.1 The numtheory package

The numtheory package contains the following functions:

GIgcd L bigomega cfrac cfracpol
cyclotomic divisors factorEQ factorset fermat
imagunit index integral basis invcfrac invphi
issqrfree jacobi kronecker lambda legendre
mcombine mersenne minkowski mipolys mlog
mobius mroot msqrt nearestp nthconver
nthdenom nthnumer nthpow order pdexpand
phi pi pprimroot primroot quadres
rootsunity safeprime sigma sq2factor sum2sqr
tau thue

Divisors and factors

For an integer n, ifactor(n) gives the prime factorization of n. We find the
prime factorization of 144.

> n := 144;
144

> ifactor(n);
(2)4 (3)2

The ifactor function is a standard maple function and is not part of the
numtheory package. The numtheory functions divisors(n) and factorset(n)
return the set of positive divisors and the set of prime divisors of n, respectively.
The function tau(n) gives the number of (positive) divisors of n. We return to
our example with n = 144.

> with(numtheory):
> n := 144;

144

> divs := divisors(n);

{1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144}
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> factorset(n);
{2, 3}

> tau(n);
15

> nops(divs);
15

We see that 144 has 15 divisors: 1 2, 3, 4, 6, . . . 72, 144, and two prime divisors:
2 and 3.

The function factorEQ(n,d) gives a factorization of n in the ring of integers
of the quadratic field Q[

√
d] when the ring is norm-Euclidean. This happens

when d = −11, −7, −3, −2, −1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41,
55, 73. As an example, we factor 30 in the ring of integers in the field Q[

√
−7].

> with(numtheory):
> factorEQ(30,-7);(

1
2

+ 1/2 I
√

7
) (

1
2

+ −1
2

I
√

7
)

(3) (5)

In this ring 3 and 5 are primes, and 30 factors

30 = z · z · 3 · 5,

where z = (1 + i
√

7)/2. The function sq2factor(z) gives a factorization of an
integer z in the field Q[

√
2]. The factorization is given as a product of units and

primes.
The function nthpow(n, m) returns bn where b is the largest integer such

that bn | m.

> with(numtheory):
> nthpow(23152500);

Primes

See Section 3.3.4 for the functions ithprime, isprime, nextprime, prevprime.
Above we saw how the function factorset gives the prime divisors of an integer.
The function mersenne([n]) gives the nth Mersenne prime.

> with(numtheory):
> p := mersenne([10]);

618970019642690137449562111

> ifactor(p+1);
(2)89
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The 10th Mersenne prime is

p = 618970019642690137449562111 = 289 − 1.

The function mersenne(n) tests whether the integer 2n − 1 is prime.
For an integer n, pi(n) gives the number of primes less than or equal to n.

This is usually denoted by π(n). We plot the ratio

π(n)
n/ ln n

,

for 2 ≤ n ≤ 1000. See Figure 17.2.

> with(numtheory):
> L := [seq([n,pi(n)/(n/log(n))],n=2..1000)]:
> plot(L, style=point,labels=[n," "]);

0.4

0.6

0.8

1

1.2

 

0 200 400 600 800 1000n

Figure 17.2 A plot of π(n)/(n/ ln n).

A safe prime is a prime p such that (p − 1)/2 is also prime. The function
safeprime(n) returns the smallest safe prime larger than n. Try

> with(numtheory):
> safeprime(100);

The bigomega function computes the number of prime divisors of an integer n
counted with multiplicity.

mod n

Calculations modulo n are done using the mod and modp functions. See sections
3.3.6 and 17.1 for some examples. We describe some functions in the numtheory
package for doing further calculations mod n.

The residue classes relatively prime to n form a group modulo n. This group
is cyclic if n = pe, 2pe, 2 or 4, where p is an odd prime. The generator of this
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cyclic group is called a primitive root modulo n. The function primroot(n)
finds a primitive root modulo n if it exists. The call primroot(m, n) finds the
smallest primitive root mod n greater m if it exists. We find a primitive root
mod 17.

> with(numtheory):
> g := primroot(17);

3

> [seq(modp(g∧k,17),k=1..16)];

[3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1]

> sort(%);

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

3 is a primitive root mod 17. We verified that 3k gives all the nonzero residue
classes mod 17.

Suppose m, n are relatively prime. The function order(m,n) returns the
smallest positive integer d such that

md ≡ 1 (mod n).

We compute the order of 2 mod 17.

> with(numtheory):
> order(2,17);

8

> modp(2∧8,17);
1

The order of 2 mod 17 is 8.
Suppose g is a primitive root mod n, and a, n are relatively prime. The

function index(a,g,n) returns the smallest natural number j such that

gj ≡ a (mod n).

This is called the index of a mod n (relative to g). We consider an example mod
47.

> with(numtheory):
> g := primroot(47);

5

> d := index(6,5,47);
38
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> modp(g∧d,47);
6

5 is a primitive root mod 47. The index of 6 mod 47 with respect to this primitive
root is 38.

The function mroot(r,a,n) computes an rth root of a mod m, if it exists,
i.e., it tries to find an integer x such that

xr ≡ a (mod n).

We compute a 5th root of 2 mod 13.

> with(numtheory):
> mroot(2,5,13);

6

> modp(6∧5,13);
2

6 is a 5th root of 2 mod 13. The call msqrt(a, n) tries to find a square root
of a mod n. For a prime p, the function rootsunity(p,n) finds all pth roots of
unity mod n. We find the 7th roots of unity mod 43.

> with(numtheory):
> rootsunity(7,43);

1, 4, 11, 16, 21, 35, 41

> map(‘∧‘,[%],7);

[1, 16384, 19487171, 268435456, 1801088541, 64339296875, 194754273881]

> map(modp,%,43);
[1, 1, 1, 1, 1, 1, 1]

They are 1, 4, 11, 16, 21, 35, 41. For each number r, we verified that r7 ≡ 1
(mod 43).

For a prime p, the Legendre symbol
(
a
p

)
is given in maple by legendre(a,p),

or L(a,p). We compute the Legendre symbol of 15 mod 23.

> with(numtheory):
> legendre(15,23);

−1

> msqrt(15,23);
FAIL

We found that (
15
23

)
= −1.
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This is confirmed by the fact that 15 does not have a square root mod 23. For a, b
relatively prime and b a positive odd integer, the more general Jacobi symbol

(
a
b

)
is computed in maple using jacobi(a,b). The function quadres(a,b) returns
1 if a has a square root mod b and −1 otherwise. The function imagunit(n)
tries to find a square root of −1 mod n. We consider n = 41.

> with(numtheory):
> legendre(-1,41);

1

> imagunit(41);
9

> modp(%∧2,41);
40

We see that
(−1

41

)
= 1, so that −1 has a square root mod 41. 9 is a square root

of −1 mod 41.
Let m1, m2 be positive integers and a1, a2 be two integers. The command

mcombine(m1,a1,m2,a2) attempts to find a solution x to the congruences

x ≡ a1 (mod m1),
x ≡ a2 (mod m2).

We find a solution to the congruences

x ≡ 3 (mod 4),
x ≡ 4 (mod 5).

> with(numtheory):
> mcombine(4,3,5,4);

19

By the Chinese remainder theorem, the solutions are given by x ≡ 19 (mod 20).
A more general use of the Chinese remainder theorem can be done using the
chrem function, which is not part of the numtheory package. To solve the simul-
taneous congruences

x ≡ ai (mod mi),

for 1 ≤ i ≤ k, use the command chrem([a1,a2, . . . ,ak],[m1,m2, . . . ,mk]).

Continued fractions

For a constant c, cfrac(c,n) computes the first n + 1 quotients in the sim-
ple continued fraction. We compute the first seven quotients of the continued
fraction expansion of e.
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> with(numtheory):
> cfrac(exp(1),6);

2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

1 + · · ·

We can get this in list form.

> with(numtheory):
> cfrac(exp(1),30,’quotients’);

[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, . . . ]

Do you see a pattern? The cfrac function can also handle rational functions in
one variable. Try out the following example.

> with(numtheory):
> y := product( 1-q∧(5*n-1))*(1-q∧(5*n-4))/(1-q∧(5*n-2))

/(1-q∧(5*n-3)),n=1..10):
> cfrac(y,q,6);

1 +
1

−q − 1 +
1

−q +
1

−q2 +
1

−q2 +
1

−q3 +
1

−q3 + · · ·

Do you see a pattern? See ?cfrac for more options when using the cfrac
function. The cfracpol function will return a continued fraction expansion
for each real root of a specified polynomial. Also see the functions nthconv,
nthdenom, nthnumer, and invcfrac.

Other functions

cyclotomic

cyclotomic(n,x) returns the nth cyclotomic polynomial.
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fermat

fermat(n) returns the nth Fermat number 22n

+ 1, for n < 20. The form
fermat(n,w) gives further information about a particular Fermat number.

GIgcd

Computes the gcd of Gaussian integers.

invphi

This is the inverse totient function. invphi(m) will a list of integers n such
that φ(n) = m.

issqrfree

Tests whether an integer is square-free.

lambda

This is Carmichael’s lambda function. lambda(n) returns the order of the largest
cyclic subgroup of Zn.

minkowski

The minkowski function is used to solve certain Diophantine inequalities.

mipolys

For a prime p, mipolys(n,p,m) returns the number of monic irreducible poly-
nomials of degree n over the finite field with pm elements.

mobius

mobius(n) returns the value of the Möbius function μ(n).

nearestp

Returns the nearest lattice point to a specified point for a given n-dimensional
real lattice.

pdexpand

For a rational number q, pdexpand(q) returns the periodic decimal expansion
of q.

phi

phi(n) is the value of Euler’s totient function φ(n).

sigma

sigma[k](n) returns the sum of the kth power of the positive divisors of n:

σk(n) =
∑
d|n

dk.
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sum2sqr

sum2sqr(n) returns pairs of integers [a, b] such that

n = a2 + b2.

thue

The thue function is used to find integer solutions to equations p(x, y) = m, or
inequalities of the form p(x, y) ≤ m, where p(x, y) is an irreducible homogeneous
polynomial.

17.5.2 The GaussInt package
Gaussian integers have the form a + b i, where a, b are integers. The set of

Gaussian integers is denoted by Z[i]. The GaussInt package is used for doing
calculations in this ring. It contains the following functions:

GIbasis GIchrem GIdivisor GIfacpoly GIfacset
GIfactor GIfactors GIgcd GIgcdex GIhermite
GIissqr GIlcm GImcmbine GInearest GInodiv
GInorm GInormal GIorder GIphi GIprime
GIquadres GIquo GIrem GIroots GIsieve
GIsmith GIsqrfree GIsqrt GIunitnormal

See ?GaussInt for more information.

17.5.3 p-adic numbers
The padic package is used for doing calculations with p-adic numbers. It

contains the following functions
arccoshp arccosp arccothp arccotp arccschp
arccscp arcsechp arcsecp arcsinhp arcsinp
arctanhp arctanp coshp cosp cothp
cotp cschp cscp evalp expansion
expp lcoeffp logp orderp ordp
ratvaluep rootp sechp secp sinhp
sinp sqrtp tanhp tanp valuep

Many of these functions are p-adic counterparts of the corresponding real-valued
functions. For example, for a prime p, sinp(x,p) is the p-adic analog of sin(x).
For p prime and z a nonzero integer, define ordp(z) as the largest integer a such
that pa | z. For a nonzero rational x = r/s, where r, s are integers, define

ordp(x) = ordp(r) − ordp(s).

The p-adic absolute value is defined by

|x|p =
1

pordp(x)
.
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Define |0|p = 0. Then | |p defines a non-Archimedean metric on Q. The comple-
tion of Q is denoted by Qp and is called the set of p-adic numbers. Any p-adic
number x has an expansion

x =
∞∑

j=m

ajp
j ,

where m ∈ Z, each 0 ≤ aj < p, and the convergence is relative to | |p. In maple,
ordp(x) is given by ordp(x,p).

> with(padic):
> r := 1705725;

1705725

> s := 5561328861;
5561328861

> ifactor(r);
(3)3 (5)2 (7) (19)2

> ifactor(s);
(3)7 (11) (19) (23)3

> ordp(r,3);
3

> ordp(s,3);
7

> x:=r/s;
3325

10840797
> ordp(x,3);

−4

For x = 1705725/5561328861 = 3325/10840797, we see that ord3(x) = −4. In
maple, |x|p is given by valuep(x,p).

> valuep(x,3);
34

We see that |x|3 = 34. To compute the first T terms in the p-adic expansion of
a rational number x, j < T , we use the command evalp(x,p,T). We compute
the 3-adic expansion of our rational number x:

> x;
3325

10840797
> evalp(x,3);

3−4 + 23−3 + 23−2 + 3−1 + 2 + 3 + 2 32 + 233 + 34 + O(36)
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We see that

3325
10840797

= (1)3−4 + (2) 3−3 + (2) 3−2 + (1) 3−1 + (2) 30 + (1) 31 + (2) 32

+ (2) 33 + (1) 34 + (0) 35 + . . . .

By default, maple returns the first ten terms in the expansion. To compute
more terms try

> evalp(x,3,20);

In maple, a p-adic number may be defined in terms of the coefficients in its
p-adic expansion. The p-adic number

x = ampm + am+1p
m+1 + anpn + O(pn+1)

is represented in maple by

p adic(p, m, [am, am+1, . . . , an]).

As an example, we consider the 3-adic expansion we found earlier.

> with(padic):
> px := p adic(3,-4,[1,2,2,1,2,1,2,2,1,0]);

p adic(3,−4, [1, 2, 2, 1, 2, 1, 2, 2, 1, 0])

> evalp(px,3);

3−4 + 23−3 + 23−2 + 3−1 + 2 + 3 + 2 32 + 233 + 34 + O(36)

maple is able to compute p-adic expansion of values of p-adic analogues of ana-
lytic functions. For example, the square root of p-adic number can be computed
using the sqrtp function.

> with(padic):
> z := sqrtp(10,3);

z := 1 + 2 32 + 33 + 234 + 35 + 38 + O(39)

> evalp(z∧2,3);
1 + 32 + O(39)

> sqrtp(2,3);
FAIL

We see that 10 has a 3-adic square root and

√
10 = 1 + 2 32 + 33 + 234 + 35 + 38 + · · ·
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Since 2 is a quadratic nonresidue mod 3, naturally enough 2 does not have a
3-adic square root. To see a complete list of such p-adic functions type

> ?padic,function

17.6 Numerical approximation
The numapprox package is used for numerical approximation of functions. It

contains the following functions
chebdeg chebmult chebpade chebsort chebyshev
confracform hermite pade hornerform infnorm laurent
minimax pade remez

Let m, n be positive integers. The [m/n]-Padé approximant of a function f(x) is
a rational function R(x) = pm(x)

qn(x) , where pm(x), qn(x) are polynomials of degrees
at most m, n respectively, such that the Maclaurin expansion of f(x) agrees with
that of R(x) as much as possible. It is given in maple by pade(f(x),x,[m,n]).
We compute the [3, 3]-Padé approximant of ex.

> with(numapprox):
> f := exp(x):
> padf := pade(f,x,[3,3]);

1 + 1
2 x + 1

10 x2 + 1
120 x3

1 − 1
2 x + 1

10 x2 − 1
120 x3

> taylor(f-padf,x,10);

− 1
100800

x7 − 1
100800

x8 − 97
18144000

x9 + O
(
x10

)
We see that the [3, 3]-Padé approximant of ex is

1 + 1
2 x + 1

10 x2 + 1
120 x3

1 − 1
2 x + 1

10 x2 − 1
120 x3

,

and this agrees with the Maclaurin expansion of ex to O(x7).
We give a brief description of other functions in the package:

chebdeg Degree of a polynomial in Chebyshev form
chebmult Multiply two Chebyshev series
chebpade Compute a Chebyshev-Padé approximation
chebsort Sort the terms in a Chebyshev series
chebyshev Chebyshev series expansion
confracform Convert a rational function to continued-fraction form
hermite pade Compute a Hermite-Padé approximation
hornerform Convert a polynomial to Horner form
infnorm Compute the L-infinity norm of a function
laurent Laurent series expansion
minimax Minimax rational approximation
remez Remez algorithm for minimax rational approximation
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17.7 Miscellaneous packages

17.7.1 The algcurves package

The algcurves package is used for doing algebraic curve calculations. Func-
tions include

algfun series sol Find series solutions with nice coefficients
differentials Holomorphic differentials of an algebraic curve
genus The genus of an algebraic curve
homogeneous Make a polynomial in two variables homogeneous in

three variables
homology Tretkoff’s algorithm for finding a canonical homology

basis
implicitize Find an implicit equation for curve or surface
integral basis Compute an integral basis for an algebraic function field
is hyperelliptic Test if an algebraic curve is hyperelliptic
j invariant The j-invariant of an elliptic curve
monodromy Compute the monodromy of an algebraic curve
parametrization Find a parametrization for a curve with genus 0
periodmatrix Compute the periodmatrix of an algebraic curve
plot knot Make a tubeplot for a singularity knot
puiseux Determine the Puiseux expansions of an algebraic

function
singularities The singularities of an algebraic curve
Weierstrassform Normal form for elliptic or hyperelliptic curves

The functions algfun series sol and implicitize are new to maple 7.

17.7.2 The codegen package

The code generation package is codegen. It contains a collection of tools
for creating, manipulating, and translating maple procedures into other pro-
gramming languages. In Chapter 7, we used the C and fortran functions for
generating C and Fortran code. The package also includes tools for automatic
differentiation of maple procedures, code optimization, and an operation count
of a maple procedure. Functions include
C Generate C code
cost Operation evaluation count
declare Declare the type of a parameter
dontreturn Don’t return a value from a maple procedure
eqn Produce output suitable for troff/eqn printing
fortran Generate Fortran code
GRADIENT Compute the Gradient of a maple procedure
HESSIAN Compute the Hessian matrix of a maple procedure
horner Convert formulae in a procedure to horner form
intrep2maple Convert an abstract syntax tree to a maple procedure
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JACOBIAN Compute the Jacobian matrix of a maple procedure
joinprocs Join the body of two or more maple procedures together
makeglobal Make a variable to be a global variable
makeparam Change a variable to be a parameter
makeproc Make a maple procedure from formulae
makevoid Don’t return any values from a maple procedure
maple2intrep Convert a maple procedure to an abstract syntax tree
MathML Convert a maple expression to MathML
optimize Common subexpression optimization
packargs Pack parameters of a maple procedure into an array
packlocals Pack locals of a maple procedure into an array
packparams Pack parameters of a maple procedure into an array
prep2trans Prepare a maple procedure for translation
renamevar Rename a variable in a maple procedure
split Prepare a maple procedure for automatic differentiation
swapargs Interchange two arguments in a maple procedure

The MathML function is new to the package.

17.7.3 The diffalg package

The diffalg package is used for manipulating systems of (ordinary and partial)
differential polynomial equations. It includes facilities for the reduction of the
differential equations and the development of the solutions into formal power
series. Functions include
belongs to Test if a differential polynomial belongs to a

radical differential ideal
delta leader Return the difference of the derivation operators

between the leaders of two differential polynomials
delta polynomial Return the delta-polynomial generated by two

differential polynomials
denote Convert a differential polynomial from an

external form to another
derivatives Return the derivatives occurring in a differential

polynomial
differential ring Define a differential polynomial ring endowed

with a ranking and a notation
differential sprem Sparse pseudo remainder of a differential

polynomial
differentiate Differentiate a differential polynomial
equations Return the equations of a regular differential

ideal
essential components Compute a minimal decomposition into regular

differential ideals
field extension Define a field extension of Q

greater Compare the rank of two differential polynomials
inequations Return the inequations of a regular differential
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ideal
initial Return the initial of a differential polynomial
initial conditions Return the list of the initial conditions of a

regular differential ideal
is orthonomic Test if a regular differential ideal is presented by

an orthonomic system of equations
leader Return the leader of a differential polynomial
power series solution Expand the nonsingular zero of a regular
preparation polynomial Preparation polynomial

differential ideal into integral power series
print ranking Print a message describing the ranking of a

differential polynomial ring
rank Return the rank of a differential polynomial
reduced Test if a differential polynomial is reduced with

respect to a set of differential polynomials
reduced form Compute a reduced form of a differential

polynomial
rewrite rules Display the equations of a regular differential ideal
Rosenfeld Groebner Compute a representation of the radical of any

finitely generated differential ideal as an
intersection of regular differential ideals

separant Return the separant of a differential polynomial

17.7.4 The difforms package
The differential forms package is difforms. Functions include

&∧ Wedge product
d Exterior differentiation
defform Define a constant, scalar, or form
formpart Find part of an expression that is a form
parity Parity of an expression
scalarpart Find part of an expression that is a scalar
simpform Simplify an expression involving forms
wdegree Degree of a form

17.7.5 The Domains package
New domains of computation can be defined using the Domains package.

See ?Domains[examples] for some examples.

17.7.6 The finance package
Finance calculations are done using the finance package. Functions include

amortization Amortization table for a loan
annuity Present value of an annuity
blackscholes Present value of a call option
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cashflows Present value of a list of cash flows
effectiverate Convert a stated rate to the effective rate
futurevalue Future value of an amount
growingannuity Present value of a growing annuity
growingperpetuity Present value of a growing perpetuity
levelcoupon Present value of a level coupon bond
perpetuity Present value of a perpetuity
presentvalue Present value of an amount
yieldtomaturity Yield to maturity of a level coupon bond

17.7.7 The genfunc package
The genfunc package is used for manipulating rational generating functions

(r.g.f.), which are related to sequences satisfying a linear recurrence. Functions
include
rgf charseq Find characteristic sequence of a rational generating
rgf encode Encode rational generating functions
rgf expand Expand rational generating functions
rgf findrecur Find recurrence for terms in a sequence
rgf hybrid Find generating function of hybrid terms
rgf norm Normalize a rational generating function
rgf pfrac Compute complex partial fractions expansion of an r.g.f.
rgf relate Relate sequences with common factors in their generating
rgf sequence Extract information about a sequence from its r.g.f.
rgf simp Simplify an expression involving an r.g.f. sequence
rgf term Finds values of terms in a sequence
termscale Determine the result of multiplying a generating function by

a polynomial

17.7.8 The geometry package
The geometry package is used for doing two-dimensional Euclidean geometry.

In Section 14.2 we used some functions in the geometry package to plot regular
polygons. There are many other functions in this package:
altitude Find the altitude of a given triangle
Appolonius Find the Appolonius circles of three given circles
area Compute the area of a triangle, square, circle, etc.
AreCollinear Test if three points are collinear
AreConcurrent Test if three lines are concurrent
AreConcyclic Test if four points are concyclic
AreConjugate Test if two triangles are conjugate for a circle
AreHarmonic Test if a pair of points is the harmonic conjugate

of another pair
AreOrthogonal Test if two circles are orthogonal to each other
AreParallel Test if two lines are parallel to each other
ArePerpendicular Test if two lines are perpendicular to each other
AreSimilar Test if two triangles are similar
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AreTangent Test if a line and a circle or two circles are tangent
bisector Find the bisector of a given triangle
center Find the center of a circle, an ellipse, or a hyperbola
centroid Compute the centroid of a triangle or of a set of points
circle Define a circle
CircleOfSimilitude Find the circle of similitude of two circles
circumcircle Find the circumcircle of a given triangle
conic Define a conic
convexhull Find the convex hull enclosing the given points
coordinates Compute the coordinates of a given point
CrossProduct Compute the cross product of two directed segments
CrossRatio Compute the cross ratio of four points
DefinedAs Return the endpoints or vertices of an object
detail Give a detailed description of an object
diagonal Return the length of the diagonal of a square
diameter Compute the diameter of points on a plane
dilatation Find the dilatation of a geometric object
distance Find the distance between two points, or a point

and a line
draw Create a two-dimensional plot of an object
dsegment Define a directed segment
ellipse Define an ellipse
Equation Equation of the geometric object
EulerCircle Find the Euler circle of a given triangle
EulerLine Find the Euler line of a given triangle
excircle Find three excircles of a given triangle
expansion Find the expansion of a geometric object
ExternalBisector Find the external bisector of a given triangle
FindAngle Find the angle between two lines or two circles
foci Find the foci of an ellipse or a hyperbola
form Return the form of the geometric object
GergonnePoint Find the Gergonne point of a given triangle
GlideReflection Find the glide-reflection of a geometric object
homology Find the homology of a geometric object
homothety Find the homothety of a geometric object
HorizontalCoord Compute the horizontal coordinate of a given point
HorizontalName Find the name of the horizontal axis
hyperbola Define a hyperbola
incircle Find the incircle of a given triangle
intersection Find the intersections between two lines, a line and a

circle, or two circles
inversion Find the inversion of a point, line, or circle with

respect to a given circle
IsEquilateral Test if a given triangle is equilateral
IsOnCircle Test if a point, a list, or set of points is on a circle
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IsOnLine Test if a point, a list, or a set of points is on a line
IsRightTriangle Test if a given triangle is a right triangle
line Define a line
MajorAxis Find the length of the major axis of a given ellipse
MakeSquare Construct squares
medial Find the medial triangle of a given triangle
median Find the median of a given triangle
method Return the method of defining a triangle
midpoint Find the midpoint of a segment joining two points
MinorAxis Find the length of the minor axis of a given ellipse
NagelPoint Find the Nagel point of a given triangle
OnSegment Find the point that divides the segment joining two

given points by a given ratio
orthocenter Compute the orthocenter of a triangle
parabola Define a parabola
ParallelLine Find the line that goes through a given point and is

parallel to a given line
PedalTriangle Pedal triangle of a point with respect to a triangle
PerpenBisector Find the perpendicular bisector of two given points
PerpendicularLine Find the line that goes through a given point and

is perpendicular to a given line
point Define a point
Polar Polar of a given point with respect to a given conic
Pole Pole of a given line with respect to a given conic
powerpc Power of a point with respect to a circle
projection Find the projection of a given point on a given line
RadicalAxis Find the radical axis of two given circles
RadicalCenter Find the radical center of three given circles
radius Compute the radius of a given circle
randpoint Generate a random point on a line or a circle
reciprocation Reciprocation of a point or line with respect to a circle
reflection Reflection of an object with respect to a point or line
RegularPolygon Define a regular polygon
RegularStarPolygon Define a regular star polygon
rotation Rotation of an object about a point
segment Define a segment
SensedMagnitude Find the sensed magnitude between two points
sides Compute the sides of a given triangle or a given square
similitude Find the insimilitude and outsimilitude of two circles
SimsonLine Find the Simson line of a given triangle
slope Compute the slope of a line
SpiralRotation Find the spiral-rotation of a geometric object
square Define a square
stretch Find the stretch of a geometric object
StretchReflection Find the stretch-reflection of a geometric object
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StretchRotation Find the stretch-rotation of a geometric object
TangentLine Find the tangents of a point on a circle
tangentpc Find the tangent of a point on a circle
translation Find the translation of a geometric object
triangle Define a triangle
VerticalCoord Compute the vertical coordinate of a given point
VerticalName Find the name of the vertical axis

17.7.9 The geom3d package

The geom3d package is used for doing three-dimensional Euclidean geometry.
In Section 14.3 we described the functions in the geom3d package for plotting
polyhedra.

The following transformations are available in the package

rotation translation ScrewDisplacement
reflection RotatoryReflection GlideReflection
homothety homology

Many of the functions in the package are analogous to those in the geometry
package. Other functions in the package include
Archimedean Define an Archimedean solid
AreCoplanar Test if the given objects are on the same plane
AreDistinct Test if given objects are distinct
AreSkewLines Test if two lines are skew
duality Define the dual of a given polyhedron
faces Return the faces of a polyhedron
facet Define a faceting of a given polyhedron
gtetrahedron Define a general tetrahedron
HarmonicConjugate Find the harmonic conjugate of a point with

respect to two other points
incident Vertices incident to a vertex of a polyhedron
IsArchimedean Test if a polyhedron is Archimedean
IsFacetted Test if the given polyhedron is of facetted form
IsOnObject Test if a point (or points) is on an object
IsQuasi Test if the given polyhedron is quasi-regular
IsRegular Test if the given polyhedron is regular
IsStellated Test if the given polyhedron is of stellated form
IsTangent Test if a plane is tangent to a sphere
plane Define a plane
polar Polar of a point with respect to a sphere
pole Pole of a plane with respect to a sphere
powerps Power of a point with respect to a sphere
QuasiRegularPolyhedron Define a quasi-regular polyhedron
RadicalCenter Find the radical center of four given spheres
RadicalLine Find the radical line of three given spheres
RadicalPlane Find the radical plane of two given spheres
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RegularPolyhedron Define a regular polyhedron
schlafli Return the Schlafli symbol of a given polyhedron
sphere Define a sphere
stellate Define a stellation of a given polyhedron
TangentPlane Find the tangent plane of a point on a sphere
tname Parameter name in parametric equations
volume Volume of a sphere or regular polyhedron
xcoord Compute the x-coordinate of a given point
xname The name of the x-axis
ycoord Compute the y-coordinate of a given point
yname The name of the y-axis
zcoord Compute the z-coordinate of a given point
zname The name of the z-axis

17.7.10 The Groebner package

The Groebner basis package is Groebner. Groebner bases arise in certain
skew polynomial rings and are quite useful for solving many problems in poly-
nomial ideal theory. Functions include

fglm Generalized FGLM algorithm
gbasis Compute a reduced Groebner basis
gsolve Preprocess an algebraic system for solving
hilbertdim Compute the Hilbert dimension of an ideal
hilbertpoly Compute the Hilbert polynomial of an ideal
hilbertseries Compute the Hilbert series of an ideal
inter reduce Fully interreduce a list of polynomials
is finite Decide if an algebraic system has only finitely many

solutions
is solvable Decide if algebraic system is consistent
leadcoeff Compute the leading coefficient of a polynomial
leadmon Compute the leading monomial of a polynomial
leadterm Compute the leading term of a polynomial
MulMatrix Multiplication matrix from a normal set
normalf Normal form of a polynomial modulo an ideal
pretend gbasis Add a Groebner basis to the list of known ones
reduce Full reduction of a polynomial
SetBasis Normal set of a zero-dimensional Groebner basis
spoly Compute the S-polynomial of two skew polynomials
termorder Create a term order
testorder Test whether two terms are in increasing order with respect

to a given term order
univpoly Compute the univariate polynomial of lowest degree in an

ideal

The MulMatrix and SetBasis functions are new to the package.
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17.7.11 The liesymm package
The liesymm package is used to determine the equations of the isogroup of a

system of partial differential equations. It implements the Harrison-Estabrook
procedure which uses Cartan’s formulation in terms of differential forms. A
detailed description of the package is given in a paper by Carminati, Devitt, and
Fee.5

&∧ Wedge product
&mod Reduce a form modulo an exterior ideal
annul Annul a set of differential forms
autosimp Autosimp a set of differential forms
close Compute the closure of a set of differential forms
d The exterior derivative
depvars Depvars a set of differential forms
determine Find the determining equations for the isovectors of a pde
dvalue Force evaluation of derivatives
Eta Compute the coefficients of the generator of a finite point
extvars Extvars a set of differential forms
getcoeff Extract the coefficient part of a basis wedge product
getform Extract the basis element of a single wedge product
hasclosure Verify closure with respect to d()
hook Inner product (hook)
indepvars Indepvars a set of differential forms
Lie The Lie derivative
Lrank The Lie rank of a set of forms
makeforms Construct a set of differential forms from a pde
mixpar Order the mixed partials
prolong Make substitutions for components of the extended isovector

in terms of partials of the original isovector
reduce Reduce a set of differential forms
setup Define the coordinates
TD An extended differential operator
translate Partial derivative corresponding to a given name
vfix Change variable dependencies in unevaluated derivatives
wcollect Regroup the terms as a sum of products
wdegree Compute the wedge degree of a form
wedgeset Find the coordinate set
wsubs Replace part of a wedge product

17.7.12 The LREtools package
The LREtools package is used for solving linear recurrence equations (LREs).

Functions include
autodispersion Compute self-dispersion of a polynomial
constcoeffsol Find all solutions of LREs with constant coefficients
delta Single or iterated differencing of an expression
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dispersion Compute dispersion of two polynomial polynomials
divconq Find solutions of “divide and conquer” recurrence equations
firstlin Find solutions of first-order linear recurrence equations
hypergeomsols Find hypergeometric solution of an LRE
polysols Find polynomial solutions of linear recurrence equations
ratpolysols Find rational solutions of linear recurrence equations
REcontent Content of a recurrence operator
REcreate Create an RESol from a recurrence equation
REplot 2-dimensional plot of a sequence defined by a recurrence
REreduceorder Apply the method of reduction of order to an LRE
REtoDE Convert a recurrence into a differential equation
REtodelta Return the difference operator associated to the LRE
REtoproc Convert a recurrence into a procedure
riccati Find solutions of Riccati recurrence equations
shift Integer shift of an expression

Here RESol is a maple data structure used to represent the solution of a
recurrence equation.

17.7.13 The Ore algebra package
The Ore algebra package is for doing basic calculations in algebras of linear

operators. An introduction to this package is available on Frédéric Chyzak’s
Mgfun Project page at
http://pauillac.inria.fr/algo/chyzak/Mgfun.html
Functions include

annihilators Skew lcm of a pair of operators
applyopr Apply an operator to a function
diff algebra Create an algebra of linear differential operators
Ore to DESol Convert a differential operator to a DESol
Ore to diff Convert a differential operator to a DE
Ore to RESol Convert a shift operator to a DESol
Ore to shift Convert a shift operator to a recurrence equation
poly algebra Create an algebra of commutative polynomials
qshift algebra Create an algebra of linear q-difference operators
randpoly Random skew polynomial generator
shift algebra Create an algebra of linear difference operators
skew algebra Declare an Ore algebra
skew elim Skew elimination of an indeterminate
skew gcdex Extended skew gcd computation
skew pdiv Skew pseudo-division
skew power Power of an Ore algebra
skew prem Skew pseudo-remainder
skew product Inner product of an Ore algebra

Here DESol is a maple data structure used to represent the solution of a differ-
ential equation.
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17.7.14 The PDEtools package
The maple function pdsolve is used for solving partial differential equa-

tions. Additional tools are in PDEtools, the partial differential equations pack-
age. There is a Web page for this package at
http://lie.uwaterloo.ca/pdetools.htm
Functions include

build Build an explicit expression for the indeterminate function
from the solution obtained using pdsolve

casesplit Split into cases and decouple a system
charstrip Find the characteristic strip corresponding to a

given first-order PDE and divide it into uncoupled subsets
dchange Change variables in mathematical expressions or procedures
dcoeffs Obtain coefficients of a polynomial differential equation
declare Declare a function for compact display
difforder Evaluate the differential order of an algebraic expression
dpolyform Polynomial form of a given system
dsubs Perform differential substitutions into expressions
mapde For mapping a PDE into a nicer PDE
PDEplot Plot the solution to a first-order PDE
separability Determine the conditions for sum or product separability
splitsys Split sets of (algebraic or differential) equations into

uncoupled subsets
undeclare Undeclare a function for compact display

The dpolyform function is new to the package.

17.7.15 The powseries package
The powseries package is used for formal power series computations. Func-

tions include
compose Composition of formal power series
evalpow General evaluator for expressions of formal power series
inverse Multiplicative inverse of a formal power series
multconst Multiplication of a power series by a constant
multiply Multiplication of formal power series
negative Negation of a formal power series
powadd Addition of formal power series
powcos Cosine of a formal power series
powcreate Create formal power series
powdiff Differentiation of a formal power series
powexp Exponential of a formal power series
powint Integration of a formal power series
powlog Logarithm of a formal power series
powpoly Create a formal power series from a polynomial
powsin Sine of a formal power series
powsolve Find power series solutions of linear ODEs
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powsqrt Square root of a formal power series
quotient Quotient of two formal power series
reversion Reversion of formal power series
subtract Subtraction of two formal power series
tpsform Truncated form of a formal series

17.7.16 The process package

The process package provides multiprocess maple programming. It is only
available on UNIX platforms. Functions include

block exec fork kill pclose
pipe popen wait

17.7.17 The simplex package

Linear optimization uses the simplex algorithm. The corresponding maple
package is simplex. Functions include

basis Variables that give a basis
convexhull Convex hull that encloses the given points
cterm Constants appearing on the rhs
define zero Define the zero tolerance for floats
display Display a linear program in matrix form
dual Compute the dual of a linear program
feasible Determine if system is feasible or not
maximize Maximize a linear program
minimize Minimize a linear program
pivot Construct a new set of equations given a pivot
pivoteqn Return a sublist of equations given a pivot
pivotvar Return a variable with positive coefficient
ratio Return a list of ratios
setup Construct a set of equations with variables on the lhs
standardize Return a system of inequalities in standard form

17.7.18 The Slode package

The Slode package is used for finding formal power series solutions of ordinary
linear differential equations. Functions include

candidate mpoints candidate points DEdetermine
FPseries FTseries hypergeom formal sol
hypergeom series sol mhypergeom formal sol mhypergeom series sol
msparse series sol polynomial series sol rational series sol
series by leastsquare
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17.7.19 The Spread package

The Spread package provides functions for accessing spreadsheet data on a
programming level. Functions include

CopySelection CreateSpreadsheet EvaluateCurrentSelection
EvaluateSpreadsheet GetCellFormula GetCellValue
GetFormulaeMatrix GetMaxCols GetMaxRows
GetSelection GetValuesMatrix InsertMatrixIntoSelection
IsStale SetCellFormula SetMatrix
SetSelection

17.7.20 The sumtools package

The sumtools package contains functions for computing indefinite and def-
inite hypergeometric sums in closed form using algorithms due to Gosper and
Zeilberger. A good reference is Petkovšek, Wilf, and Zeilberger’s book.6 Func-
tions include

extended gosper Extended Gosper’s algorithm for summation
gosper Gosper’s algorithm for summation
hyperrecursion Koepf’s extension of Zeilberger’s algorithm
hypersum Try to find a closed form for a hypergeometric sum
hyperterm Input a hypergeometric term
simpcomb Simplification of Gamma and related functions
sumrecursion Find a recurrence for a hypergeometric sum

using Zeilberger’s algorithm
sumtohyper Express an indefinite sum as a Hypergeometric function

Zeilberger has his own implementation EKHAD available as a package on the
Web at
http://www.math.temple.edu/∼zeilberg/programs.html
On this page you will see many other related packages.

17.7.21 The tensor package

The tensor package deals with tensors, their operations, and their use in
general relativity both in the natural basis and in a moving frame. Functions
include
act Act on either a tensor, spin, or curvature table
antisymmetrize Antisymmetrize the components of a tensor over any of

of its indices
change basis Transform a tensor from the natural basis to a

noncoordinate basis
Christoffel1 Compute the Christoffel symbols of the first kind
Christoffel2 Compute the Christoffel symbols of the second kind
commutator Commutator of two contravariant vector fields
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compare Compare two objects of the same type
conj Complex conjugation
connexF Compute the covariant components of the connection

coefficients in a rigid frame
contract Contract a tensor over one or more pairs of indices
convertNP Convert the connection coefficients or the Riemann tensor

into Newman-Penrose formalism
cov diff Covariant derivative of a tensor type
create Create a new tensor type object
d1metric Compute the first partials of the covariant tensor
d2metric Compute the second partials of the covariant tensor
directional diff Compute the directional derivative
display allGR Display nonzero components of all GR tensors
displayGR Display nonzero components of a GR tensor
dual Perform the dual operation on the indices of a tensor
Einstein Compute covariant components of the Einstein tensor
entermetric Enter metric tensor components
exterior diff Exterior derivative of a completely antisymmetric

covariant tensor
exterior prod Exterior product of two covariant antisymmetric tensors
frame Frame that brings the metric to diagonal signature metric
geodesic eqns Euler-Lagrange equations for the geodesic curves
get char Return the index character field of a tensor type
get compts Return the components field of a tensor type
get rank Return the rank of a tensor type
invars Scalar invariants of Riemann tensor of a space-time
invert Form the inverse of any second rank tensor type
Jacobian Jacobian of a coordinate transformation
Killing eqns Compute component expressions for Killings equations
Levi Civita Covariant and contravariant Levi-Civita pseudo-tensors
Lie diff Lie derivative of a tensor
lin com Linear combination of any number of tensor types
lower Lower a contravariant index
npcurve Newman-Penrose curvature in Debever’s formalism
npspin Newman-Penrose spin coefficients in Debever’s formalism
partial diff Compute the partial derivatives of a tensor type
permute indices Permutation of the indices of a tensor type
petrov Find the Petrov classification of the Weyl tensor
prod Inner and outer tensor product
raise Raise a covariant index
Ricci Compute the covariant Ricci tensor
Ricciscalar Compute the Ricci scalar
Riemann Compute the covariant Riemann curvature tensor
RiemannF Covariant Riemann curvature tensor in a rigid frame
symmetrize Symmetrize the components of a tensor over any of its
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indices
tensorsGR Compute general relativity curvature tensors in a

coordinate basis
transform Transform a tensor under a new coordinate system
Weyl Compute the covariant Weyl tensor

Here GR is an abbreviation for general relativity. Peter Musgrave, Denis
Pollney, and Kayll Lake have developed another maple tensor package, called
GRTensorII. It is available from
http://grtensor.phy.queensu.ca/

17.8 New packages
We give an overview of the packages that are new for maple 7.

17.8.1 The CurveFitting package
The package CurveFitting is used for fitting curves to data points. Functions

include
BSpline B-spline basis function
BSplineCurve B-spline curve
LeastSquares Least squares approximation
PolynomialInterpolation Interpolating polynomial
RationalInterpolation Interpolating rational function
Spline Natural spline
ThieleInterpolation Thiele’s interpolating continued fraction function

17.8.2 The ExternalCalling package
The ExternalCalling package has facilities for linking to programs outside

maple. There are two functions:
DefineExternal Create a link to an external function
ExternalLibraryName Name of the relevant external shared object

17.8.3 The LinearFunctionalSystems package
The LinearFunctionalSystems package is used for finding polynomial, ratio-

nal function, and formal power series solutions of linear functional systems of
equations with polynomial coefficients. Functions include
AreSameSolution Test if solutions of a system are equivalent
CanonicalSystem Canonical system equivalent to given system
ExtendSeries Extend the number of terms in a series solution
HomogeneousSystem Homogeneous system equivalent to given system
IsSolution Test a solution
MatrixTriangularization Equivalent matrix recurrence system
PolynomialSolution Polynomial solutions if they exist
Properties Properties of the system
RationalSolution Rational function solutions if they exist
SeriesSolution Formal power series solutions if they exist
UniversalDenominator Common denominator of rational solutions
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17.8.4 The LinearOperators package
The LinearOPerators package is used to solve equations involving differential

or difference operators. Functions include

Apply Apply an Ore polynomial to a function
dAlembertianSolver d’Alembertian solution of a nonhomogeneous

equation
DEToOrePoly Convert lhs of DE to Ore polynomial
FactoredAnnihilator Factor the annihilator of an expression
FactoredGCRD Greatest common right divisor in completely

factored form
FactoredMinimalAnnihilator Completely factored minimal annihilator
FactoredOrePolyToDE Convert a factored Ore polynomial to a DE
FactoredOrePolyToRE Convert a factored Ore polynomial to a

recurrence equation
FactoredOrePolyToOrePoly Expand a factored Ore polynomial
IntegrateSols Check for primitive element and perform

accurate integration
MinimalAnnihilator Minimal annihilator
OrePolyToDE Convert an Ore polynomial to a DE
OrePolyToRE Convert Ore polynomial to a recurrence

equation

17.8.5 The ListTools package
The ListTools package contains many functions for manipulating lists:

BinaryPlace Find largest index n so that L[n] precedes x
BinarySearch Perform binary search of list
Categorize Categorize elements of a list with respect to a proc
DotProduct Dot product of two lists
FindRepititions Find repeated elements in a list
Flatten Convert lists of lists to a single list
FlattenOnce Do flatten once
Group Group a list into sublists relative to a proc
Interleave Interleave a number of lists
Join Insert an object between each element of a list
JoinSequence Insert a sequence between each element of a list
MakeUnique Remove repeated elements from a list
Pad Pad the elements of a list
PartialSums Return a list of partial sums
Reverse Reverse the order of the list
Rotate Cyclically shift elements of a list
Sorted Test whether a list is sorted relative to a proc or order
Split Split a list into a sequence of lists relative to a proc
Transpose Transpose a list of lists as if it were a matrix
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17.8.6 The MathML package

MathML is a new markup language for representing mathematical expres-
sions in Web documents. It is still under development and has not yet been
implemented by Web browsers. The MathML package contains functions for
converting maple expressions to MathML and vice versa. Functions include

Export Convert a maple expression into MathML
ExportContent Convert maple expression into content-only MathML
ExportPresentation Convert maple into presentation-only MathML
Import Convert MathML into maple
ImportContent Convert content-only MathML into maple

17.8.7 The OrthogonalSeries package

The OrthogonalSeries packages contains functions for manipulating infinite
series of classical orthogonal polynomials. Functions include

Add Add a linear combination of two series
ApplyOperator Apply a differential or difference operator
ChangeBasis Expand in terms of a new basis
Coefficients Extract a coefficient from a series
ConvertToSum Convert series object to a sum
Copy Make copy of a series
Create Create a series of orthogonal polynomials
Degree Degree of a finite or infinite series
Derivate Take the derivative of a series
DerivativeRepresentation Series of differentiated orthogonal polynomials
Evaluate Evaluate a finite orthogonal series
Multiply Multiply two series
PolynomialMultiply Multiply a series by a polynomial
ScalarMultiply Multiply a series by a scalar
SimplifyCoefficients Simplify the coefficients of an orthogonal series
Truncate Truncate a series

17.8.8 The RandomTools package

The RandomTools package contains functions for generating random objects
of certain types called flavors. The available functions are

AddFlavor Add a flavor template to generate random objects
Generate Generate a random object
GetFlavor Return definition of flavor
GetFlavors Return names of all known flavors
HasFlavor Check if a flavor is known
RemoveFlavor Remove a flavor template
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Possible flavors include

choose complex exprseq float identical
intger list listlist negative negint
nonnegative nonnegint nonposint nonpositive nonzero
nonzeroint polynom posint positive rational
set structured truefalse

17.8.9 The RationalNormalForms package

The RationalNormalForms package is useful when dealing with summation
problems involving hypergeometric terms. Functions include

AreSimilar Test if the ratio of two hypergeometric terms is a
rational function

IsHypergeometricTerm Test whether a term is hypergeometric
MinimalRepresentation First and second minimal representations of a

hypergeometric term
PolynomialNormalForm Polynomial normal form of a rational function
RationalCanonicalForm Rational canonical forms of a rational function

17.8.10 The RealDomain package

When working in the real domain we use the RealDomain package. When
the package is loaded, the following functions are redefined so that their domain
is the set of real numbers:

Im Re ∧ arccos arccosh arccot arccoth
arccsc arccsch arcsec arcsech arcsin arcsinh arctan
arctanh cos cosh cot coth csc csch
eval exp expand limit ln log sec
sech signum simplify sin sinh solve sqrt
surd tan tanh

See Section 3.1.6 for some examples.

17.8.11 The Sockets package

The Sockets package is for programmers who want to do network communi-
cation in maple. Functions include:
Address Find IP address of hostname or vice versa
Close Close a TCP/IP connection
Configure Set configuration options for socket connection
GetHostName Return name of local host
GetLocalHost Return hostname of local endpoint of socket connection
GetLocalPort Return port number of local endpoint of socket connection
GetPeerHost Return hostname of remote endpoint of socket connection
GetPeerPort Return port number of remote endpoint of socket connection
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GetProcessID Return process ID of the calling process
LookupService Return port number of specified Internet service
Open Open a client TCP/IP connection
ParseURL Parse a URL into its components
Peek Check for data on a socket
Read Read text data from a socket connection
ReadBinary Read binary data from a network connection
ReadLine Read a line of text from a socket
Serve Establish a maple server
Status Return status of all open socket connections
Write Write text data to a socket connection
WriteBinary Write binary data to a socket connection

17.8.12 The SolveTools package

SolveTools is a package for programmers interested in routines useful in solv-
ing systems of algebraic equations. Functions include

Basis Simplest common basis for a list of expressions
Complexity Complexity of an expression
GreaterComplexity Compare the complexity of two expressions
RationalCoefficients Rational coefficients in a linear combination
SortByComplexity Sort expressions by their complexity

17.8.13 The StringTools package

The StringTools is a package for programmers wanting fancy tools for ma-
nipulating strings. Functions include
AndMap Determine if a proc applies to all elements of a string
Capitalize Capitalize the first letter of each word
Char ASCII character corresponding to given code number
CharacterMap Change all instances of a character in a string
Chomp Remove end-of-line character from string
CommonPrefix Length of longest common prefix of two strings
CommonSuffix Length of longest common suffix of two strings
Compare Compare two strings lexicographically
CompareCI Compare two case-insensitive strings lexicographically
Drop Remove a prefix from a string
Explode Convert a string to a list of characters
FirstFromLeft Locate first occurence of a character from the left
FirstFromRight Locate first occurence of a character from the right
FormatMessage Format a string
Group Divide a string into groups relative to a property
Implode Convert a list of characters to a string
IsAlhpa Determine if character is alphabetic
IsAlhpaNumeric Determine if character is alphabetic or a digit
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IsASCII Determine if character is in the ASCII character set
IsBinaryDigit Determine if character is a binary digit
IsControlCharacter Determine if a control character
IsDigit Determine if character is a decimal digit
IsGraphic Determine if alphanumeric or a punctuation character
IsHexDigit Determine if character is a hexadecimal digit
IsIdentifier Determine if character is valid maple identifier
IsLower Determine if character is lower case
IsOctalDigit Determine if character is an octal digit
IsPrefix Test for initial substring
IsUpper Determine if character is upper case
IsSuffix Test for terminal substring
Join Join a list of strings
LeftFold Apply a proc iteratively to characters of a string
Levenshtein Levenshtein distance bewtween two strings
Lowercase Change each character to lower case
Map Map a proc onto a string
OrMap Determine if a proc applies to any character of a string
Ord ASCII code number of a character
Random Return a random string
RightFold Apply a proc iteratively to characters of a string from the right
RegMatch Determine if a string matches a regular expression
RegSub Perform character substitutions
Remove Remove characters from a string
Select Select characters from a string
SelectRemove Split a string using select and remove
Soundex Soundex function
Split Split a string relative to a separating character
Squeeze Remove extra spaces
Substitute Substitute first occurrence of a string by another
SubstituteAll Substitute all occurrences of a string by another
SubString Extract a substring
Take Extract a prefix from a string
TrimLeft Remove leading white space
TrimRight Remove trailing white space
Trim Remove leading and trailing white space
Uppercase Change each character to upper case

and the functions:

LongestCommonSubstring LongestCommonSubSequence

17.8.14 The Units package
The unit conversion package is Units. Programming level functions include

AddBaseUnit Add a base unit and associated dimension function
AddDimenions Add or rename a dimension
AddSystem Add or modify a system of units
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AddUnit Add or modify a unit
GetDimension Dimension as a product of powers of base dimensions
GetDimensions List all known dimensions
GetSystem List units in a system of units
GetSystems List all known systems of units
GetUnit Return information for specified unit
GetUnits List all unit names
HasDimension Test whether a dimension exists
HasSystem Test whether a system of units exists
HasUnit Test whether a unit exists
RemoveDimension Remove a dimension
RemoveSystem Remove a system of units
UseContexts Set a default context
UseSystem Set a default system of units
UsingContexts List the default system of units
UsingSystem Return the default system of units

See Section 3.4 for some practical examples at the base level.

17.8.15 The XMLTools package
XMLTools is a package providing programmers tools for manipulating

maple’s XML documents. XML is an abbreviation for extensible markup
language. XML is a language for creating data and documents for the Web.
MathML (see Section 17.8.6) is an XML application. Functions include

AddAtrributes AddChild
AttrCont AtrributeCount
AtrributeNames Atrributes
AtrributeValue AtrributeValueWithDefault
CData CDataData
CleanXML Comment
CommentText ContentModel
ContentModelCount Element
ElementName ElementStatistics
Equal FirstChild
FromString GetAttribute
GetChild HasAttribute
HasChild IsCData
IsComment IsProcessingInstruction
IsTree JoinEntities
LastChild MakeElement
Print PrintToFile
PrintToString ProcessAttributes
ProcessingInstruction ProcessingInstructionData
ProcessingInstructionname ReadFile
RemoveAttribute RemoveAttributes
RemoveChild RemoveContent
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SecondChild SeparateEntities
Serialize StripAtrributes
StripComments SubsAtrribute
SubsAttributeName ThirdChild
ToString WriteFile
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At the time of writing this book, the main maple Web site was
http://www.maplesoft.com

On this page there are four links:

• Waterloo Maple Corporate Site (http://www.maplesoft.com/main.html).
This page contains the latest product, support, and contact information.

• Maple Application Center (http://www.mapleapps.com). The Maple Ap-
plication Center contains links to resources contributed by maple users from all
over the world.

• Maple Student Center (http://www.maple4students.com). This page con-
tains links to free on-line maple resources for students, including tutorials for
different courses.

• Registration Web Site (http://register.maplesoft.com). This is the
place to go to register your maple product.

The MAPLE Application Center
The URL for the Maple Application Center is http://www.mapleapps.com.

It contains links to maple resources contributed by users all over the world. It
supersedes the maple Share library.

Go to http://www.mapleapps.com using your favorite Web browser. Click

on the button I need an online
tutorial for maple . This will bring you to the Maple Tutorials

page http://www.mapleapps.com/tutorial.html. At present there are two
tutorials:

• Maple Essentials

• Introduction to Maple for Physics Students

Click on Maple Essentials. This will bring you to maple’s online tutorial. The
tutorial is in HTML format and contains information on numerical calculations,
algebraic calculations, graphing, and solving equations. It is also possible to
download the complete tutorial in mws form.

Clicking on Introduction to Maple for Physics Students will bring you to a more
advanced tutorial designed by Ross L. Spencer from Brigham Young University.
It covers plotting, calculus, complex numbers and functions, linear algebra, solv-
ing equations, ordinary differential equations and programming. There is a link
for downloading the maple worksheets for the complete tutorial.

Go back to the Maple Application Center page and click on Maple Power
Tools. This will bring you to a page with three links:

445
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• Education

• Research

• Application

Clicking on Education will bring you to a page listing eleven packages:

• Calculus I — A complete set of maple worksheets covering first semester
calculus, developed by the Department of Mathematics, University of Wisconsin-
Milwaukee.

• Calculus II — A continuation of the previous package.

• Calculus III — A collection of 25 demos developed at St. Louis University
for their Calculus III classes.

• Vector Calculus — A maple package covering differential operations, curve
analysis, coordinate system conversions, multiple integrals and line and surface
integrals.

• 100 Calculus Projects — A collection of 100 student projects developed at
IUPUI for Calculus I and II.

• Introduction to Maple for Physics Students (see above)

• Advanced Engineering Mathematics — A package of 273 maple worksheets
to accompany Robert Lopez’s book 7 of the same title.

• MathClass — maple tools for constructing textbook-quality mathematical
diagrams.

• Maple Essentials (see above)

• Post-Secondary Mathematics Education Pack — A collection of 49 maple
modules by Gregory A. Moore of Cerritos College for enlivening the teaching of
mathematics at all levels.

• Matrix Algebra Education Pack — A package of 30 modules by Wlodzis-
law Kostecki of The Papua New Guinea University of Technology, which covers
maple’s linalg package.

Go back to the Maple Powertools page
(http://www.mapleapps.com/powertools/powertools.html) and click on
Research . This will bring you to a page listing four packages:

• Finite Elements — A set of maple packages by Artur Portela of the New
University of Lisbon for analyzing physical structures using symbolic finite-
element models.

• Nonlinear Programming — Contains a package by Jason Schattman for
finding local extrema of nonlinear functions subject to constraints.

• Statistics Supplement — This package is for use with Zavan Karian’s 8 book
Probability and Statistics: Explorations with Maple.
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• Vector Calculus (see above)

Go back to the Maple Powertools page and click on Application . This will
bring you to a page listing three packages:

• Finite Elements (see above)

• Multibody Dynamics Dynaflex — A maple package developed by John
McPhee and Pengfei Shi of The University of Waterloo that automatically gen-
erates the kinematic and dynamic equations in symbolic form for 3-D flexible
multibody systems, given only a description of the system as input.

Return to the Maple Application Center page (http://www.mapleapps.com).
On the second part of this page you will see a host of links under ten categories:

• Mathematics — Abstract algebra, calculus, chaos theory, combinatorics,
complex analysis, cryptography, differential equations, differential geometry, en-
gineering mathematics, game theory, geometry, graph theory, group theory, knot
theory, linear algebra, logic, number theory, numerical analysis, operations re-
search, PDEs, real analysis, tensors, topology, and vector calculus.

• Education — Elementary school, precalculus calculus, vector calculus, DEs,
real analysis, physics, engineering, quantum mechanics, operations research, eco-
nomics, statistics and case studies.

• Science — Astrophysics, biochemistry, biology, chemistry, dynamical sys-
tems, physics, and quantum mechanics.

• Engineering — Chemical, civil & structural, control, electrical, finite element
modeling, fluid dynamics, heat transfer, manufacturing, engineering mathemat-
ics, mechanical, modeling & simulation, and nuclear.

• Graphics — Animations, animations gallery, graphics gallery, and applied
graphics.

• Maple Tools — Animations, applied graphics, games, Maple functionality,
Maple programming, and Maple 7 demos.

• Finance — Economics and financial engineering.

• Communications — Capacity modeling, cryptography and signal processing.

• Computer Science — C code generation, cryptography, error correction,
FORTRAN, graph theory, logic, Maple programming, numerical analysis, and
theory of computation.

• Statistics & Data Analysis — Maple maps, statistics and stochastic model-
ing.
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The MAPLE Student Center
The Maple Student Center is at http://www.maple4students.com. Go to

this page using your favorite Web browser. You will find links to the two maple
tutorials Maple Essentials and Introduction to Maple for Physics Students, which
were mentioned in the previous section.

Under the heading I Need Help With My Classes! there is a menu:

Choose a tutorial
Calculus I
Calculus II
Calculus III
Vector Calculus
Differential Equations
Linear Algebra
Complex Variables
Real Analysis
Engineering
Physics
Other

These basically correspond to the educational Powertools at the Maple Appli-
cation Center, which were mentioned in the previous section. Selecting Other
will bring you to the Maple Application page.

The MAPLE Share Library
Before maple 6, the Share library was the place to find maple packages

written by other users. The packages in the Share library are now scattered
about the Maple Application Center. To find out what happened to the Share
library go to
http://www.mapleapps.com/packages/whathappenedtoshare.html

There is a link on this page for downloading the Share library. It is still avail-
able by anonymous ftp at ftp.maplesoft.com. Just look in the subdirectory
pub/maple/share.

Interesting URLs
In this section we list some interesting maple Web sites.

http://www.math.ufl.edu/∼frank/maple-book/mbook.html
This is the Web page for The Maple Book. It contains links to maple mws and
txt files that are mentioned in the book. There are maple text files containing
all the maple commands used in the book. See Section 12.3.

http://math.la.asu.edu/∼kawski/maple.html
Matthias Kawski’s (Arizona State University) maple page. Contains numerous
maple worksheets on many mathematical topics.
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http://daisy.uwaterloo.ca/SCG/index.html

The home page of the Symbolic Computation Group, the brains behind the
maple software.

http://daisy.uwaterloo.ca/SCG/MUG.html

The home page of the MUG (maple Users Group).

ftp://daisy.uwaterloo.ca/pub/maple/MUG

An ftp listing of the digests of the maple Users Group. This is a collection of
E-mails about maple dating back to 1989.

http://www.math.ncsu.edu/MapleInfo/

The NCSU maple Information page.

http://web.mit.edu/afs/athena.mit.edu/software/maple/www/home.html

maple at MIT.

http://www.indiana.edu/ statmath/math/maple/

maple at Indiana Univeristy.

http://www.cecm.sfu.ca/CAG/

Computer Algebra Group at Simon Fraser University.

http://www.math.utsa.edu/mirrors/maple/maplev.html

A German/English maple resource page.

http://www-math.math.rwth-aachen.de/MapleAnswers/

U. Klein’s compilation of hundreds of answers posed to MUG.

http://www.ms.uky.edu/ carl/hand98.html

Carl Eberhart’s (University of Kentucky) on-line maple handbook.
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@ Function composition operator
Syntax: f@g
Description: Gives the composition of the functions f and g.
Example:

> (sin@cos)(x);

% The ditto operator
Syntax: %
Description: Refers to value of the previous expression computed.
Example:
> int(1/(1+x∧3),x); diff(%,x);

animate Animation of a two-dimensional plot
[plots]
Syntax: animate(F(x,t),x=a..b,t=c..d)
Description: Animation of F (x, t) on the interval [a, b] with frames c ≤ t ≤ d.
Example:
> with(plots): animate(sin(x*t),x=-10..10,t=1..2);

animate3d Animation of a three-dimensional plot
[plots]
Syntax: animate3d(F(x,y,t),x=a..b,y=c..d,t=p..q)
Description: Animation of F (x, y, t) for a ≤ x ≤ b, c ≤ y ≤ d with frames
p ≤ t ≤ q.
Example:
> with(plots): animate3d(cos(x+t*y),x=0..Pi,y=-Pi..Pi,t=1..2);

assign Assignment of solution sets
Syntax: assign(S)
Description: Assigns the variables given in the set S.
Example:
> S:={y=-1,x=2}: assign(%); x,y;

asympt Asymptotic expansion
Syntax: asympt(f(x),x,n)
Description: Gives the asymptotic expansion to order n of f(x) as x → ∞.
Example:
> asympt(GAMMA(x)∧2/GAMMA(2*x)*4∧x/sqrt(Pi),x,3);

451
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C Convert to C code
[codegen]
Syntax: C(expr)
Description: Converts the expression into C code
Example:
> with(codegen): F:=exp((1+x+x∧2)∧3); C(F);

changevar Perform a substitution in an integral
[student]
Syntax: changevar(u=g(x),int(f(x),x),u)
Description: Performs the substitution u = g(x) on the given integral.
Example:
> with(student): Int(x∧2/sqrt(1-x∧6),x):
> changevar(u=x∧3,%,u);

coeff Coefficient in a polynomial
Syntax: coeff(p(x),x,k)
Description: Returns the coefficient of xk in the polynomial p(x).
Example:
> expand((1+x+x∧2)∧10): coeff(%,x,10);

collect Collect coefficients of like powers
Syntax: collect(expr,x)
Description: Writes the expression as a polynomial in x.
Example:
> (x+1)∧3*y-(y+1)∧3*x: collect(%,x);

combine Combine terms
Syntax: combine(expr)
Description: Combines terms in the expression.
Example:
> combine(exp(2*x)∧3*exp(y));

contourplot Two-dimensional contour plot
Syntax: contourplot(f(x,y),x=a..b,y=c..d)
Description: Produces level curves of the function f(x, y) with x, y in the
specified ranges.
Example:
> with(plots): contourplot(sin(x*y),x=0..Pi, y=0..Pi);

convert Convert data type
Syntax: convert(expr,type)
Description: Converts the expression to the new type.
Example:
> series(sqrt(1-x),x,4): convert(%,polynom);
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degree Degree of a polynomial
Syntax: degree(p(x),x)
Description: Returns the degree of the polynomial in x.
Example:
> degree((x+y)∧6*(y-x∧2)∧10,x);

denom Denominator of an expression
Syntax: denom(expr)
Description: Returns the denominator of the expression.
Example:
> denom((x*sin(x)-cos(x))/x∧2);

det Determinant of a matrix
[linalg]
Syntax: det(A)
Description: Determinant of the matrix A.
Example:
> with(linalg): A:=matrix(4,4,(i,j)->x∧(i*j));
> det(A); factor(%);

diff Differentiation
Syntax: diff(z,x)
Description: Returns the (partial) derivative ( ∂z

∂x ) dz
dx .

Example:
> diff(sin(x∧2*y),x);

display Display a list of plots
[plots]
Syntax: display(L)
Description: Displays the plot structures in the list L.
Example:
> with(plots): P1:=plot(sin(x),x=0..Pi,style=POINT):
> P2:=plot(x,x=0..Pi): display([P1,P2]);

dsolve Solve ordinary differential equations
Syntax: dsolve(deqn,function)
Description: Solves the given differential equation for the unknown function.
Example:
> dsolve(diff(y(x),x$2)-y(x)=sin(x), y(x));

evalf Evaluate using floating-point arithmetic
Syntax: evalf(expr,n)
Description: Evaluates the expression to n digits.
Example:
> evalf(exp(-Pi),20);
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expand Expand an expression
Syntax: expand(expr)
Description: Expands the expression.
Example:
> expand((2*x+1)*(3*x-5));

factor Factor a polynomial
Syntax: factor(p)
Description: Factors the polynomial p.
Example:
> factor(x∧3+x∧2*y-x*y∧2-y∧3);

floor Greatest integer function
Syntax: floor(r)
Description: Returns the greatest integer less than or equal to r.
Example:
> floor(-11/3);

fortran Convert to Fortran code
[codegen]
Syntax: fortran(expr)
Description: Converts the expression into Fortran code.
Example:
> with(codegen): F:=exp((1+x+x∧2)∧3); fortran(F);

fsolve Solve using floating-point arithmetic
Syntax: fsolve(eqns,vars)
Description: Finds an approximate solution to the given set of equations.
Example:
> fsolve(cos(x)=x/2,x);

gausselim Gaussian elimination
[linalg]
Syntax: gausselim(A)
Description: Reduces the matrix A to row-echelon form.
Example:
> with(linalg): A:=matrix([[1,2,3,4],[2,3,4,5],[5,6,7,8]]);
> gausselim(A);

ifactor Prime factorization of an integer
Syntax: ifactor(n)
Description: Computes the prime factorization of the integer n.
Example:
> ifactor(999);
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implicitplot 2-D plot of a function defined implicitly
[plots]
Syntax: implicitplot(f(x,y)=c,x=a..b,y=c..d)
Description: Plots the set of points (x, y) satisfying f(x, y) = c in the indicated
ranges.
Example:
> with(plots):
> implicitplot((x∧2)∧(1/3)+(y∧2)∧(1/3)=1, x=-1..1, y=-1..1);

implicitplot3d 3-D plot of a function defined implicitly
[plots]
Syntax: implicitplot3d(f(x,y,z)=c,x=a..b,y=c..d,z=e..f)
Description: Plots the set of points (x, y, z) satisfying f(x, y, z) = c in the
indicated ranges.
Example:
> with(plots):
> implicitplot3d(x∧2+y∧2+z∧2=1,x=-1..1,y=-1..1,z=-1..1);

int Compute an integral
Syntax: int(f(x),x)
Description: Computes

∫
f(x) dx.

Syntax: int(f(x),x=a..b)
Description: Computes the definite integral

∫ b

a
f(x) dx.

Example:
> int(x∧2/sqrt(1+x∧2),x=1..sqrt(3));

inverse Inverse of a matrix
[linalg]
Syntax: inverse(A)
Description: Returns the inverse of the square matrix A.
Example:
> with(linalg): A:=matrix(3,3,(i,j)->1/2∧(i*j)); inverse(A);

isolve Integer solutions to equations
Syntax: isolve(eqns,var)
Description: Finds integer solutions to the given set of equations (if they
exist).
Example:
> isolve({x∧3+x*y=2,x∧2+y∧2=2},{x,y});

kernel Basis for the nullspace
[linalg]
Syntax: kernel(A)
Description: Returns a basis for the nullspace of the matrix A.
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Example:
> with(linalg): A:=matrix(5,5,(i,j)->7∧(i+j)); kernel(A);

latex Convert to LaTeX
Syntax: latex(expr)
Description: Converts the expression into LaTeX.
Example:
> latex(Int(1/x,x));

lhs Left-hand side of an equation
Syntax: lhs(eqn)
Description: Gives the left-hand side of the given equation.
Example:
> e:=x∧2+y∧2=r∧2: lhs(e);

limit Compute a limit
Syntax: limit(f(x),x=a)
Description: Computes the limit lim

x→a
f(x).

Example:
> limit((cos(x)-1)/x∧2,x=0);

map Map a function onto a list
Syntax: map(f,L)
Description: For the list L = [a1, a2, . . . , an], it gives [f(a1), f(a2), . . . , f(an)].
Example:
> L := [seq(10∧i-1,i=1..6)]; map(ifactor,L);

matrix Define a matrix
Syntax: matrix(m,n,f)
Description: Defines an m × n matrix whose ijth entry is f(i, j).
Example:
> A:=matrix(4,4,(i,j)->x∧(i+j));

modp Reduce modulo p

Syntax: modp(m,n)
Description: Reduces the integer m modulo n.
Example:
> modp(13*19∧5,34);

normal Normalize a rational function
Syntax: normal(expr)
Description: Simplifies the expression by clearing common factors.
Example:
> normal((1-q∧7)*(1-q∧6)/(1-q∧2)/(1-q));
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numer Numerator of an expression

Syntax: numer(expr)
Description: Returns the numerator of the expression.
Example:
> numer((x*sin(x)-cos(x))/x∧2);

op Extract operands of an expression

Syntax: op(expr)
Description: Converts the expression into a list of operands.
Syntax: op(n,expr)
Description: Extracts the nth operand in the expression.
Example:
> w:=x∧3+x*y+y: op(w); op(2,w);

plot Two-dimensional plot of a function

Syntax: plot(f(x),x=a..b)
Description: Plots the function y = f(x), a ≤ x ≤ b.
Example:
> plot(x*sin(x),x=0..Pi);

plot3d Three-dimensional plot of a function

Syntax: plot3d(f(x,y),x=a..b,y=c..d)
Description: Plots the function z = f(x, y), a ≤ x ≤ b, c ≤ y ≤ d.
Example:
> plot3d(sin(x*y),x=0..Pi,y=0..Pi);

polarplot Plot a polar curve
[plots]

Syntax: polarplot(f(t),t=a..b)
Description: Plots the polar curve r = f(θ), a ≤ θ ≤ b.
Example:
> with(plots): polarplot(sin(t),t=0..2*Pi);

product Find the product

Syntax: product(f(i),i=a..b)

Description: Computes the product
b∏

i=a

f(i).

Example:
> product((a+i-1),i=1..6);

radsimp Simplify radicals

Syntax: radsimp(expr)
Description: Simplifies the expression containing radicals.
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Example:
> radsimp(sqrt(3)*sqrt(15));

rand Generate random numbers
Syntax: rand(a..b)
Description: Produces a function that returns a random integer between a
and b.
Example:
> R9 := rand(0..9); R9(); R9(); R9();

rationalize Rationalize the denominator
Syntax: rationalize(expr)
Description: Rationalizes the denominator in the expression.
Example:
> (1+sqrt(2))/(sqrt(2)-sqrt(3)): rationalize(%);

rhs Right-hand side of an equation
Syntax: rhs(eqn)
Description: Gives the right-hand side of the given equation.
Example:
> e:=x∧2+y∧2=r∧2: rhs(e);

seq Create a sequence
Syntax: seq(f(i),i=a..b)
Description: This creates the sequence f(a), f(a + 1), . . . , f(b).
Example:
> seq(x+(y-x)*i/4,i=0..4);

simplify Simplify an expression
Syntax: simplify(expr)
Description: Simplifies the expression.
Example:
> simplify((sin(x)+cos(x))∧2);

solve Solve equations
Syntax: solve(eqns,var)
Description: Finds solutions to the given set of equations (if they exist).
Example:
> solve({x∧2+x*y-y=17,y∧2-x-y=9},{x,y});

spacecurve Plot space curve
[plots]
Syntax: spacecurve([f(t),g(t),h(t)],t=a..b);
Description: Plots the space curve parametrized by x = f(t), y = g(t), z =
h(t), a ≤ t ≤ b.
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Example:
> with(plots): spacecurve([sin(t),cos(t),t,t=0..2*Pi]);

subs Substitute into an expression
Syntax: subs(x=a,expr)
Description: Replaces x by a in the expression.
Example:
> t∧2+t+1: subs(t=1+sqrt(5),%);

sum Summation
Syntax: sum(f(i),i=a..b)

Description: Computes the sum
b∑

i=a

f(i).

Example:
> sum(i∧2,i=1..100);

taylor Taylor series
Syntax: taylor(f(x),x=a,n)
Description: Computes the Taylor series expansion to order n of the function
f(x) near x = a.
Example:
> taylor(tan(x),x=0,10);

type Test the type of an expression
Syntax: type(expr,t)
Description: Tests whether the expression is of type t.
Example:
> R := (1-q∧6)*(1-q∧5)*(1-q∧4)/(1-q)/(1-q∧2)/(1-q∧3);
> P := normal(R); type(P, polynom);

value Value of an inert expression
Syntax: value(expr)
Description: Computes the value of the inert expression.
Example:
> Int(1/x,x): value(%);

unapply Convert to a function
Syntax: unapply(expr,x)
Description: Converts the expression into a function of x.
Example:
> F:=expand((1+x+x∧2)∧10): f:=unapply(F,x); f(x);

whattype Basic type of expression
Syntax: whattype(expr)
Description: Returns the basic type of the given expression.
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Example:
> L := [seq(i,i=1..10)]; whattype(L);
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APPENDIX C FURTHER READING

A fairly complete list of maple books can be found on the Web at
http://www.maplesoft.com/publications/books/index.html.

Below is a list of some recent books on maple.

Introductory books

Maple 7 Learning Guide, Waterloo Maple, 2001, 288 pages.

Cornil, J.M. and Testud, P., An Introduction to Maple (trans. from French),
Springer-Verlag, 2000, 496 pages.

Heck, A., Introduction to Maple, Springer-Verlag, 1996, 699 pages.

Kamerich, E., A Guide to Maple, Springer-Verlag, 1999, 325 pages.

Schwartz, D., Introduction to Maple, Prentice-Hall, 1999, 225 pages.

Reference books

Abell, M. and Braselton, J., Maple V by Example, 2nd ed., 1998, 656 pages.

Monagan, M.B., Geddes, K.O., et al., Maple 7 Programming Guide, Waterloo
Maple, 2001, 628 pages.

Von zur Gathen, J., and Gerhard, J., Modern Computer Algebra, Cambridge
University Press, 1999, 750 pages.

Wright, F., Computing with Maple, Chapman & Hall/CRC, 2001, 512 pages.

Maple and Calculus

Gresser, J.T., A Maple Approach to Calculus, Prentice Hall, 1998, 284 pages.

Smith, R. and Minton R.B., Insights into Calculus Using Maple, McGraw-Hill
Higher Education, 2001, 70 pages.

Maple and Differential Equations

Betounes, D., Differential Equations: Theory and Applications With Maple
(with CD-ROM), Springer-Verlag, 680 pages.

Davis, J.H., Differential Equations with Maple: An Interactive Approach (with
CD-ROM), Birkhauser, 2001, 392 pages.

Lynch, S.J., Dynamical Systems With Applications Using Maple, Birkhauser,
2001, 398 pages.

Stavroulakis, I.P. and Tersian, S.A., Partial Differential Equations: An Intro-
duction With Mathematica and Maple, World Scientific, 308 pages.
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Maple and Linear Algebra

Auer, J.W., Essentials of Linear Algebra Using Maple V, Marnie Heus, 1999,
427 pages.

Herman, E.A., King, J.R., Pepe, M.D., and Moore, R.T., Linear Algebra:
Modules for Interactive Learning Using Maple 6 (with CD-ROM), Addison-
Wesley, 2001, 496 pages.

Maple, Science, and Engineering

Enns, R.H., and McGuire, G.C., Nonlinear Physics With Maple for Scientists
and Engineers, Birkhauser, 2000, 656 pages.

Kreyszig, E. and Normington, E.J., Maple Computer Guide, Supplement for
Erwin Kreyszig’s Advanced Engineering Mathematics, John Wiley, 2001, 245
pages.

Parlar, M., Interactive Operations Research with Maple, Birkhauser, 2000, 484
pages.

Scott, Bill, Maple for Environmental Sciences: A Helping Hand, Springer,
2001.

Stroeker, R.J., Hoogerheide, L.F., and Kasshoek, J.F., Discovering Mathemat-
ics With Maple: An Interactive Exploration for Mathematicians, Engineers
and Econometricians (with CD-ROM), Birkhauser, 1999, 248 pages.

Richards, D., Advanced Mathematical Methods with Maple, Cambridge Uni-
versity Press, 2001, 896 pages.

Other

Kilma, R.E., Sigmon, N., and Stitzinger, E., Applications of Abstract Algebra
with Maple, CRC Press, 2000, 272 pages.

Karian, Z.A. and Tanis, E.A., Probability and Statistics: Explorations With
Maple, Prentice Hall, 1999.

Oprea, J., The Mathematics of Soap Films: Explorations with Maple, AMS,
2000, 266 pages.

Prisman, E.Z., Pricing Derivative Securities (with CD-ROM), Academic
Press, 2000, 760 pages.

Rovenski, V., Geometry of Curves and Surfaces with Maple, Birkhauser, 2000,
310 pages.

Vivaldi, F., Experimental Mathematics with Maple, Chapman & Hall/CRC,
2001, 240 pages.
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