The Sieve of Eratosthenes and the Theorem of Goldbach
VFiggo Brun

§1. The theorem of Goldbach 15 well=known that one can write
every even number as a sum of two prime numbers. In a letter of
1742, Euler has written: "I believe it is a2 completely acceptable
theorem, although I cannot prove it." This theorem has still not
been proved, and it 15 the same about the following theorem: The
sequence of the twin prime numher51] is infinite. In an address
delivered at the Intermational Congress of Mathematics, Cambridge,
1912, E. Landau had said that he regarded these problems as
"unattainable problems in modern science."

However, one has now a starting point for the treatment of
these problems, after which one has discovered that the prime
numbers of Goldbach and twin prime numbers can be determined by a
method analogous to that of Eratosthenes. The First who had paid
attention to this fact should be Jean Merlin.Z)

The method consists of a double employing the Eratosthenes
sieve, Let us, for example, give the partition of the even number
26. We write the following two sequences of numbers

01 2 3456 7 891011 1213 1415 16
1718 19 20 21 22 23 24 25 %

%6 25 24 23 2 21 20 19 18 17 16 15 14 13
12 11 10 9 8B7 654321 0.

1)That is to say that the couples of the prime numbers having the
difference 2. See P. Stickel in "Sitzungsberichte der
Heidelberger Akademie Abt. A., Jahrg; 1316, 10 Abh.

?}Sae Bulletin des Sciences mathematigques T. 39, | partie, 1915,
See also Viggo Brun in "Archiv for Mathematik og Naturvidenskab"
1915, B. 34, nr. B: "lber das Goldbachsche Gesetz und die Anzahl

der Primzahlpaare."
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The prime numbers not exceeding 26 are 2, ¥ and 5. We efface
the numbers of the form 24, 3% and 5% in our two sequences. The
sum of a number of the first Tine and the number immediately below
in the second line is 26. [If these two numbers are not effaced,
they are prime numbers, and give then a Goldbachian partition of 26.
It 15 not necessary to write the second seguence. One can only
choose the numbers 26 and 0 of the first sequence as the starting
points of the effacements. By this method we obtain all the parti-
tions of an even number into a sum of two prime numbers lying
between +% and x-+¢%. On choosing D and 2 as the starting
points, we can determine the twin prime numbers. We do not know
if a treatment by this method can lead to a proof of these theorems;
but we see that the method can at Teast lead to very profound

X

results,

§2. MWe study at first the method of Cratosthenes, on giving 1t
the following form:

Suppose that the series:

01 2 3 4 5 6 7 89 1W0...x

o 2 4 & B 0. ..

1] 3 6 9

0 P, Epn ip, - hp,

are given, where x denotes an integer and P the n-th prime
number
L]

P S vx < Pre]

and X an integer:
Ap, € K < {1+1]pn

The terms of the first series, which are different from all the
terms of the other series, are the prime numbers lying between X

and x and the number 1.
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These are the terms not effaced by the Eratosthenes sieve. We
generalize, on studying the following arithmetical progression

A A+ D A&+ 2D

L) 3+ 3 *+en

lf 'r+pr 'r'zpr

The progressions are extended from 0 to x. 0 denotes an
integer prime to the prise numbers Ppas+-aPy {successive or not,
but different).

A and a a_ are integers:

LLREEL™
0<asD, ﬂ'-fi.tpi
We raize the following problem:

How many terms different from all the termz of the other lines
does the first Tine contain?

We denote this number by
H{ni D, x, a]! p1r*-‘-!.r- pr}
or often more briefly by

N(D, x, p"l.""‘Pr]'
We obtain the fundamental formula:

N{a, D, x, A. Ppace-ep pr}
= N{&, Dy %, 835 Pyaveesdge Pryg)
= Hia', Dpr. X, i]: P]i-"!!r_ll FP-" .
where

i
{I--:ﬁslflpr
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or more briefly
N(D, x, F']!--*lpr} = KD, x, p'lh""l'pr._"l:l

= H{Dllr: L Ii-|+-n.F'r_;|} (1)
on studying at first our arithmetical progressions up to the pro-
gression a1+ Apr_]. and on subjoining then the progression
ar-rlpr. Suppose that N{A, D, x, a].pl.....ar_1.pr_1] is known.
We deduce MN(a, D, x, n1.p]....,ar.pr3 from it on subtracting the
number of the terms of the last progression, which are identical to
the terms of the first progression, but not identical to the terms
of the intermediate progressions.

We zee that the number 15 egual to N{A', Dpr, Xy 894 p].,....pr_]]
on noting that the terms of the last progression ari-Apr. which
are identical to the first progression A+ ul, are the terms
between 0 and x of the arithmetical progression

a' &'+Dpr_ ﬁ.‘iEDpr .
where
0 <4’ <Dp.
&' being the smallest positive term of the progression.

The indeterminate eguation

a_+ ip & + pb

r r

or

prl-ﬂu=ﬂ-ar
always has, as one knows, solutions, because Py and D are

relatively prime. The solutions are

-il'lu""tnp u=|Jﬂ"'t-pr,
Whenever 10, u, are solutions and t rums through the values O,
1, 22,...

The terms of the last progression, which are identical to the
terms of the first progression, are then all the terms
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a.tip. =3 4 Ap + tDpr_ + where t=0, #1, 22,...
These are the terms of an arithmetical progression having the
difference Dpr,

We define particularly N{4, D, x} or briefly HN{D, x) as the
numbers of the terms between 0 and x of the progression

a A+l A+2D . . . A+AD
whare
0=<a<Dh, A+AD £ x < A+ (A41)D

Mence we deduce that

A+1=N[D, x) = % +8, where -1 <8 < 1
We give an example, choosing
A=2 D=7 x=60 a,=2 p,=2 u2=‘l |:+2==3 aalﬂ! 1;3-5
(A) 2 9 16 23 30 37 44 51 58

(B) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 3
36 38 40 42 44 46 45 50 52 ¥ 56 58 60

(Cy1T & 7 10 13 16 19 22 25 28 31 34 37 40 43 46 43
22 55 58

(DY 4 9 14 19 24 29 34 39 44 49 54 59
The numbers of (A) which are different from the numbers of (B)
and (C) are 9, 23, 51. We subjoin then the progression (D). The

numbers of (A) and (D), which are identical, are 9 and 44, having
the difference 7+-5. We obtain then

N{7, 60, 2, 3, 5) = N{7, 60, 2, 3) - N(7°5, 60, 2, 3]
or 2=3-1.
From the formula (1) we deduce the following
N(D, %, pyaeeeap ) = KDL %) - W(Dpy, x) - N{Dpy, =0 py)

= ams = HIDF‘.I_;- X, F-I:l-"‘i' l._'l]'
{7y



and
N(D, x, F'iu-r--F'rl = N(D, x] - HEBF]+ ) o= ... 0= H{Dpr. %)

+ N{Dpypys )
+ N{Dpypy, x) + N(Dpgpy, X, py)

+ ...
+ H{DPFF]! K} + H[DP'T.Pz1 By F'|]
ool # H{DPrpr,ll Ly F|-~---Pr_EJ
()
We give the last formula a concise foarm

Hl:-ui Ay p'l't-'--hpr.} = HI:D. H:I = aEr Hl:ﬂpa,. l]

+ I I H[DF‘aﬂb-r Xy D‘]-...,ph'-l].

a<r b<a
(3')

When the question is to determine a lower bound for N(D, x,
p1.,-,.urj we can set aside as many positive terms as we want in
the formula (3). One can choose these terms in several different
Hays3}. for example, the terms which Tie on the right of a vertical
line. In general we obtain the formula

N(D. xi Pys---sPo) > N(D, x) - i H{DPa- x)
asr
+11 H{DPann Xy F1r~r--ﬂh_]: " (4)
=1
whare we have chosen for PiPp 2 domain g which Ties in the
interior of the following domain

PaP
P3Py P3P

PrPr PePa -ee PePrg

3
JﬁEE: "Nyt tidsskrift™ 1918: Une formule exacte pour la determina-

tion du nombre des nombres premiers audessous de x, etc. by

¥igao Brun.
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On applying the formula (4) twice we obtain the new formula

N(D, x, p].....pr} » K(D, x} - agr H[ﬂpﬂ. )

+ Em]E {H[Dpaph. x) - cgh N{Dp, PP+ x]}

# LT I1MDp,pyppys *s PraceeaPyq) o
“1 "2

where “'"I 5wy and Wy denotes the domain for PPy
On comtinuing and applying

Hid.:]=§+ﬂ, where =1 =8 <1 ,
we gbtain at last the general formula

D 1 ]
= R0, %, pya---ap ) 2> 1= I —_— +E —_— ] -
. 1 d a<r Pa ! {

wy PaPh
1 1 RD
SRR oGRS RS

where R denotes the number of terms, and where ui < etec.

We can also give the formula (5) the following form, on
supposing particularly " =2, p2=3, Py= 5 etc.:

X 1T 1T 1 .1
H{D. Ky .E‘ -3. 5.....pr} ] E 1 f E E pr
+ 1
3.2
1 ] 1
tgrtra-7)
1 1
=273
s ey d
T"E ?-3 E ?'5 N 'I
=7



1-1.1
+ —wl-i + 1 3 {1- % * h.l?; ¢ 3
p_* P_- p 1
r r r t33
1.1 .11
2 3 5
I I O ‘ R,
P 32

where one can set aside every term (the subseguent parenthesis
included), which follows the sign +.

R demotes the number of terms employed.

We obtain the better lower bound for N, when we aside those
terms, which multiplied by = are less than the number of terms

1]
employed.
We give an example, chopsing x=1,000, D=1 and pr==3T
which is the greatest prime number not exceeding % .

3 3 1 1 ] 1

N(1, 107, 2, 3,...,31) > 10 [1 1 Tt 3

# L +.I_:'[-l}+L+L“-1_}+ I “-l.l;L]
52 B3 2 72 7430 2 75" 2 3 32
IR AU P B DU

e tnas g tms s o3t
| | 1 1 11T

*pe s Mt as s o3t ey

N SR IS D I NS IS TSP K S I |
7.2 17.3° 2 192 13 " 2 232 233 2

1 1 L.
We have set aside the term T7E (1 53 5:53 0.0039,..



since 1n3-n.nn39... = 3.9... fs less than 4, the number of terms

] R ] 1 :
loyed. 1In the term —— (1-2 -2 -1 2l
ewloyed. In T 2 3 5732752 53" z})’

] 103 ]
53 753 077

0.4... 1is less than 2, and we should also set aside the term

—L(l-%-%-%aral—fﬁ)-u.ma,.. since 10°+0.003... =

3. ... 1is less than 6.

we would at first set aside 1 -%J since

We obtain then
N(1. 103, 2, 3,...:31) > 109 - 52 = 57 .
We can express this result in the following way:

When we efface among 1,000 numbers all the multiples of two,
three, five up to 31, there remain still at least 57 numbers.
Thence we deduce particularly that there exist more than 56 prime
numbers between 31 and 1000, on observing that

N1, 100, 2, 3.....31) = 1(10%) - (0% + 1
when we choose 0 as the starting point of the effacements.
Here n(x) denotes the number of primé numbers not exceeding x.

Here we have chosen the domains w in a way to obtain the most
suitable Tower bound. If we choose the domains , by the same
principle, we find

N(1, lﬂla, 2, 33...,31) = 109 -52=57,

while w(10%) - a(/10%) = 158 ,
N(1, 10%, 2, 3,...,97) » B2D - 284 =536 ,
white a(10%) - =( /10%) = 1,206 |
N1, 10°, 2, 3,...,313) » 6,733-1,862= 3,871 ,
while (10°%) - =(/10°) = 9,528
In the sequel we will choose the domains w by simpler
principles.
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Te i1lustrate the principles sought after we give at first three

examples:
1T 1 1 1 1 1
Eg. 1) N(1, x, 2, 3,5,?]:1[1 E-E_E_F+ﬁ+_5__z+
1 1
1 1 1 1 1 1 ]-E-E
75 I U 7 s S L IR v ] ]"“
T

1 1 1 1 4
= x(1-3) (1=} (1-2) (1-) - 2

We have set aside no terms.

Eg. 2) WN{1, x, £, 3, 6, 7, 11} » »

| B

1
1-L .1 _1_1_ L
2 3 5

7
1 1 1 1 1 1 1 1
tiitsrtsa A it s U

1, 1

1
M a0 sz -39 Yy |

where the terms set aside are added on a small scale. One can also
write

N1, %, 2, 3, 5, h111>n[n-%nrfbn-%n1-}n1~ﬁ

N 1 1 1 1
{?-5-3-2 sz Me7e3e2  Te78e7 11-;-5-3}

1 G4 _ 5e4.3
+{11q,5.3.z J]- (1 +5+112 * T1+2:3 }

= :[U.Eﬂ?ﬂ - 0.0121 + D.EHII#} - 26 = 0.1961x - 26.

Here we have set aside all terms of the form 1 and

1 pa Phﬂcﬂd

of the form —— .
PaPpPcFaPe
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H-SJHu,x.E.LS.?,H.1L1?,w},;[1hl_l_l
Z 3§
_._.L-_]_-._!_._II._+..1__.+_1_+_.!._[]-1}+_.I_
R IR R T A TR P B B T L L
1 1 1 1 ]
+ — ==+ — (1= = —+ —
g tas 2 3732
b1
1 27373
| 1 \ 1 z 3 1 1
— ey
METPTIE TP L L Tl " T3z
$ —
3'2 +'|
E.Z

-
—
]
2
+
—
il
[ FL]
—
—
L
af —
ot
+
i
;..I_.
7
o
5+ P
L [}
| e
Sl=
[}
L._Hﬂ-
£
—
u!_.
N
i
~7 . =
n wr '
B | n | o | =
P Pd .
Ll “I_d
i
LA —

+
aadl
|-
3
L
-..l__
.
ek
¥
| —
-
J—
-.ai_.
wh
-+ '
Lk i
s 1-—' ] —
Ml
L]
| =
-+
—
| s
L)
T
wn u[ 1
[P - 5 — ml_.
J Pl
L
| —
P
Y| =

LA A |
1 1 2 3 5
273 1 1
1 1 1, . 1
— (1=1) + —— — |+ -72
TR TR AL U Tl [ "9 | T3z ]
"3z .
o—
5.2

= 0.163x - 72 .
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Here we have set aside the terms on the right of the vertical
lines. One see that the expression is of the form

Tt Hlpp -1l lgpg * LD D
where pa. Py Pe amnd pg rum through the following values
pﬂEJE?H‘ISIIH
P, € 3 5 7
P 2 3 5 7
by 2
in which a=b>c>d,
3. We study at first the method employed for example 2.

We do not apply the general formula (5), but we deduce directly
from the formula (3"):

N(D, x, pll"'ipr] = N{D, =} - a.Er.H{up . %)
i

v ] T MNDp.pes %y PyacceaBp_1)-
asr bia afyr *r Py b-1

On employing this formula twice, we obtain

N(D, X, Pys---sp,) = N(Dy %) - ﬂzr N{Dp, . x)

+ N(Dp, Py %)
ugr hEa b

-1 I I N(Dp, PP+ %)

asr b<a C«

+ I I i

asr b<a c=b d=¢

* anpﬁpbpﬂpd' Xy p]""'pd-l}' {EJ

The last sum is positive {or 0). On applying
th.:u]-%*-a, where -1 <8 <1 ,
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thence we conclude:

KD, x, Pyoee-

or more briefly

N{D, %, Pye--

where E1 is equal to
following three Tines

1

a PPy

& [

= l =
EEF hga cgh paphpc] v

(7}

~+PF}’%["51*EE'E3]'H : (7')
the sum of the terms of the first of the

1

e °
e L

Py

1
teo o (A)

El‘ is equal to the sum of the terms formed by multiplication of
every term of the first line by those terms of the second 1line,

which lie on the left o
We will say, in the

1- E1 + EE B

f this term, and E3 can be defined similarly.

sequel, that we calculate the expression

Iy

by means of diagram (A} or more briefly by means of the diagram

r terms

-

three lines

We compare ], and of:

2
& 1
niiﬁ]+{

2

2
1 }
EJ ¥ {F’_r} + 2k, > 2,

or EE] » EEE
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e d then — i
an en -~ in

We will also prove that

“E253E3 o (cErFL;)(aEr I:IEI ﬁ)

1
cs(1r1 )
azr b<a cthpapbpc
Any term  where y<f<a<r, s represented once in
[ but, as we see, three times in of,.
We search at first LI i 3 and 1 in [ I -
Pa csr Pe PgPy 5
]

1 1 .
I — and in
Pa ] czr P ;‘E
—l- and -—]-— in
Pe

1 .
and at last — in [ —
P < aPg asr be<a PaPb

¥ c

i

The term is therefore represented three times in af, ,
I:I“I:"BI!',Ir 2
which contains also terms of the form ; etc. Hence we conclude
that @], > 3] PaP's
2 kN

ke can generalize the formula (7)., on calculating the Tast sum
in (6) by means (6). On continuing we obtain a formula analogous
to (7) or more briefly analogous to (7'):

H{ﬂ. X a F‘Tj.r-|r|pr_: :"'E[II -I]*I_E- e -Eﬂ'l] - R ¥ :ﬂ}
where m is an odd number satisfying m<r, and where the expres-
sion 1-J,+[, - ... - [ is calculated by means of the diagram

r terms

m lines
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We can, in the special case m=r, calculate this expression:

IE M PR (-1)" I

1 1 1
EH_E} {1 —E] {I--ﬁ:]

m] = E—-I--+ E ]—‘.-.. §

azr Pa a=zr b-a PaPp

where r may be even or odd. The number of terms is 2'  in this
case. We obtain then the forsula

Hm,hpv“q%}}%“-%}“-é}“,“-#J-f TY

In general case we will determine a lower bound for the
gxpression

V-fy+ - - L
We can, as before, prove that

u-E-l ; qI_|¥{1+]1IIIi+I (T<1<m=1)

m
whence o > m!f .

Hence we conclude

o < 00

and

Jo < o< (8 a
on applying the 5tirling formula

n!-{g).l:ﬂﬁ+n':. SRR ER

We now write the formula (B} in a different way

KD, Xy Bpaeep) 2 2[5y 4Ty - e v (N7 )

'ﬁm1‘Lm*'"**”rLﬂ'“



We know the value of the first parenthesis in the form of a
product. The second parenthesis is composed of a series of decreas-
ing terms, whenever m+2 > o, and then it has a value less than

Ipsq» Which is less than {ﬁ)-ﬂ,

We can therefore write

firt ]
N(D, X4 Byaeeospp) > 2 [u-pl]:. e (1) - () |-x.

It is not difficult to determine the value of H"}:

() () ()

m+1
-r'Hr-+r~E+...+rmcr .

We abtain then the formula
N(D. %o PyaeeesPy) > 3 [:l-p—]-j = (-5 - (&) ] -

{12)
whenever
m+g = |:r-=]—+ P +-L
P Pe
This formula is more useful than (9), the growth of ™ being

not so great as that of 2'. But the growth of the term R is still
too great for our purpose.

§4. For this reason we shall choose the domains w in another
way, setting aside all terms on the right of the vertical lines, as
in the example 3 (§2).

At first we set aside in the formula (3) all positive terms on
the right on a vertical Tine. HWe obtain then the following formula

”5!!. for example, Landau: Handbuch der Lehre von der Verteilung
der Primzahlen, I, p. 67.



"fui X, Plu-ulﬂr} > H!nl 1} = E H':npa* "t}

asr

+ T M(Dp_p .. %i Pyo--- }

air b aPb (AEERE L S L
b«t

(13}
where t 15 am integer less than r.

The terms of the last sum can be calculated by means of the same
formula, whence one deduces

N(D, X, pys---ap) > N(D, x) - 1 N(Dp,. x]

asr
+ I N{Dp, p., %} - 1 I MN{Dp.pp_s %)
asr I:En P agl‘ b<a c<b e
bet b=t c=t
+ T ¥ T NP PP Pys Ko Pro-e-sPy ) &
azpr bh<a ce<b d=zc aPoPcPa ! d-1
b«<t c«t d=xu

where u 15 an integer less than t.

On continuing, and on applying

Me x)=%40 . clcscl
we obtain at last the formula
1 1
thr IpP,-..,ﬂj:ﬁE 1- —_
! r0 azfpr .Er h-EcaPnF'h
bt
1
lér bga thPaphp:
bet cet
e
* —_—— - ... - R (14)
a‘Er hga th dEc PaPhPcPy

b«t cect deu
or more briefly

H{n. Xy F]t-a--ﬂr] ?%[1'51 +52 = sas = 52“_1]‘ R .
(14*)



where the expression
En =1- 51 + 52 - aas = 5

Zn-1
is calculated by means of the diagram in the form of stairs
T 2 A
1 1 1 1 1 1
—+ +— Pk L b m— — 4 L —
P Pe-1 Py Pe-1 Py Pr
1, P o t 1 LTI 1
Py P-1 Py Pe-
1 1 i 1
—t ... F oot —F ot ——
P Pu-1 Py Pra1
1 1
— F A
P Py-1
1 1
—+ ... * .
P Pr=1

We chogse the prime numbers of the diagram as successive prime
numbers lying in the interior of the following intervals

Ll _.T' 1 1
R B pe o a
r 1 r r Pr P
where g=1,

We apply the Mertens® formulas, giving them the following forms:

1 _ 5 .
%E—ln-g Tog x+ 0.261 ...+nm . 1<a«<l
X
X (1-1y. oT0/l0gx 0.561... Nep<d
2 P log x

where log denotes the natural logarithm.

§
lsee, “Journal fur die reine und angewandte Mathematik" B.78, 1874,
or Landau, Handbuch, I, p. 201.



117

Hence we conclude

a 1 a
1., 5(1+2)
F 0g a+ 8

bl Bt

log x =

But in that case we can choose " sufficiently large for which

-1 ll
a9 E~|-...~|rF‘l—-nth:ng.mﬂ,.

m
ﬁz=ﬂ+,..+pt-ttluguﬂ+“+
.;r“=PI_1+ + H_llf:hguu (15)
and
v = {1-;_"] [l-i‘-r:} }% .
T, = {I-;—u] :hp—sj- ;E%E,
5, = “':IF] U-p:']} };.E . (16)

whenever am > a.
We suppose particularly 1log a < 1.

We try to realize a successive calculation of the sums, to which
the diagrams in the form of stairs give rise.

Suppose that we have calculated by means of the diagram

(2m-1} lines

|

giving rise to the expression E_ = 1-5,45,-... = 5, -

We subjoin then 2m+ 1 1ines on the left, (which only taken
gives rise to the expression 1-J, + EI - e - EE‘-H}:

1 (-Yy.1 1+ 1/a)78/ 09 x
X' P



1_EI*ZI"'"EIM+IL 1_"L-"'I*EI_-”-?"!rn.J

The sum E-g— is now equal to E1 + 5. We see also that the
a

new sum IEE:]FE is equal to [, + 5;[; + 5, on studying the three
possible cases:
p, occurs on the left of L and Pp ON the left of L {IEJ
p, Dccurs on the left of L and Pp On the right of L {51IT}
p, @ccurs on the right of L and B, on the right of L [523 .

In general we can calculate the new expression E
following way:

Eer * 1= (5 #5)) ¢ (Ta# 511 #55) = (I3 # 5,05 % S5k, +55)

P (EEmil + 5 EEm + e # Sany IE}'

We compare this expression with the fallowing product
[]'II*EE = am= + E'l.l} {II"S-I"'SE " sag = 52"1""]}

=] - .[I.l+5.|;| + {52*5151 *SE] - e

it ] by the

= lomer * Splam * oo * Sopy Ip)
t (Do * 5y Ippey * oo0 * Sppoy L3} 7 e

The first factor contains as many terms as possible, that is to
say, v fs equal to the number of the terms in I1, The product
contains, as one sees, all the terms of E_., and in addition a
series of parentheses, whose values, by (10), are decreasing, since
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I1 =0 < 108 oy < 1, and having alternative signs. Hence we

conclude

Bl > me1 B 7 Eomez * Sy dama * st Sppa L) - (17)

We can determine an upper bound for the last parenthesis. It is
a sum of the different products of (2m+2) numbers lp . which all

occur in the two sums 5] and E]. But we obtain the sum of all
possible products of that form, on forming the sum

(5) * Li)omez
calculating by means of the diagram

L S

g

P

: L [2m+2)lines

But by (11) and (15) we obtain

- e(S,+1,) em+2 e(m1) Toga,
+ £ — < e —

B hlomz ( ome2 ) ( 2(m+ 1) )
E'Ingun

(=)

Dur parenthesis {in (17)) is then still less, whence we conclude

that
E1Dgun
Eatl > ") En ~ ( . )

2m+2

Fd 3 o

2m+2

We obtain then particularly, since Ei = T=!~Ll ¥

E] }T—lugau *

4 4
ﬂlnguu elugnn
* = A | 1=-1 -
E>mE ( - ) 2( 09 aq "u( > ))




on applying (16). On continuing in the same way, we obtain at last

4§
& log
E“J-iz Ty wee Mo 1-1log uﬂ—uﬂ.( uﬂ) - e
1
nl ¢ u-gqﬂ
% )
or, since L < 1:
I:Iﬂ
o22)
E = m g cuo 1-1Tog -
no " T n % (Hugﬂﬂ)r
1=
% 2
s
e]uguﬂ
whenever = ]
o =)
Choose particularly
_3 -
E_E and oy 1.51
We obtain
1 1
E“‘-*ﬂj['l ﬁ} —_— IJI—rj: {(19)

We study the number (R) of terms im En' on forming the follow-
ing product
E
1 1 ] 1
l-—- ... - }:1-—--,,-—} e (Voo = s = ——
P P Pe-1 P Pu-1
This product contains all the terms of E, and more. The
number (r+1) of terms in the first factor is less than Pps and in

the second less than 'pl"'“ etc. We obtain the number of terms of
the product, on substituting all the terms - % by +1, whance we
conc lude

n
i ? 1 =1 a
Rep, - Prh prh: p p:f_ﬂﬂ Mia-1) _ p:
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We can then give (14') the following form

]

° . (20)

X 1 1
HD L] greasg }‘—ﬂuji'—-— P l-— -
Dy %, Py P, 5 03 FIJ ( F'r? P
This formula is valid for all successive prime numbers Bye---sPy
with Py 2 Py where Pe denotes a determinable prime number.

Suppose particularly P=P the (e+1)=th prime number,

e+l’
When the guestion is to calculate N(D, x..?,....pe. p1.,...pF}.
we can subjoin to our diagram [under (14}) the following:

1 1 1

7t3? *g
L R
2 3 Pe

which gives rise to the expression

1 1
“_E} cas “-F'_E:I CRED IS PICIPE

containing 2® terms, whenever the number of the 1ines are ze.

We obtain then the new diagram

2 S,

{2n-1) lines

le+2n-=1) lines

1-E,+E,- - 2L,| Ea=1"51%52- - -5g0,

giving rise to the new expression En+] :
Eper = 1 - (L e5)) + (L Si1#55) - -
¥ l:Ee-'rsl E-:—'I toe 4 5,)
= {E1EE + 5‘2 IE"II + ... * Se+]:| + ...

: {si‘n-e Ee ¥oaw ¥ SEn-'l I1} s {SEn—l Ee}
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GG s e E) (12545, - S )
.n__} 'I-—]IE .

where we have supposed e 0o be even.
We obtain then by means of (19) the formula

ND, %, 2,3,..0p,)> 303 (-3 (-0 (-0 - 2%
I"

[?ll
valid for a1l r > ¢, where e denotes a2 determinable number, on

noting that every term of {1 '%}[1 'lil' cer (1 -p‘—} is multiplied
by every term of En‘ .

But in that case we can determine, by the Mertens' formula, a
number ¢ in a way that

{Il‘JEBx e 5
Ni{D, x, 2, 3,...4 —— = 27
(D, ) > Fog g " 2P (22)

for all r > ¢, where ¢ denotes a determinable number (c > e).
If we choose D=1 and Pr-pfﬁ-"'i':l, i.e.; the greatest prime

number not exceeding 6w P, < B Ppepe We obtain particularly:

N(1,x,2 3..“,p{51-"'_:l} 1.008x _ .e 5/6, x

for all x = Xg-
We can then state the following theores:

When we efface from x consecutive numbers the terms from two
to two, then from three to three, stc; Finally from p[ﬁ'.-"i'] to
pl:E-":_}, there remain always more than 3 ;1 terms, provided x» Xg

The starting points of the effacements can be chosen as one
would have it. Xq denotes a determinable number.
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We can also deduce, by means of the formula (22), the following
theorem:

There exists always a number between n and n++n, whose

number of prime factors does not exceed eleven whenever n > fig-

Choose in the formula (22)
'IJ"H}

£l

D=1, x=¢n and pr=p|,’n
We obtain then

N1, 7By 2,300 1Y) » LBYB o8 51
log n
for all n > nﬂ|

When we efface in the interval [n, n++/n] 2all the multiples
of two, three, etc. up to p{n”" }» there remains therefore at

least one number, We choose n as a starting point of the efface-
ments. The numbers not effaced cannot be composed of 12 or more
prime factors, because in that case one of these factors would be

12
less than Yn+ ¢n , and therefore less than ”ﬁ for all
n > ng. But all these numbers being divisible by 2, 3,..., or

p{n””} are effaced.
5. We have supposed that
2, 3"”’F'r~
in the formula (21) are successive prime numbers.

We generalize easily on studying the non-successive prime
numbers

‘qliqzl"‘-lqu_]l flm_]--n--tl*_]. qw‘li--..qr
forming a part of the successive prime numbers
Qprlgee s oy Sgr GgaprroBpoyy Gpr Qoo 08y o

where 9, =2 ptey



i

and we obtain as before (see {21)):

H{D. .:':1 q|||-... rjqu_'l:! qn+1 l-i-i'-lqr.}

X, -1 -] -
» 5+ 0.301 q]; e (1 iR

1 LN
: ) oe (1-g-) - 27

=1 Qs r
ar
H{nr My q]'l"‘"lqu-'ll quﬂi-n;qr:l

1 1
-1 ... -+
>2.0.3 q]‘ ':*' - 2%
-1 .-
% 3

Hence we conclude

HI:T.L Ky q'lp-.1|qﬁ__'ll Elu+-|.....qr|]-
L 0.168x | 1 g
:
Dloga, .1y . -1y
qﬂ

fl‘

We study now an arithmetical progression extended from 0 to x:

& A+D A+20 .... ¥

A and D being relatively prime. Suppose
a [

D-qu.,.q‘,

We efface now the numbers being divisible by

ql!'“rqu_Tr Elmln--:q.,r._p q.|,+'|rv--1q.r
on choosing q_ = ql{ﬁ-"?}. We obtain

0.168 x e 5
H{ul :lqllll'l =1 1---|Q!}-—'Eﬂ
1 Ua-1* g r" " 4(D)loga, r
1.008 x & 5/6 1 X
—_— = - ? :‘ —
: ¢(D)log x * #(0)  logx

far all X * A



The numbers not effaced are indivisible by

EEEETL SO SO PIPEI BET SRTRRRC &

but they are also indivisible by

Qure=aG, o

since A& and D are relatively prime. The numbers not effaced
contain therefore five or less prime factors.

Hence we deduce the following theorem analogous to that of
Dirichlet:

Every arithmetical progression, whose first term and difference
arg relatively prime, contains an infinity of terms, whose number of
prime factors does mot exceed five.

§6. Mow we study the Merlin's sieve, where one efface double
all the multiples of three, five, etc. up to Pp- On generalizing,
we study the following arithmetical progression

B A+ D &+ 2D
3y a,+p a.|-|2|:|.|
I:|-.I h] + b]+Ep]
8 AT Py At Ep'r'
h'r' |:"r'hl:'r I:'r'*zp'r'

A1l the letters are defined in 52. Moreover we suppose a # I:1
and P2 3. Denote by

P['ﬁl DI ll a'l! h'll p"ll"“'bari hr,l p‘l"‘}
or more briefly by

P{D, % PyseeB,)

r

the number of the terms of the first progression, which are different
from all the terms of the other progressions. We deduce as before
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the fundamenta)l formula

F{E, Ay !]- b]l p]l"-lari hrr Pri
= F{EI-. D.. X ﬂj. b-ln- P-I:u- I-Iﬂr_']l h'r_‘ll pr._'l}
= F{ﬂlj. uprp :1. E-I,. bllp ‘F-l|-r- .Er__a'. hr_dll pr_-l}

= Ffﬂul npri My !]- b]l F]l'r-lar_]i br.1| pr_1] ¥

or more briefly

F[nl :l p]l"'lpr} = F{n'l RI p'll""lpr._'l}

- ZP(Dp., X, p1"""pr~l:' . (23)
It can give rise to no misunderstanding, since we have written
EP{Dpr. K, p.l,....pr_]} when one remembers that it denotes a sum of
two expressions of the form P(4, Dpr, Xy Byw Bys Ppoce-sd .y LT
pr-lj'
We obtain as before, by means (23), the general formula
analogous to (5)

2
D 2 2 i
-Pn‘l' Froe o d :'II_ — & _ 1— —_
4
4 ; 2 RD
+£ir Im;i PaPbPcPy ( egd Pe)+ B =

I
where R ete.

R denotes the number of the terms of the form * 31- in the

2 _1 .1

formula, (where 3% + 7 etc.). We have supposed that Py 2 3.

Besides the designations, all are the same as in the formula (5).

We can also give the formula (24) the following form, on
supposing particularly P =3, p-z=5, Py 7. etc.:
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Fm,hl,hh”hjhgl-%-%- -%
4 4 4 2 4 4 2
+ + 1-=} 4+ + + 1-=
5+3 7.3 7§ [ El}I p+*3 p-5 { 3}
r r
1-2.2_2
1-%-% i 5 7
1 i 4
) 4 YT | TES ' b
P mm—
5.3 s 2 A .k
TR T
(25)
where one can set aside every term, (the subseguent parenthesis
included}), which follows the sign + .
We give an example, one studying the following arithmetical
progression extended from 0 to 11,776
1 35 7 9 117 13 15 ... 1,769 N,771 1,773 11,775
0 3 6 9 12 15 ... 11,769 n,772 11,775
1 4 F [} 13 1,710 11,773 11,776
0 19 ... 11,761
15 wen 11,757 11,776

The starting points of the effacements are 0 and 11,776 (see §1).

We obtain by means of (25), on observing that ay * bi. since
11,776 = 29-23 is indivisible by 3, 5, 7,...,19:



- 2 35 7 N 13 17
-2, 4,3 A ny, 8,8t
19 53 7.3 7.5 3 1143 1145 3
1-2 _E 1-2.2
4 3 5 4 4 2 4 3 5
+ = e e
MR YT a 133 1 U3 Y g "
T 53 '53
4 . 4 2, , 4 . 4 2
$——t—— [1-5) ¢ —— 4 —— (1=} | =R
73 s Y T s O0F '

where
Rel+14+4+16+5 +582+3=1N,

whence P(2, 11,776, 3, 5,...,19)}) > 296 - 171 = 125 .

The number [t} not effaced of the first progression, whose number
is more than 125, having the following property: t and 11,776-t
are indivisible by 2, 3, 5,...,1%. They cannot composed of three or
more prime factors, because otherwise one of these factors would be

less than /11,776 < 22.9 .

One can then write the number 11,776 as the sum of two numbers,
whose number of prime factors do not exceed 2, in 125 or more
different ways.

However, | have not succeeded in giving an example of the just-
ness of the theorem of Goldbach by this method.

Nevertheless we see that we can deduce important results by
means of the formula (24), the method being completely amalogous to
that employed above.

One should only replace ;— by pi everywhere,
1 i

We calculate by means of the same diagram in the form of stairs

a5 in 54 on replacing il'L by pl . One should then replace the
i

i
sums and the products considered in 54 by the following:



2
% =--+“.+ﬁ-: Elugu.u . ete.

P
and t r

m :1-%] n-plrj cé . ete.
on applying the following formula
T I (1 --: 0.8322 , c8/log x
lugZ:
We suppose now E'lng'u.u < 1.
We deduce the following formula analogous to [18):

2rr?

E”]:rn-ﬂ E--{E'luguﬂj .

whence one gets

Z 4
el )
Ey > My oo M |1 -2T0g “ole 108 %
] -ugiemgmu}e
Choose particularly
a=g=1.25 and ay = 1.250
We obtain then
Fs F
E > D.DEH—E} wee (1 E} . (26)

We study the number (R) of terms in E“, on forming the
following product

()0 als) (e a)’

This product contains all the terms of E and more. The
number (2r+ 1) of terms in the first factor is less than Py when-
ever p, > 3, and in the second less than p”“, etc. HEI‘II’.E we

conclude

n
R<p, E.n’u B pifu . pf_u-ﬂ]'f{l:l-'l]l -
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(1og x)?

We obtain then the formula
L _ & 2, _ .8
PIOs Xy PyoseesBp) > v 00501 -50) oo (1-2) - gy (27)
a formula which is valid for all successive prime numbers PpocessPps
whenever Py 2 Pas where Pa denotes a determinable prime number.

We obtain also a formula analegous to (21):

P(D. X, 3, 5,.00p) > 2+ 0.0501 -%:. e (1 -p—i} -3 (29
valid for all r>e.
Hence we conclude
P(D, %, 3, 5,...,p,) > ﬁ ' -“:-“.ﬂ-z. - e“pﬂ (29)
(log p,)
for all r>c, where cre.
Choose particularly p. = p{x'/'?). We obtain then

0.41x _ 4& 9/10 _0.4x
Df‘lngx}z l‘.:l{'lr.‘n-gnleil2
(30}

p{ﬂ, %, 3, E.....p{:'fiu}J »

for all x> X

On supposing D=1, we can therefore state the following
theorem:

When we efface double among =  terms all the multiples of
three, five, etc. up to p{:”m]. there always remain more than

0.4 x terms provided x> X

We hawe supposed that
a* I:~,| '

that 15 to say that none of the double effacements are reduced to a
single one. When the guestion is to determine the Goldbachian
partitions of the number x=2° p; e p: , one see yet that

aﬁ = h“-----'-., = bT
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But the lower bound for P will not naturally less, when one
reduces the effacements (compare §5). One should then replace pi

(a
by - and = by -~ . We obtain then the new lower bound for
pl:l p‘r p"r
P:
-1 ... n-L1
0.4x Pa Py , _D.4x
D{logx)>  (1-29 ... (1-2)  D{legx)®
P P,

Hence we conclude, as in the previous example, on choosing
D=2, the following theorem, analogous to that of Goldbach:

One can write even number x, greater than Xge A5 a sum of

two numbers, whose numbers of prime factors do not exceed nine. Xa
denotes a determinable number and the prime factors can be different

or not.
We can also deduce the following theorem:

There exists an infinity of the pairs of numbers, having the
difference 2, in the class of the numbers whose numbers of prime
factors do not exceed nine.

§7. We can also determine an upper bound for the number of
numbers, which remain non-effaced on employing the sieves of
Eratosthenes and Merlin.

We apply the following inequality
N{a, D, x, Ags Pyeeeealin Praeeeadpy pnll
< N{a, D, x, Bys Pyeeseslpg pr}

or more briefly

N(D, x, p.l,_,,+pr..“,,p-n]- < N[D, x, p].....pr] 8 {31)

wherg F<n.
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We apply also the formula

N(D, %y PyseeaP) = (D, x) - aEr N{Dp,. x)

II I:Ip p W p IFI"'I-F L]
[EI]

To estimate the terms of the last sum, we apply (31) and the
came formula (2'). On continuing we obtain the formula analogous
to (14):

1 1 1
WD x, F"'“"p"}{ﬁ[l "L E+a£r hgaﬁﬁ

asr
ber
1
-1 11 =
a<r b<a c<b pupbp:
bep ec<t
1

R I == |*R, (32)
agr bga c<b d<c PaPbPcPd ]

b<r c<t det
or mare briefly

u‘{u. Xy Plfnan'pr} < % []_51 + 52 = ... ¥ SE“] L H &
where the expression
En = ] - 5] + 52 T a=a +* g?n

is caleculated by means of the diagram

On employing the same method as before, we obtain
2k 3

Epe1 < Ty Ep * (Elg:uﬂ )
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and particularly

By <0y #+ (IHIEI:M':')3

3 5
t‘lmguu.':| 2 e‘lnzigu‘,‘,|
EE{ME[“%( 2 ) +q"( 2 )]

On continuing we obtain at last

o a2

elogo, 3
()
=) {1+ (33)

whence

or

L L A

Choose particularly

a -% and @y = 1.51
We obtain then

1 1
£y < 1-508 (1= 5 . (1-50)

We study the number (R) of terms in E_ on forming the
following product
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We sea, as before, that

2 n - 6
R < Pe pE‘fu pi'h “ P::.Eum R * Pe
We can give (32) the following form
x _ 1 1 &
N{D, x, p'l"”’pr] < . 1.505(1 pll}.““ pr} + P,

Thence we conclude the formula
H{DI X, 2, 3--~-|Pr}

<X+ 1.505(1 - %}:1 -%J...{] -JE} + 2%

valid for all r>e.
But in virtue of the Mertens®' formula we obtain

0.9x + Eepﬁ

H D Xy 2. 3 Y L ———
for all r>c, where cze.

Choose particularly P, = plZ :':-"'T}, Thence we conclude that

Y < P, < 2
on applying a celebrated theorem of Tchebycheff.
Therefore we obtain
7 6.5x erh 6/7 Tx
N1, %, 2, 3,...s X = ¥ L.
(1, x plg ¥x)) = T 2 x < e
(34)
for all x> Xy
On applying the inequality (31), we obtain

N(1, %, 2,....p(¢%)) € N(T, x, 2eernap(®%))

T
Tog =

< N(1, %, 24e00ap(2 VR)) <

for all x> Kp -
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Thence we conclude particularly that

Tu
wlu) - w(¥x )+ 1 <
(x) = 7R+ 1 €
whence
Tx Bx
+ 7n
"“}{1-:1 :‘lugx

for all x> Ry m(x) denoting the number of the prime numbers not
exceeding .

On comparing the theorem in 54, we obtain alse

T
lag x

X

&
Tog % < N1, %, 2,....p( ¥x)) <

(35)

When we efface among x terms all the multiples of two, three
etc, up to p{ﬁf"?]n, there remain always N terms, where N is a

number lying in the interval |: L, I :| s Whenever x> x..
logx ~ logx 0

We study at last the sieve of Merlin. We obtain the formula
analogous to (33):

2 3
1
E, < {hi}...n--?_}(I + Bﬂ{eznguﬂ} E)
P Pr 1 - aS(elogay)

Choose particularly
a=1.25 and ay = 1.2500
whance one gets

' 2
E, < 1.82(1 ﬁ] e "_r]' :

Thence we deduce as before

PO, X, 3, 5uaenp))

X _2iq 2 .2 e 10
<+ 1.82(1 S0-2) ... 0 p..Hap’"

or
1.6x e 10
P(D, %, 3, 8,...,p,) ¢« ——=—+ 3" . (36)
™ D{log p.) 4
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for all r>c, where cze (see §56).

1/

Choose nowW P, = pildx }J. We obtain then

P(D, x, 2, 3,...,p(2x)/ 1]

)
. 194x +39+lﬂllﬂ,ﬂ1{ 195 x

D(1og x)? 0(leg x)?
for all LEE R
Ke apply now the inequality
P(D, %y 24 3yeuesp(VR)) € P(D, %, 2, 3,...,p(2 'WR))
and the equation
I(x) - Z(vx +2) + 1 = P(2, %, 2, 3,....p0¥%) ) .
where ZI{x) denotes the number of the twin prime numbers not

exceeding x, and where we have chosen 0 and 2 as starting points
of the effacements,

We pbtain therefore
I(x) « _195x + /0 +2
2{log x)¢
or
I(x) < _100x
(Tog x)?
for all x> o where x5 denotes a determinable number. Here
I{x) denotes the number of the twin prime numbers not exceeding x.

(See: 5Skr. Norske Vid.-Akad; Kristiania, I (1920) mo. 3. Some
formulas in the text are slightly modified by the Editor).

Tranelated by Fu Kun Rut



