Experimental Math Project

Emilie Hogan

May 4, 2007

1 Introduction

Let the general form of the recurrence $\{a(n)\}_{n\in\mathbb{N}}$ be defined by

$$a(n)a(n-k) = a(n-i)a(n-k+i) + a(n-j) + a(n-k+j)$$
 (1)

with initial conditions a(n) = 1 for all $n \le k$. To be clear as to the values of (k, i, j) I may label the sequence by $\{a_{k,i,j}(n)\}$. For certain choices of (k, i, j) this recurrence relation is conjectured to generate an infinite sequence of integers.

Conjecture 1. Consider the quadratic recurrence (1).

- *In the case where* k *is even:*
 - If i is odd, then $j = \frac{k}{2}$ defines a recurrence that generates only integers.
 - If i is even, then $j = \frac{i}{2}$, $j = \frac{k}{2}$, and $j = \frac{k-i}{2}$ define recurrences that generate only integers.
- In the case where k is odd:
 - If i is odd then $j = \frac{k-i}{2}$ defines a recurrence that generates only integers.
 - If i is even then $j = \frac{i}{2}$ defines a recurrence that generates only integers.

Furthermore, all other values of j do not define a recurrence that generates integers exclusively.

In my previous paper, coauthored with Paul Heideman, we proved the following:

Proposition 1. The sequence $\{a_{2K+1,1,K}(n)\} = \{a(n)\}\$ defined by the quadratic recurrence relation (1), with initial conditions a(n) = 1 for $n \leq 2K + 1$ is also generated by the linear recurrence relation defined by

$$b(n) = \left[2K^2 + 8K + 4\right](b(n - 2K) - b(n - 4K)) + b(n - 6K) \tag{2}$$

with the first 6K+1 terms taken to be the first 6K+1 terms of the sequence generated by the quadratic recurrence.

We also proved that the first 6K+1 terms are defined by a piecewise polynomial in K and n, thus proving that the terms are all integers. After showing this I had hope that the proof could be generalized and more integrality results could be proven about the general form of the quadratic recurrence.

2 New Results

Using Maple I began to experiment, hoping to find linear recurrences for the sequences generated by the quadratic recurrence (1) with $i \neq 1$. I began by looking at the sequences for patterns. The sequences that were most interesting to me were the ones of the form $\{...n_1, n_1, ..., n_1, n_2, n_2, ..., n_2, n_3, n_3, ..., n_3, ...\}$ where each n_l is repeated the same number of times. I noticed a pattern in the (k, i, j) used to generate the sequence from (1). I then conjectured, and subsequently proved, the following proposition.

Proposition 2. Consider the sequence $\{a_{(2K+1)i,i,Ki}(n)\}_{n\in\mathbb{N}}$ from (1), i.e.- $\{a_{(2K+1)i,i,Ki}(n)\} = \{a(n)\}$ is defined by:

$$a(n)a(n-(2K+1)i) = a(n-i)a(n-2Ki) + a(n-Ki) + a(n-(K+1)i) \ \ (3)$$

with initial conditions a(n) = 1 for $n \le (2K + 1)i$. Consider also the sequence $\{a_{2K+1,1,K}(n)\} = \{c(n)\}$ defined by

$$c(n)c(n-(2K+1)) = c(n-1)c(n-2K) + c(n-K) + c(n-(K+1))$$
(4)

with initial conditions c(n) = 1 for $n \le 2K + 1$. Then we have the following relationship

$$a(Li + m) = c(L + 1) \text{ for } m \in [1, i]$$
 (5)

Proof. I will prove this by induction on L. The base case is to verify the relationship for L = 0, 1, 2, ..., 2K + 1.

- L=0,1,...,2K: In these cases we have that $Li + m \in [1, 2Ki + i] = [1, (2K + 1)i]$, and therefore, a(Li + m) = 1 = c(L + 1).
- L=2K+1: In this case we must use the definition of the recurrence for a(n).

$$a((2K+1)i+m)a(m) = a(2Ki+m)a(i+m) + a((K+1)i+m) + a(Ki+m)$$
$$a((2K+1)i+m) \cdot 1 = 1 \cdot 1 + 1 + 1$$
$$a((2K+1)i+m) = 3 = c(2K+2)$$

Now for the inductive step. Assume, as the inductive hypothesis, that a(Mi+m) = c(M+1) for M < L. Then, let L > 2K+1:

$$a(Li+m)a(Li+m-(2K+1)i) = a(Li+m-i)a(Li+m-2Ki) + \\ +a(Li+m-Ki) + a(Li+m-(K+1)i)$$

$$a(Li+m)a((L-2K-1)i+m) = a((L-1)i+m)a((L-2K)i+m) + \\ +a((L-K)i+m) + a((L-K-1)i+m)$$

$$a(Li+m)c(L-2K) = c(L)c(L-2K+1)c(L-K+1) + c(L-K)$$

$$a(Li+m)c((L+1)-(2K+1)) = c((L+1)-1)c((L+1)-2K) + \\ c((L+1)-K) + c((L+1)-(K+1))$$

But we know that the sequence $\{c(n)\}$ satisfies (9), so this implies that a(Li+m)=c(L+1). Then by induction, a(Li+m)=c(L+1) for all $L\in\mathbb{N}$.

I wrote a program to find a minimal linear recurrence for a given sequence. After some time I noticed a pattern in the conjectured linear recurrences: if gcd(k,i,j) = 1 then the recurrence would have 4 terms similar to (2); otherwise the recurrence had many more terms, but seemed to follow a pattern in the coefficients. From the experimental methods, I came up with the following proposition.

3

Proposition 3. If the sequence $\{a_{(2K+1)i,i,Ki}(n)\} = \{a(n)\}_{n\in\mathbb{N}}$ is given by equation (3) then it is also annihilated by the linear recurrence relation defined by

$$a(n) = a(n-1) + \sum_{l_1=1}^{2K-1} \left(-a(n-l_1i) + a(n-(l_1i+1)) \right) +$$

$$+ \sum_{l_2=2K}^{4K-1} \left[2K^2 + 8K + 3 \right] \left(a(n-l_2i) - a(n-(l_2i+1)) \right) +$$

$$+ \sum_{l_3=4K}^{6K-1} \left(-a(n-l_3i) + a(n-(l_3i+1)) \right)$$

Proof. Define $\phi(n)$ by

$$\phi(n) = a(n) - a(n-1) - \sum_{l_1=1}^{2K-1} \left(-a(n-l_1i) + a(n-(l_1i+1)) \right) - \sum_{l_2=2K}^{4K-1} \left[2K^2 + 8K + 3 \right] \left(a(n-l_2i) - a(n-(l_2i+1)) - \sum_{l_3=4K}^{6K-1} \left(-a(n-l_3i) + a(n-(l_3i+1)) \right) \right)$$

Any number n is congruent to 1, 2, ..., or $i \mod i$, thus we can write n = Li + m for some L > 6K and $m \in \{1, 2, ..., i\}$. Then we can rewrite $\phi(n)$ as $\phi(Li + m)$:

$$\phi(Li+m) = a(Li+m) - a(Li+(m-1)) - \\ -\sum_{l_1=1}^{2K-1} \left(-a((L-l_1)i+m) + a((L-l_1)i+(m-1)) \right) - \\ -\sum_{l_2=2K}^{4K-1} \left[2K^2 + 8K + 3 \right] \left(a((L-l_2)i+m) - a((L-l_2)i+(m-1)) \right) - \\ -\sum_{l_3=4K}^{6K-1} \left(-a((L-l_3)i+m) + a((L-l_3)i+(m-1)) \right)$$

• Case 1: $(m \neq 1)$ We can now use Proposition 2 to simplify $\phi(Li + m)$ $\phi(Li + m) = c(L + 1) - c(L + 1) -$

$$-\sum_{l_1=1}^{2K-1} \left(-c(L-l_1+1) + c(L-l_1+1) \right) -$$

$$-\sum_{l_2=2K}^{4K-1} \left[2K^2 + 8K + 3 \right] \left(c(L-l_2+1) - c(L-l_2+1) \right) -$$

$$-\sum_{l_3=4K}^{6K-1} \left(-c(L-l_3+1) + c(L-l_3+1) \right)$$

$$\phi(Li+m) = 0$$

• Case 2: (m = 1) In this case we will have to simplify $\phi(Li + m) = \phi(Li+1)$ slightly differently since we often subtract 1 from $(L-l_k)i+m$, and $a((L-l_k)i+m) \neq a((L-l_k)i+(m-1))$ as it did in case 1.

$$\phi(Li+1) = a(Li+1) - a((L-1)i+i) -$$

$$-\sum_{l_1=1}^{2K-1} \left(-a((L-l_1)i+1) + a((L-l_1-1)i+i) \right) -$$

$$-\sum_{l_2=2K}^{4K-1} \left[2K^2 + 8K + 3 \right] \left(a((L-l_2)i+1) - a((L-l_2-1)i+i) \right) -$$

$$-\sum_{l_3=2K}^{6K-1} \left(-a((L-l_3)i+1) + a((L-l_3-1)i+i) \right)$$

Again we can use Proposition 2 to write $\phi(Li + 1)$ in terms of the $\{c(n)\}$ sequence.

$$\phi(Li+1) = c(L+1) - c(L) - \sum_{l_1=1}^{2K-1} \left(-c(L-l_1+1) + c(L-l_1) \right) - \sum_{l_2=2K}^{4K-1} \left[2K^2 + 8K + 3 \right] \left(c(L-l_2+1) - c(L-l_2) \right) - \sum_{l_2=2K}^{6K-1} \left(-c(L-l_3+1) + c(L-l_3) \right)$$

Each of these sums is telescoping, so we can write them as

$$\sum_{l_1=1}^{2K-1} \left(-c(L-l_1+1) + c(L-l_1) \right) = -c(L) + c(L-(2K-1))$$

$$\sum_{l_2=2K}^{4K-1} \left[2K^2 + 8K + 3 \right] \left(c(L - l_2 + 1) - c(L - l_2) \right) =$$

$$\left[2K^2 + 8K + 3 \right] \left(c(L - 2K + 1) - c(L - (4K - 1)) \right)$$

$$\sum_{l_3=4K}^{6K-1} \left(-c(L - l_3 + 1) + c(L - l_3) \right) =$$

$$-c(L - 4K + 1) + c(L - (6K - 1))$$

So we can simplify $\phi(Li+1)$ as

$$\phi(Li+1) = c(L+1) - \left[2K^2 + 8K + 4\right] \left(c((L+1) - 2K) + c((L+1) - 4K)\right) - c((L+1) - 6K)$$

But we know from Proposition 1 that this equals 0.

In either case we have $\phi(Li+m)=0$ without using induction. Therefore, the linear recurrence in question annihilates the sequence generated by the quadratic recurrence (3)

When I proved Proposition 2 and 3 I noticed they depended on the recurrence for k odd and i=1. I wondered if similar statements would be true for k even and i=1. The first step was to find if the case where k is even and i=1 had a nice linear recurrence. The following two propositions are the analog to what I proved in my paper with Paul Heideman for the case where k is even and i=1. Their proofs are almost identical to the proofs given in that paper, and thus I will omit them. Proposition 4 was conjectured by a Maple program that I wrote by modifying a program written by Professor Zeilberger.

Proposition 4. The initial 6K - 2 terms of the sequence $\{a_{2K,1,K}(n)\} = \{a(n)\}$ given by the quadratic recurrence relation (1), i.e.:

$$a(n)a(n-2K) = a(n-1)a(n-2K+1) + 2a(n-K)$$
(6)

with the initial conditions a(n) = 1 for $n \leq 2K$ are also generated by the following polynomials:

Proposition 5. The sequence $\{a_{2K,1,K}(n)\} = \{a(n)\}\$ defined by the quadratic recurrence relation (6), with initial conditions a(n) = 1 for $n \leq 2K$ is also generated by the linear recurrence relation defined by

$$d(n) = [2K^2 + 6K - 1] (d(n - 2K + 1) - d(n - 4K + 2)) + d(n - 6K + 3)$$
(7)

with the first 6K - 2 terms of $\{d(n)\}$ taken to be the first 6K - 2 terms of the sequence $\{a(n)\}$.

After proving the above, I experimented to see if the analogs to Propositions $\ref{eq:sec:1}$ and 3 seemed to be true for the k even case. It was indeed, and the following are those analogous Propositions.

Proposition 6. Consider the sequence $\{a_{2Ki,i,Ki}(n)\}_{n\in\mathbb{N}}$ from (1), i.e.- $\{a_{2Ki,i,Ki}(n)\} = \{a(n)\}$ is defined by:

$$a(n)a(n-2Ki) = a(n-i)a(n-(2K-1)i) + 2a(n-Ki)$$
(8)

with initial conditions a(n) = 1 for $n \leq 2Ki$. Consider also the sequence $\{a_{2K,1,K}(n)\} = \{d(n)\}$ defined by

$$d(n)d(n-2K) = d(n-1)d(n-(2K-1)) + 2d(n-K)$$
(9)

with initial conditions d(n) = 1 for $n \leq 2K$. Then we have the following relationship

$$a(Li+m) = d(L+1) \text{ for } m \in [1,i]$$
 (10)

Proposition 7. If the sequence $\{a_{2Ki,i,Ki}(n)\} = \{a(n)\}_{n \in \mathbb{N}}$ is given by equation (8) then it is also annihilated by the linear recurrence relation defined by

$$a(n) = a(n-1) + \sum_{l_1=1}^{2K-2} \left(-a(n-l_1i) + a(n-(l_1i+1)) \right) +$$

$$+ \sum_{l_2=2K-1}^{4K-3} \left[2K^2 + 6K - 2 \right] \left(a(n-l_2i) - a(n-(l_2i+1)) \right) +$$

$$+ \sum_{l_3=4K-2}^{6K-4} \left(-a(n-l_3i) + a(n-(l_3i+1)) \right)$$

Proofs of Propositions 6 and 7 are practically the same as the proofs of Propositions 2 and 3 respectively, thus they will be excluded.

3 Future Plans

I would like to eventually have a full characterization of sequences generated by recurrence relation (1). I have collected a lot of information from my program to find a minimal recurrence. I have many conjectured linear recurrence relations and would like to fit their coefficients with a function. Unfortunately I don't currently believe that a polynomial will do the job. I hope to research other types of functions, similar to polynomials, that may serve as the general coefficient for the linear recurrences.