
There is a series of Erdos-Renyi papers on the subject, but the most concise
formulation I found was in the 1961 paper (attached, page 3 bottom). Here the
authors state:

N(n) ∼ cn, cn < 1/2 ⇒ |S| ≈ 1
α
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N(n) ∼ n/2, (i.e., c = 1/2) ⇒ |S| ≈ n2/3 (2)
N(n) ∼ cn, cn > 1/2 ⇒ |S| ≈ G(c)n (3)

Where N(n) is the (expected?) number of edges of a random graph with n
vertices, |S| is the size of the largest connected component, c is some constant,
0 ≤ c ≤ 1, alpha = 2c− 1− log(2c), and G(c) is the function
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To translate from c to ε, I think we can take N(n) =
(
n
2

)
p, where p is

the probability of an edge between two vertices. Letting p = pc(1 + ε), with
pc = 1/(n−1), we then get N(n) = n·(1+ε)/2. Or, in other words, c = (1+ε)/2.

Then the above set of equations becomes

ε < 0 ⇒ |C| ≈ log(n)− 5
2 log(log(n))

ε− log(1 + ε)
(4)

ε = 0 ⇒ |C| ≈ n2/3 (5)
ε > 0 ⇒ |C| ≈ G(ε)n (6)

Of course with G(ε) the appropriate substitution of c to ε.
I did a few trials using these approximations and the results seem much

better (ratios approx 0.7 to 1.2), but I’m not sure how much better, in the long
run, because I was only able to do some trials with relatively small numbers.

For calculating G, I evaluated in maple with k = 1..1000 since I couldn’t
find a better way to do it.

1


