The average number of i-dimensional implicants

Author: C.K.Lee

February 17, 2011

Conjecture 0.1. \(\text{ImplicantsAve}(n, a, i) = \left(\frac{a}{2^i} \right)^{2^n-i} \left(\frac{n}{i} \right) \left(\frac{2^n}{2^i} \right) \)

Proof. For each implicant of dimension \(i > 0 \), it came from 2 implicants of dimension \(i-1 \) such that these two implicants can be expressed as two sets of identical elements except one and the one with different signs. For example:

\[
v_1 = \{x_1, \ldots, x_k, \ldots, x_{n-i+1}\} \\
v_2 = \{y_1, \ldots, y_k, \ldots, y_{n-i+1}\}
\]

where \(x_i = y_i, i = 1, \ldots, n - i + 1, i \neq k \) and \(x_k = -y_k \).

Therefore, an implicant of dimension \(i \) came from \(2^i \) implicants of dimension 0 such that these \(2^i \) implicants (expressed as sets) contain \(n-i \) identical elements and \(i \) elements with different combinations of signs. Let \(S \) be a random set of 0-dimensional implicants with \(n \) variables and \(|S|=a \), we get that

\[
\text{ImplicantsAve}(n, a, i) = \sum_{s_1, \ldots, s_{2^i} \in S} \text{Prob}(s_1, \ldots, s_{2^i} \text{can be combined to one implicant})
\]

Since \(s_1, \ldots, s_{2^i} \) share \(n-i \) identical elements and \(i \) elements with different combination of signs, the probability in the above formula is \(\frac{2^{n-i} \binom{n}{i}}{\binom{2^n}{2^i}} \) where \(\binom{2^n}{2^i} \) is the total number of ways to choose \(2^i \) different sets, \(\binom{n}{i} \) is the number of
ways to choose the i elements with different combinations of signs and 2^{n-i} is the number of the combinations of $n-i$ identical elements. Finally, we get that

$$ImplicantsAve(n, a, i) = \left(\frac{a}{2^i} \right) \frac{2^{n-i} \binom{n}{i}}{\binom{2^n}{2^i}}$$