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Abstract
The solution to a deceptively simple combinatorial problem on bit strings results in the emer-
gence of a fractal related to the Sierpinski Gasket. The result is generalized to higher dimensions
and applied to the study of global dynamics in Boolean network models of complex biological
systems.
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1. INTRODUCTION

The relationship between combinatorics and fractal
geometry1 is beautifully illustrated by construction
of the Sierpinski Gasket from Pascal’s Triangle by
reducing the binomial coefficients modulo two.2 In
this paper, we show how a relatively simple com-
binatorial problem on comparing two bit strings of
length m leads to the construction of a fractal that
is an interesting variant of the Sierpinski Gasket.

Moreover, by generalizing the combinatorial prob-
lem to comparing k bit strings of length m, we con-
struct a sequence of higher-dimensional fractals. An
unexpected consequence of this generalized fractal
construction is a direct link to the global dynami-
cal behaviors arising in the study of certain classes
of Boolean network models of complex biological
systems.

Consider the following simple combinatorial
question: Given two bit strings of length, say 4,
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written as rows of a 2 × 4 matrix, how many dis-
tinct columns are there? The columns are bit strings
of length 2, and there are 4 possible column types,
namely, 00, 01, 10, and 11. For example, the two
bit strings, 0011 and 1011, written as rows in the
following 2 × 4 matrix:

„
0 0 1 1

1 0 1 1

«
contain 3 dis-

tinct columns, denoted by 01, 00, and 11 (the last
column 11 is a duplicate). Now define the pairing
number of any two bit strings of length m as the
number of distinct columns in the matrix represen-
tation of the bit strings. Thus, the pairing number
ranges from 1 to 4, inclusive. Denote the pairing
number of two bit strings, A and B, as p(A,B). For
example, we have p(0011, 1011) = 3. Suppose we
have two arbitrary bit strings of length m and we
compute the pairing number for all possible pairs
of bit strings. There are 2m bit strings of length
m and, consequently, 22m pairing numbers. Intu-
itively, given the simplicity of the definition one
would expect the pairing number function to be rea-
sonably well-behaved and, perhaps, computable by
known combinatorial functions, such as the bino-
mial coefficients. However, we will show there is a
fractal nature to this deceptively simple combinato-
rial problem that seems to defy our intuition, but at
the same time contains far-reaching consequences.

2. CONSTRUCTION OF THE K2
FRACTAL

Before defining and generating the fractal, we note
the pairing number function has a corresponding
complementary function that will be used in the
application (Sec. 4 below). We define the comple-
mentary pairing number: p̃(A,B) = 4 − p(A,B).
This function ranges from 0 to 3 and counts the
number of missing column types from the 4 pos-
sible types, 00, 01, 10, and 11. For example,
p̃(0011, 1010) = 0, since the pairing number is 4
and there are no missing types. Figure 1 depicts a
16 × 16 square array consisting of 256 unit squares
containing all possible complementary pairing num-
bers with two input bit strings A and B of length 4.
This square array is known as the degrees of free-
dom space for m = 4 and K = 2. Observe that
all pairs of bit strings having the maximum pair-
ing number of 4 are shown in Fig. 1 with the com-
plementary number 0. We will call the set of unit
squares with complementary number 0 the control
region. In the subsequent application we will show
that the control region can be interpreted as a mea-
sure of the amount of “order” in a system.

Fig. 1 Degrees of freedom space for m = 4 and K = 2. The
row and column labels are all possible bit strings of length 4.
The entries are the complementary pairing numbers with
the 0’s indicating bit string pairs having maximum pairing
number 4.

The complementary pairing numbers can be
interpreted as colors, denoted by 0, 1, 2, or 3 rep-
resenting degrees of freedom in our system applica-
tion. The 4 corners of Fig. 1 have pairing number
1, so color 3 is used. The pairing number of any bit
string with itself (except the bit string of all 0’s) is
2, so the color 4 − 2 = 2 is used. A similar argu-
ment applies to a bit string and its complement.
Thus, the two diagonals in Fig. 1 will have color 2.
Observe that if B is any nontrivial bit string (not
all 0’s or all 1’s), then

p(0000, B) = 2, p(B, 0000) = 2,
p(B, 1111) = 2, p(1111, B) = 2.

So, the 4 sides of Fig. 1 except for the four cor-
ners will have color 2 as well. The remaining unit
squares will be colored 1 or 0, depending on whether
the pairing number is 3 or 4, respectively. We will
call the set of unit squares with a nonzero color-
ing number the freedom region. Accordingly, in our
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Fig. 2 Degrees of freedom space for m = 9 and K = 2.
Yellow = zero degrees of freedom, blue = one degree of free-
dom, red = two degrees of freedom. The four corner points
represent the only points with three degrees of freedom. Con-
tinued iteration results in the “K2” fractal as m approaches
infinity.

application below we will show that the free-
dom region can be interpreted as a measure of the
amount of “disorder” in a system.

We can repeat the combinatorial procedure for
bit strings of any length m and construct a 2m×2m

square array, compute the pairing numbers, and
color the unit squares accordingly. Figure 2 depicts
the resulting construction with bit strings of length
m = 9 (known as the degrees of freedom space
for m = 9 and K = 2). This complex geometrical
structure exhibits symmetry, self-similarity, and a
fractal structure reminiscent of the Sierpinski Gas-
ket. Since our construction can be iterated as the
length m of the two bit strings approaches infin-
ity, what is the fractal dimension of the freedom
region (non-triangular region) in the limiting geo-
metrical structure? We will call the resulting frac-
tal the “K2 fractal.” Surprisingly, we now show the
fractal dimension of the K2 fractal is identical to
the Sierpinski Gasket, namely, ln 3/ ln 2.

We can compute the fractal dimension of the free-
dom region by first computing the number of unit
squares making up the control region (triangular
components), and then subtracting from the total
number of unit squares (22m). Suppose we have two
input bit strings of length m with pairing number 4,

or color 0. This means that at least all 4 column
types (00, 01, 10, 11) must occur. How many ways
can this happen? This problem is equivalent to the
combinatorial question: How many ways are there
to distribute m labeled balls into 4 labeled boxes
(box labels are 00, 01, 10, 11) with no box empty?
The answer is 4!S(m, 4), where S(m, 4) is the num-
ber of partitions of a set with m elements into 4
non-empty subsets. The general combinatorial num-
bers S(m,n) are called Stirling numbers of the sec-
ond kind, and there are exact formulas expressed in
terms of binomial coefficients.3 In fact,

n!S(m,n) =
n∑

j=0

(−1)j
(

n
j

)
(n − j)m, (1)

and, in our particular case:

4!S(m, 4) = 4m −
(

4
1

)
3m +

(
4
2

)
2m −

(
4
3

)
1m.

Using the box counting method4 and our exact
formula for 4!S(m, 4), we compute the fractal
dimension D of the freedom region:

D = lim
m→∞

log(22m − 4!S(m, 4))
log(2m)

=
log 3
log 2

. (2)

3. GENERALIZATION

Instead of just two bit strings of length m, we can
generalize the combinatorial construction and frac-
tal generation in K-dimensional space for K bit
strings, where K is any positive integer. Thus, we
have K input strings each of length m. The number
of possible column types is 2K . There are 2Km pair-
ing numbers with the coloring numbers ranging in
value from 0 to 2K − 1. The construction is applied
in K-dimensional space with a hypercube of side
length 2m consisting of 2Km unit hypercubes. The
freedom region consists of the unit hypercubes with
a nonzero coloring number. By the same combina-
torial argument used for K = 2, the number of unit
hypercubes making up the control region (coloring
number 0) is 2K !S(m, 2K). Let DK denote the frac-
tal dimension of the freedom region in the limiting
K-dimensional geometric structure. Then applying
(1) with n = 2K , we obtain

DK = lim
m→∞

log(2Km − (2K !)S(m, 2K))
log(2m)

=
log(2K − 1)

log 2
. (3)
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Table 1 Approximate frac-
tal dimensions (entropies)
for K = 1 to 7.

K Dimension

1 0
2 1.58
3 2.81
4 3.91
5 4.95
6 5.98
7 6.99

Our combinatorial construction generates a se-
quence of higher-dimensional fractals with fractal
dimension ln(2K − 1)/ ln 2 for K bit strings. The
first seven values are computed in Table 1. When
K = 2, the fractal dimension reduces to ln 3/ ln 2
for the K2 fractal discussed previously.

4. APPLICATION TO BOOLEAN
NETWORKS

Boolean networks have been extensively used to
model diverse discrete dynamical systems. The net-
works were originally studied by Kauffman5 for bio-
logical applications. During the past few decades,
Boolean nets have been widely applied in the phys-
ical and biological sciences, including in genetic
regulatory networks, neural networks and signal
transduction.6–14

Boolean NK nets are discrete network models
consisting of N binary variables denoting the nodes
of the network. The nodes can represent objects
such as cells, genes, or automata. Each node is reg-
ulated by exactly K nodes in the network acting
as inputs. Also, the output of each node is deter-
mined by a Boolean (0, 1) function of the K input
variables. Since each node can be represented as 0
or 1 and there are N nodes, the system can be in
any one of 2N possible states (known as the state
space) at any given discrete time interval. Given
any state of the system, the next state is deter-
mined by applying the Boolean output functions in
parallel to the current state of the nodes (see the
Appendix for more detailed information on Boolean
nets). Despite their simplicity Boolean NK nets can
exhibit very complex dynamics. For example, when
K = 1 and each node depends on exactly one node,
the dynamics tend to be ordered with relatively
short cycles, but when N = K the dynamics tend to
be highly disordered with extremely long cycles. As

the connectivity K decreases from N to 3, we still
observe a large amount of disorder and long cycles.
However, the dynamics dramatically change when
K = 2. Suddenly, we have moderate disorder and
moderate cycle lengths. Thus, there appears to be a
phase transition when K = 2. Why there is a phase
transition when K = 2 is not clearly understood.6

We show how the K2 fractal and its generalization
provide some interesting insights into this mystery.
Also, we show the fractals and their corresponding
fractal dimensions in K-dimensional space correlate
nicely with the dynamical behaviors for NK Boolean
networks as the connectivity K varies.

Consider a generic Boolean net with N = 3
and K = 3 (Fig. 3a). Since K = N = 3, each
output function depends on the three input vari-
ables A, B, C and takes on some values, say

Fig. 3 State space for Boolean networks with N = 3 and
K from 1 to N . All variables are equal to either 0 or 1 (e.g.
x0 = 0 or 1, etc.). (a) When K = N = 3, each node is
dependent on the values of all nodes in the network. With
23 = 8 possible initial configurations of the three nodes, there
are eight possible values for each output function (degrees of
freedom, labeled 0 to 7 for each function). Each step through
state space defines exactly one variable in each column, reduc-
ing the number of degrees of freedom by one. Since the num-
ber of initial states equals the number of degrees of freedom
in the output function, there are no restrictions on the move-
ment of the network through state space, so it is maximally
disordered. (b) When K = 1, each node is dependent on the
value of only one node. (In this case, A is dependent on A, B
on C, and C on B.) Because each node is dependent on only
one node, there are only two possible values for each node
(labeled 0 and 1 for each variable). With only two degrees of
freedom, each output function fA, fB , and fC is completely
determined by any two steps in state space that define its two
variables. Thus there is little freedom in choosing the logic for
a particular cycle structure (i.e. the logic is “forced”). (c) In
between the extremes of K = N and K = 1, K = 2 has 4
degrees of freedom for each function. Thus, K = 2 networks
have a balance between freedom and force (control).
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x0, x1, . . . , x7. We are free to assign a 0 or 1 to each
of these output variables. In assigning values to the
output variables we have a certain amount of free-
dom that depends on the connectivity K. We will
refer to the number of free variables as degrees of
freedom in the Boolean output function. Thus in
Fig. 3a, initially, each output function has 8 degrees
of freedom. Once an output variable is specified
as a 0 or 1, the degrees of freedom will decrease
by 1. Therefore, in the case of K = N , we have
total freedom (maximum disorder) to go from any
given state to any other state since the output vari-
ables are completely independent of one another.
Now consider a generic network with N = 3 and
K = 1 (Fig. 3b). Since K = 1, each output func-
tion depends on only one of the input variables and
takes on some values, say x0, x1. In this case each
output function has only 2 degrees of freedom. If,
for example, we assign x0 = 0, x1 = 1, then the
output function has zero degrees of freedom, since
the remainder of the state space for that function
has been completely determined or “forced.” The
same argument for K = 1 applies independent of
the number of nodes N . Thus, there is very lit-
tle freedom in the output function. In fact once an
output variable is specified, half of the state space
for that function has been forced. Between the two
extremes of K = 1 and K = N we find a different
kind of behavior for K = 2 (Fig. 3c). In this case
each output function depends on two of the input
variables and takes on values, say x0, x1, x2, x3.
Initially, we start with 4 degrees of freedom, and as
we assign values to the output variables the degrees
of freedom will decrease until they reach 0 and then
force the remainder of the state space. In this case,
we have more of a balanced interaction of freedom
and control.

Our main objective is to define a complexity mea-
sure for each connectivity K that can discriminate
between the different degrees of freedom and con-
trol for arbitrary subsets of the state space. A con-
sequence of this process is the emergence of the K2
fractal and its generalization discussed previously.
Consider K = 2 nets for large N . Initially, there
are 4 degrees of freedom for each output function,
say x0, x1, x2, x3. If we randomly choose one state
from the state space and assign a value of 0 or 1 to
one of these variables, the output function will then
have 3 degrees of freedom. However, if we randomly
pick two states, the corresponding output function
will have 2 or 3 degrees of freedom depending on
whether or not the output variables were different

or the same, respectively. For example, in Fig. 3c if
we choose states (0, 0, 0) and (0, 0, 1) and assign x0

a value of 0 or 1, the output function fA will have 3
degrees of freedom since x1, x2, and x3 are free, but
if we choose states (0, 0, 0) and (0, 1, 0) and assign
values to x0 and x1, then fA will have 2 degrees of
freedom. The same argument applies to each output
function. So after arbitrarily choosing, say m states,
and assigning output values, each output function
independently will have either 3, 2, 1, or 0 degrees
of freedom.

Now consider the ensemble of all possible degrees
of freedom for an output function when choosing m
states. For example, Fig. 1 depicts the ensemble of
the degrees of freedom space for K = 2 and m = 4.
The row and column labels are all possible values of
any 2 input variables taken from the 4 states. The
entries in the table are the corresponding degrees of
freedom. They are computed as follows: for K = 2,
there are 4 possible bit pairs 00, 01, 10, and 11.
These pairings correspond to the output variables
x0, x1, x2, x3, respectively. So if the input strings
are 0000 and 0000 (row 1 and column 1 of Fig. 1),
and we compare these strings bit by bit, then we
essentially have one distinct pair 00 (or just x0), and
the output function will have 3 degrees of freedom.
However, if the input strings are 0011 and 0101 and
we compare them bit by bit (left to right) we obtain
the pairs 00, 01, 10, 11, corresponding to the out-
put variables x0, x1, x2, x3. Thus, in this case all
the variables have been assigned values and we have
zero degrees of freedom as indicated in Fig. 1. In the
degrees of freedom space, the nonzero degrees rep-
resent the freedom region and the zero degrees rep-
resent the control region. This ensemble depicts the
various degrees of disorder and order possible when
m = 4. Our next step is to quantify this observation
and define an entropy measure for any connectivity
K and any number of states m. The basis for this
procedure is the underlying emergent fractal.

If for K = 2 we construct the degrees of free-
dom space for each positive integer m, we obtain a
2m×2m square (consisting of 22m unit squares) par-
titioned into two major regions, the freedom region
(dark area) and the control region (light area). Fig-
ure 2 depicts the square with m = 9. The light
triangular areas correspond to the zero degrees of
freedom (control region).

The fractal dimension computed in (2) can be
interpreted as a global entropy measure of the
amount of disorder in K = 2 nets. Also, the numer-
ical value of the mth iterate can be interpreted as
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a local ensemble entropy measure for each m. For
example, the dimension (D) of the K2 fractal is
log 3/ log 2, or about 1.58, and this number can be
interpreted as a global entropy measure for Boolean
nets with K = 2, and is independent of the number
of nodes N . Also, for each m the ratio of the above
logarithms measures the local disorder for the free-
dom region with m states. We call this the ensem-
ble entropy for the degrees of freedom space with m
states. The ensemble entropy for m = 4 in Fig. 1 is
log(256−24)/ log(16), or about 1.96, indicating very
high entropy (freedom), since the maximum entropy
is 2. Similarly, the fractal dimensions computed in
(3) can be interpreted as a global entropy measure
of the amount of disorder in Boolean networks with
connectivity K.

The fractal dimensions for Boolean networks with
connectivity K from 1 to 7 are shown in Table 1.
Observe when K = 1 the dimension (entropy) is 0,
implying negligible disorder and almost total order.
Also, as K increases from 2, the entropy increases
and approaches the maximum (total disorder) as K
increases. However, for K = 2 we have a fractal
dimension of log 3/ log 2, or about 1.58, indicating
moderate disorder. Thus, K = 2 (and, to a lesser
extent, K = 3) networks are unique in that they are
not near total order or total disorder. This highly
fractal nature indicates at K = 2 a phase tran-
sition exists.6 The phase transition between order
and chaos at K = 2 is illustrated in Fig. 4.

Note that as K increases the fractal dimensions
are very close to the maximum entropy indicat-
ing potential for large-scale disorder but, impor-
tantly, not total disorder. Even with high K it is
still possible to construct complex networks that
are neither trivial nor chaotic, but the logic must
be selected carefully in order for this to be achieved
(see Appendix A.4).

5. CONCLUSIONS

In this paper, we have shown how “combinatorial
fractal geometry” can help us gain a deeper under-
standing of the dynamical behaviors observed in
NK Boolean network models of complex systems.
Despite the application to a restricted class of dis-
crete models, the results seem to accentuate the
significance of the fractal nature of complex net-
work dynamics. One of the major challenges of
contemporary science is to understand the nature
of complex systems ranging from social networks
to molecular networks. Extensive research on real

Fig. 4 The phase transition from order to chaos at K = 2.
The figures for each K were generated by calculating the
degrees of freedom space for m = 9. Regions of the free-
dom space with zero degrees of freedom (“forced”) are col-
ored black, while regions with one or more degrees of freedom
(“free”) are white. The dimensions shown (D1, D2, and D3)
are of the white areas at the limit as m approaches infin-
ity. The dimensions of the black regions are one, two, and
three, respectively, as m approaches infinity. (a) At K = 1
the free region (the two points at the ends of the forced region
line) has zero dimension (D1) and thus is not fractal. With
such a low freedom/forcing ratio, K = 1 systems would be
expected to be highly ordered. (b) At K = 2 there is near
balance between the order and the free regions as indicated
by the highly fractal dimension of the free area (D2). This
fractal is neither highly ordered nor highly disordered, indi-
cating that the system has potential for nontrivial behavior.
(c) At K = 3 there is more free region as indicated by the
fact that the fractal dimension of the free area is closer to
integer (D3). This fractal indicates that K = 3 systems are
likely to have chaotic dynamics. As K increases above three,
the freedom spaces cannot be pictured because the dimension
of the black area is more than three. However, the fractal
dimension moves closer to integer as K increases (Table 1),
indicating more and more freedom in the system. Since the
freedom space of K = 2 networks is the most fractal (bal-
anced between freedom and forcing) of any K, it indicates
that there is a phase transition from order to chaos at K = 2.

complex networks has focused on static properties
including degree distributions, scaling, clustering,
and other structural features.15 The hope is that
the architectural properties will yield some clues
regarding the dynamics of the networks. Many of
these networks are scale-free with the degrees of the
nodes having a power law distribution. Recently,
it was shown that some of these networks possess
self-similar structures.16 Thus, the existence of a
power law and self-similarity suggests an underlying
fractal structure may exist and, perhaps, provide
some insights on the dynamics. The relationship
between complex networks and fractals remains an
enigma.17 In many complex systems the compet-
ing forces of freedom and control tend to shape the
dynamics. Too much freedom in a system can lead
to chaotic, disordered behavior, while too much con-
trol can result in totally ordered dynamics. Complex
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systems seem to function effectively on the border
of order and disorder where phase transitions occur
and fractals emerge.

In conclusion, we have analyzed an extensively
studied class of discrete networks and shown that
the dynamics of these networks expressed in terms
of their given logical functions are intimately linked
to emergent fractals. Applying a combinatorial
approach to the state space, we defined a complexity
(entropy) measure that can discriminate between
the different degrees of freedom and control for
arbitrary subsets of the state space. We demon-
strated the existence of a global phase transition
between order and disorder of these networks that
provided some mathematical evidence for the frac-
tal nature of complex network dynamics. The chal-
lenge for future research is to extend these results
to real complex networks. The presence of power
law distributions in real networks suggests the exis-
tence of underlying fractals that can provide useful
global information for understanding the observed
network dynamics.
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APPENDIX: BACKGROUND ON
NK BOOLEAN NETWORKS AND
THEIR DYNAMICS

NK Boolean (Kauffman) networks6 are a commonly
used modeling system for the study of spontaneous
emergence of nontrivial behavior. Although rela-
tively simple, NK Boolean networks are able to
capture the dynamics systems ranging from triv-
ial to exceedingly complex, including those of living
systems.8

A.1. The Anatomy of NK Boolean
Networks

Consider the simple network shown in Fig. A1(a).
There are three elements in this network and each
element is connected to each of the others. There-
fore, the parameter N (the number of elements in
the network) is 3 and the parameter K (the number
of connections feeding into each element) is 2. The
logical connections, shown in the tables in Panel B,
are OR and AND. These tables give the on/off state
(shown as a 1 for on and a 0 for off) of each element
as a function of the on/off state of the other two ele-
ments connecting to it. Thus the third table shows
that element 3 will be on if either element 1 or 2 (or
both) are on. The network exists at time T in some
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Fig. A1 A simple network and its logical connections.

initial state, with each separate element either on or
off. At the next time (T + 1), the states of all three
elements will change according to the tables shown.
The evaluation of the entire system from time T
to time T + 1 can be represented in a single table
[shown in Fig. A1(c)] where the column T contains
all the possible initial states of the system and col-
umn T+1 shows the result of application of the logic
set to each initial condition. Continued iteration by
the same method results in a trajectory of the sys-
tem as the states change over time. The trajectory
that a given initial condition follows depends on all
of the variables and parameters described in this
section, and variation of the parameters can radi-
cally alter the types of trajectories obtained as will
be discussed below.

A.2. Attractors and Basins of
Attraction

The network introduced in Fig. A1 is simple enough
to view all of the possible trajectories, which are
shown in Fig. A2. In panel (a), for example, the
system is shown to be at an initial state of ele-
ment 1 = 0, element 2 = 0 and element 3 = 0, or
000. According to the logic tables in Fig. A1(b) (or,
equivalently, the map shown in Fig. A1(c)), at the
next time point the system will remain at 000. This
trajectory is indicated by the arrow in Fig. A2(a).
Similarly, Figs. A2(b) and A2(c) show the trajecto-
ries for the other possible starting combinations.

Because there are a finite number of elements in
the system (N), there are a finite number (2N ) of
possible states of the system. Thus, as the system
travels in time, it must (regardless of trajectory) re-
enter a state previously encountered. As shown in
Figs. A2(a) and A2(b), when the system is at state
000 or 111, it remains there (encountering itself over

Fig. A2 All possible trajectories and attractors for the net-
work in Fig. A1.

and over), thus those two states are referred to as
steady states. Figure A2(c) shows that if the system
is at state 001 or 010, it cycles between those two
states, a trajectory that is referred to as a period 2
cycle. Finally, Fig. A2(b) shows that there are four
other states of the system (110, 100, 011, and 101)
that follow trajectories to the steady-state 111. In
summary, Fig. A2 shows that the network described
in Fig. A1 has three conditions (namely the two
steady-states 000 and 111, and a period 2 cycle con-
taining 001 and 010) called attractors into which the
trajectories of all initial states eventually settle.

Basins of attraction are those states whose tra-
jectories lead to a given attractor. For example, the
basin of attraction for the steady-state attractor
000 consists only of the condition 000. The basin
of attraction for the steady-state attractor 111 is
larger, consisting of 110, 100, 011, and 101. The
basin for the period 2 cycle consists only of its two
states, 001 and 010.

The sizes and stability of attractors and basins of
attraction are characteristic features of networks,13

and allow characterization of networks as ordered,
chaotic, or complex as explained in the next section.

A.3. Order, Chaos, and Complexity
in NK Boolean Networks

Boolean networks can have a wide variety of dynam-
ics. For example, the network in Fig. A3 has an
attractor of period six [Fig. A3(d)]. This attractor
is considered to be relatively large since the largest
possible attractor for this network is period eight.
When networks have attractors that are large (rel-
ative to the size of the network), they are consid-
ered to be minimally ordered . In other words, they
are structured in such a way as to have a minimal
number of re-encounters with previous states. Fur-
thermore, any network with such a structure would
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Fig. A3 An NK Boolean network with relatively chaotic
dynamics.

Fig. A4 An NK Boolean network with highly ordered
dynamics.

have attractors whose sizes scaled exponentially (by
a factor of 2N ) as the number of components in the
system (N) is increased. Thus a minimally ordered
system with N = 200 components could have an
attractor of size 2200, or approximately 1.6 × 1060!
An attractor of this magnitude means that the sys-
tem would never repeat itself in any relevant time
scale and could be considered effectively infinite.
By definition, a trajectory of this type that is not
periodic over (effectively) infinite iteration is called
chaotic.

On the other hand, networks can be structured in
such a way that the system always moves to small

attractors, an example of which is shown in Fig. A4.
In this network, all states (except 000) move to the
period one (fixed point) attractor 111. Since this
network always becomes frozen with all of the nodes
on (111) or off (000), this network is considered to
be highly ordered.

Between the extremes of order and chaos, some
networks have dynamics that are neither fully
ordered or fully chaotic. For example, the network
shown in Fig. A1 has two fixed point attractors
as well as a period two attractor (as shown in
Fig. A2). Thus, this network is not clearly classified
as ordered or chaotic and networks of this type are
termed “complex.” Complex networks tend to have
a moderate number of moderately-sized attractors.
This is strong evidence that complex, “edge of
chaos” networks are where nontrivial behavior is
expected because they are not frozen on small cycles
or chaotically wandering on enormous, effectively
infinite cycles.

The K = 2 (Kauffman) conjecture states that
networks with connectivity K = 2 naturally tend
to be complex, while K = 1 networks tend to be
highly ordered and K > 4 networks tend to be
highly chaotic. K = 3 and K = 4 networks are
also considered to be chaotic and tend toward trivial
dynamics, but they are less so than K > 4 networks
which appear to be very close to maximal disor-
der. According to this conjecture, by simple virtue
of K = 2 connectivity, a random network is likely
to display nontrivial dynamics that would not be
expected in random networks created with higher
or lower K. The theoretical foundation for this phe-
nomenon is the increase in the ratio of canalizing
functions (see Sec. A.4 below) as K decreases, there-
fore increasing the likelihood of orderly behavior in
a “low-K” network when logic is randomly chosen
for each node. Note that in this theory no connectiv-
ity is guaranteed to have any particular dynamics.
For example, the network shown in Fig. A3 is rel-
atively chaotic despite K = 1, while the network
in Fig. A4 is highly ordered despite the fact that
K = 2. This is because, regardless of the connec-
tivity, logic can almost always be selected that can
create any desired dynamics. However, while it is
possible to contrive a network that has any con-
nectivity and any dynamics, the choices of logic in
such contrived networks are severely limited. So,
while many different choices of logic are available
to make a highly connected network chaotic, there
are few logical choices that will make a low con-
nected network chaotic. The amount of freedom to
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choose logic based on the connectivity is precisely
the freedom/forcing ratio that is represented by the
fractals in this paper.

A.4. Logic Necessary for Nontrivial
Dynamics in K > 2 Networks

Even though there is much freedom (disorder) in
K > 2 networks, one can obtain ordered dynamics
by introducing more forcing or canalizing functions.
Canalizing functions are Boolean functions that

include at least one input variable that can deter-
mine the output regardless of the values of the other
variables. Recently, exact formulas for the number
of canalizing functions have been obtained.12 If the
number of input variables K is greater than 4, then
there are relatively few canalizing functions. How-
ever, biological networks are dominated by canal-
izing (forcing) functions.14 Thus, the connectivity
in biological networks can be greater than two, but
with a correspondingly high number of canalizing
functions, there can still be non-chaotic and non-
trivial dynamics.


