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1 Introduction
Let the general form of the recurrence {a(n)},en be defined by
a(n)a(n —k) =an—i)aln—k+i)+aln—j)+an—k+j5) (1)

with initial conditions a(n) = 1 for all n < k. To be clear as to the values of
(k,4,7) I may label the sequence by {ay; j(n)}. For certain choices of (k, 1, j)
this recurrence relation is conjectured to generate an infinite sequence of
integers.

Conjecture 1. Consider the quadratic recurrence (1).

e In the case where k is even:

— If i is odd, then j = % defines a recurrence that generates only
integers.

— If i is even, then j = %, j= %, and j = % define recurrences
that generate only integers.

o In the case where k is odd:

— Ifi is odd then j = % defines a recurrence that generates only
integers.

— If i is even then j = % defines a recurrence that gemerates only

integers.

Furthermore, all other values of j do not define a recurrence that generates
integers exclusively.



In my previous paper, coauthored with Paul Heideman, we proved the
following:

Proposition 1. The sequence {asx+1,1,x(n)} = {a(n)} defined by the quadratic
recurrence relation (1), with initial conditions a(n) =1 forn < 2K +1 is
also generated by the linear recurrence relation defined by

b(n) = [2K? + 8K +4] (b(n — 2K) — b(n — 4K)) + b(n — 6K)  (2)

with the first 6K +1 terms taken to be the first 6K + 1 terms of the sequence
generated by the quadratic recurrence.

We also proved that the first 6K 4+ 1 terms are defined by a piecewise
polynomial in K and n, thus proving that the terms are all integers. Af-
ter showing this I had hope that the proof could be generalized and more
integrality results could be proven about the general form of the quadratic
recurrence.

2 New Results

Using Maple I began to experiment, hoping to find linear recurrences for the
sequences generated by the quadratic recurrence (1) with i # 1. I began by
looking at the sequences for patterns. The sequences that were most interest-

ing to me were the ones of the form {...ny,nq, ..., n1, N2, na, ..., N2, N3, N3, ..., N3, ...}
where each n; is repeated the same number of times. I noticed a pattern in

the (k,i,7) used to generate the sequence from (1). I then conjectured, and
subsequently proved, the following proposition.

Proposition 2. Consider the sequence {ax 11)i,i,xi(n) fnen from (1), i.e.-
{a@k1yiixi(n)} = {a(n)} is defined by:

a(n)a(n— (2K +1)i) = a(n—1i)a(n—2Ki)+a(n— Ki)+a(n—(K+1)i) (3)

with initial conditions a(n) = 1 for n < (2K + 1)i. Consider also the
sequence {ask+1,1,5(n)} = {c(n)} defined by

cn)e(n — (2K +1)) =cn—1e(n —2K)+c(n—K)+c(n— (K +1)) (4

with initial conditions c¢(n) =1 for n < 2K +1. Then we have the following
relationship
a(Li+m) =c¢(L+1) form € [1,1] (5)



Proof. 1 will prove this by induction on L. The base case is to verify the
relationship for L =0,1,2,...,2K + 1.

e L=0,1,...,2K: In these cases we have that Li + m € [1,2Ki + 1] =
[1,(2K + 1)i], and therefore, a(Li +m) =1 = ¢(L + 1).

e [L=2K-+1: In this case we must use the definition of the recurrence for

a(n).
a((2K+1)i+m)a(m) = a(2Ki+m)a(i+m)+a((K+1)i+m)+a(Ki+m)

a(@2K +1)i+m)-1=1-1+1+1
a(2K +1)i+m) =3 =c(2K + 2)

Now for the inductive step. Assume, as the inductive hypothesis, that
a(Mi+m)=c(M +1) for M < L. Then, let L > 2K + 1:

a(Li+m)a(Li+m— 2K +1)i) = a(Li+m —i)a(Li +m — 2Ki) +
+a(Li+m — Ki) +a(Li +m — (K + 1)i)
a(Li+m)a((L —2K —1)i+m) = a((L—-1)i+m)a((L —2K)i+m)+
+a((L—-K)i+m)+a((L— K —1)i+m)
a(Li+m)e(L —2K) = c¢(L)e(L—2K+1)c(L—K+1)+c¢(L - K)
a(Li+m)e((L+1)— (2K +1)) = c¢(L+1)—1e((L+1)—-2K)+
((L+1)—K)+c((L+1)—(K+1))

But we know that the sequence {c(n)} satisfies (9), so this implies that
a(Li +m) = ¢(L + 1). Then by induction, a(Li + m) = ¢(L + 1) for all
L eN.

0

I wrote a program to find a minimal linear recurrence for a given se-
quence. After some time I noticed a pattern in the conjectured linear recur-
rences: if ged(k,,7) = 1 then the recurrence would have 4 terms similar to
(2); otherwise the recurrence had many more terms, but seemed to follow a
pattern in the coefficients. From the experimental methods, I came up with
the following proposition.



Proposition 3. If the sequence {a@r41)iiki(n)} = {a(n)}nen is given
by equation (3) then it is also annihilated by the linear recurrence relation

defined by

a(n) = a(n-1)+ ) ( —a(n—113) + aln — (lyi + 1))) +
=1
4K—1
+ Z [2K? + 8K + 3] <a(n —li) — a(n — (I2i + 1)> +
lb=2K
6K—1
+ Z <—a n—l31)+a(n—(l32+1))>
l3=4K
Proof. Define ¢(n) by
2K—1
¢(n) = a(n)—an—1)— Y ( —a(n — i) +a(n — (i + 1))) -
=1
4K -1
- Z [2K? + 8K + 3] (a(n — i) — a(n — (l2i + 1)> -
lo=2K
6K—1
- Z <—a n—lgz)+a(n—(13z+1))>
Any number n is congruent to 1,2, ..., or ¢ mod 4, thus we can write

n = Li+ m for some L > 6K and m € {1,2,...,i}. Then we can rewrite
¢(n) as ¢(Li +m):

o(Li+m) = a(Li+m)—a(li+ (m—1))—

2K—1
=Y (- wim) +a(@ - )i+ - 1) -

— Y [2K? 48K +3] (a((L —lo)i+m) — a((L — ly)i + (m — 1))) —
lo=2K
6K—1

- < —a((L—13)i+m) +a((L —l3)i + (m — 1))>
I3=4K

e Case 1: (m # 1) We can now use Proposition 2 to simplify ¢(Li + m)

o(Li+m) = c(L+1)—c(L+1)—



2K-1

-) (—C(L—l1+1)+C(L—l1+1)>—

l1=1
4K—-1
— > [2K? 48K + 3] (c(L—lg+1)—c(L—l2+1)> -
lo=2K
6K—1
-y (—c(L—lg-i—l)—l—c(L—lg—l—l))
I3=4K

$(Li+m) = 0

e Case 2: (m = 1) In this case we will have to simplify ¢(Li + m) =
¢(Li+1) slightly differently since we often subtract 1 from (L—1j)i+m,
and a((L —lg)i+m) # a((L — )i+ (m — 1)) as it did in case 1.
o(Li+1) = a(Li+1)—a((L—1)i+1i)—

2K -1

— Z (a((Ll1)i+1)+a((Ll1 1)i+i)) —
=1
4K—-1
~ Y [2K% 48K +3] (a((L )i+ 1) —al(L— s —1)i + i)) -
lp=2K
6K—1
- Z (—a((L—lg)i+1)+a((L—l3—1)1'—1—1'))
l3=4K

Again we can use Proposition 2 to write ¢(Li + 1) in terms of the
{¢(n)} sequence.
¢p(Li+1) = c(L+1)—c(L)—
2K—1
-) (—c(L—l1+1)+c(L—l1)> -
lh1=1
4K -1
= Z [2K? + 8K + 3] (c(L—l2+1) —c(L—l2)> -
lo=2K
6K—1
-y (—c(L—lg+1)+c(L—lg)>
l3=4K
Each of these sums is telescoping, so we can write them as
2K—1
Z (— e(L—114+1)4c¢(L - l1)> = —c¢(L)+c¢(L— (2K -1))

l1=1



4K-1

Z [2K? + 8K + 3] <c(L—l2+1)_C(L_52)> —
1s=2K

[2K? + 8K + 3] <c(L —2K+1) — oL — (4K — 1))>

6K—1
> <—C(L_z3+1)+c(/:_zg)> =
I3=4K
—c(L—-4K +1) 4+ ¢(L—(6K—-1))

So we can simplify ¢(Li + 1) as
$(Li+1) = c(L+1)— [2K* + 8K + 4] <c((L+1)—2K)—|—c((L+1)—4K)> —c((L+1)—6K)

But we know from Proposition 1 that this equals 0.

In either case we have ¢(Li +m) = 0 without using induction. Therefore,
the linear recurrence in question annihilates the sequence generated by the
quadratic recurrence (3) O

When I proved Proposition 2 and 3 I noticed they depended on the re-
currence for k odd and 7 = 1. I wondered if similar statements would be true
for k even and ¢ = 1. The first step was to find if the case where k is even
and ¢ = 1 had a nice linear recurrence. The following two propositions are
the analog to what I proved in my paper with Paul Heideman for the case
where k is even and ¢ = 1. Their proofs are almost identical to the proofs
given in that paper, and thus I will omit them. Proposition 4 was conjec-
tured by a Maple program that I wrote by modifying a program written by
Professor Zeilberger.

Proposition 4. The initial 6K — 2 terms of the sequence {ask 1, xk(n)} =
{a(n)} given by the quadratic recurrence relation (1), i.e.:

a(n)a(n —2K) =a(n —1)a(n — 2K + 1) + 2a(n — K) (6)

with the initial conditions a(n) = 1 for n < 2K are also generated by the
following polynomials:

a(i) = 1 for 1<i<2K
al2K +1) = 2i+1 for 1<i<K
aB3K +1i) = 142K + 4i+ 242 for 1<i<K-—1

4K%i 4+ 2> + 8Ki +6K? +2i + 10K —1 for 0<i<K —1
= 12Ki® + 16K%i + 4K? + 4K?i® — 2i®>+
+48Ki + 42K? — 10i + 36 K — 9 for 0<i<K -2
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Proposition 5. The sequence {asi1,x(n)} = {a(n)} defined by the quadratic
recurrence relation (6), with initial conditions a(n) =1 for n < 2K is also
generated by the linear recurrence relation defined by

d(n) = [2K* + 6K — 1] (d(n—2K +1)—d(n—4K +2)) +d(n—6K +3) (7)

with the first 6K — 2 terms of {d(n)} taken to be the first 6K — 2 terms of
the sequence {a(n)}.

After proving the above, I experimented to see if the analogs to Propo-
sitions 77 and 3 seemed to be true for the k even case. It was indeed, and
the following are those analogous Propositions.

Proposition 6. Consider the sequence {a2ki i ii(n)}tnen from (1), i.e.-
{askiiki(n)} = {a(n)} is defined by:

a(n)a(n —2Ki) = a(n —i)a(n — (2K — 1)i) + 2a(n — K1) (8)

with initial conditions a(n) = 1 for n < 2Ki. Consider also the sequence
{asr 1,k (n)} = {d(n)} defined by

d(n)d(n —2K) =d(n —1)d(n — (2K — 1)) + 2d(n — K) 9)
with initial conditions d(n) = 1 for n < 2K. Then we have the following

relationship
a(Li4+m)=d(L+1) form € [1,1] (10)

Proposition 7. If the sequence {azki i ki(n)} = {a(n)}nen is given by equa-
tion (8) then it is also annihilated by the linear recurrence relation defined
by

2K—-2

a(n) = a(n—-1)+ Y < —a(n — i) +a(n — (i + 1))) +
=1
4K -3
+ Z [2K? + 6K — 2] (a(n —loi) —a(n — (loi + 1)) +
lo=2K—-1
6K—4
+ > ( —a(n —I3i) + a(n — (Isi + 1)))
I3=4K—-2

Proofs of Propositions 6 and 7 are practically the same as the proofs of
Propositions 2 and 3 respectively, thus they will be excluded.



3 Future Plans

I would like to eventually have a full characterization of sequences gener-
ated by recurrence relation (1). T have collected a lot of information from
my program to find a minimal recurrence. I have many conjectured linear
recurrence relations and would like to fit their coefficients with a function.
Unfortunately I don’t currently believe that a polynomial will do the job. I
hope to research other types of functions, similar to polynomials, that may
serve as the general coefficient for the linear recurrences.



