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1 Introduction

Let the general form of the recurrence {a(n)}n∈N be defined by

a(n)a(n− k) = a(n− i)a(n− k + i) + a(n− j) + a(n− k + j) (1)

with initial conditions a(n) = 1 for all n ≤ k. To be clear as to the values of
(k, i, j) I may label the sequence by {ak,i,j(n)}. For certain choices of (k, i, j)
this recurrence relation is conjectured to generate an infinite sequence of
integers.

Conjecture 1. Consider the quadratic recurrence (1).

• In the case where k is even:

– If i is odd, then j = k
2 defines a recurrence that generates only

integers.

– If i is even, then j = i
2 , j = k

2 , and j = k−i
2 define recurrences

that generate only integers.

• In the case where k is odd:

– If i is odd then j = k−i
2 defines a recurrence that generates only

integers.

– If i is even then j = i
2 defines a recurrence that generates only

integers.

Furthermore, all other values of j do not define a recurrence that generates
integers exclusively.
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In my previous paper, coauthored with Paul Heideman, we proved the
following:

Proposition 1. The sequence {a2K+1,1,K(n)} = {a(n)} defined by the quadratic
recurrence relation (1), with initial conditions a(n) = 1 for n ≤ 2K + 1 is
also generated by the linear recurrence relation defined by

b(n) =
[
2K2 + 8K + 4

]
(b(n− 2K)− b(n− 4K)) + b(n− 6K) (2)

with the first 6K +1 terms taken to be the first 6K +1 terms of the sequence
generated by the quadratic recurrence.

We also proved that the first 6K + 1 terms are defined by a piecewise
polynomial in K and n, thus proving that the terms are all integers. Af-
ter showing this I had hope that the proof could be generalized and more
integrality results could be proven about the general form of the quadratic
recurrence.

2 New Results

Using Maple I began to experiment, hoping to find linear recurrences for the
sequences generated by the quadratic recurrence (1) with i 6= 1. I began by
looking at the sequences for patterns. The sequences that were most interest-
ing to me were the ones of the form {...n1, n1, ..., n1, n2, n2, ..., n2, n3, n3, ..., n3, ...}
where each nl is repeated the same number of times. I noticed a pattern in
the (k, i, j) used to generate the sequence from (1). I then conjectured, and
subsequently proved, the following proposition.

Proposition 2. Consider the sequence {a(2K+1)i,i,Ki(n)}n∈N from (1), i.e.-
{a(2K+1)i,i,Ki(n)} = {a(n)} is defined by:

a(n)a(n−(2K +1)i) = a(n−i)a(n−2Ki)+a(n−Ki)+a(n−(K +1)i) (3)

with initial conditions a(n) = 1 for n ≤ (2K + 1)i. Consider also the
sequence {a2K+1,1,K(n)} = {c(n)} defined by

c(n)c(n− (2K + 1)) = c(n− 1)c(n− 2K) + c(n−K) + c(n− (K + 1)) (4)

with initial conditions c(n) = 1 for n ≤ 2K +1. Then we have the following
relationship

a(Li + m) = c(L + 1) for m ∈ [1, i] (5)
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Proof. I will prove this by induction on L. The base case is to verify the
relationship for L = 0, 1, 2, ..., 2K + 1.

• L=0,1,...,2K: In these cases we have that Li + m ∈ [1, 2Ki + i] =
[1, (2K + 1)i], and therefore, a(Li + m) = 1 = c(L + 1).

• L=2K+1: In this case we must use the definition of the recurrence for
a(n).

a((2K+1)i+m)a(m) = a(2Ki+m)a(i+m)+a((K+1)i+m)+a(Ki+m)

a((2K + 1)i + m) · 1 = 1 · 1 + 1 + 1

a((2K + 1)i + m) = 3 = c(2K + 2)

Now for the inductive step. Assume, as the inductive hypothesis, that
a(Mi + m) = c(M + 1) for M < L. Then, let L > 2K + 1:

a(Li + m)a(Li + m− (2K + 1)i) = a(Li + m− i)a(Li + m− 2Ki) +
+a(Li + m−Ki) + a(Li + m− (K + 1)i)

a(Li + m)a((L− 2K − 1)i + m) = a((L− 1)i + m)a((L− 2K)i + m) +
+a((L−K)i + m) + a((L−K − 1)i + m)

a(Li + m)c(L− 2K) = c(L)c(L− 2K + 1)c(L−K + 1) + c(L−K)
a(Li + m)c((L + 1)− (2K + 1)) = c((L + 1)− 1)c((L + 1)− 2K) +

c((L + 1)−K) + c((L + 1)− (K + 1))

But we know that the sequence {c(n)} satisfies (9), so this implies that
a(Li + m) = c(L + 1). Then by induction, a(Li + m) = c(L + 1) for all
L ∈ N.

I wrote a program to find a minimal linear recurrence for a given se-
quence. After some time I noticed a pattern in the conjectured linear recur-
rences: if gcd(k, i, j) = 1 then the recurrence would have 4 terms similar to
(2); otherwise the recurrence had many more terms, but seemed to follow a
pattern in the coefficients. From the experimental methods, I came up with
the following proposition.
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Proposition 3. If the sequence {a(2K+1)i,i,Ki(n)} = {a(n)}n∈N is given
by equation (3) then it is also annihilated by the linear recurrence relation
defined by

a(n) = a(n− 1) +
2K−1∑
l1=1

(
− a(n− l1i) + a(n− (l1i + 1))

)
+

+
4K−1∑
l2=2K

[
2K2 + 8K + 3

](
a(n− l2i)− a(n− (l2i + 1)

)
+

+
6K−1∑
l3=4K

(
− a(n− l3i) + a(n− (l3i + 1))

)
Proof. Define φ(n) by

φ(n) = a(n)− a(n− 1)−
2K−1∑
l1=1

(
− a(n− l1i) + a(n− (l1i + 1))

)
−

−
4K−1∑
l2=2K

[
2K2 + 8K + 3

](
a(n− l2i)− a(n− (l2i + 1)

)
−

−
6K−1∑
l3=4K

(
− a(n− l3i) + a(n− (l3i + 1))

)
Any number n is congruent to 1, 2, ..., or i mod i, thus we can write
n = Li + m for some L > 6K and m ∈ {1, 2, ..., i}. Then we can rewrite
φ(n) as φ(Li + m):

φ(Li + m) = a(Li + m)− a(Li + (m− 1))−

−
2K−1∑
l1=1

(
− a((L− l1)i + m) + a((L− l1)i + (m− 1))

)
−

−
4K−1∑
l2=2K

[
2K2 + 8K + 3

](
a((L− l2)i + m)− a((L− l2)i + (m− 1))

)
−

−
6K−1∑
l3=4K

(
− a((L− l3)i + m) + a((L− l3)i + (m− 1))

)
• Case 1: (m 6= 1) We can now use Proposition 2 to simplify φ(Li + m)

φ(Li + m) = c(L + 1)− c(L + 1)−
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−
2K−1∑
l1=1

(
− c(L− l1 + 1) + c(L− l1 + 1)

)
−

−
4K−1∑
l2=2K

[
2K2 + 8K + 3

](
c(L− l2 + 1)− c(L− l2 + 1)

)
−

−
6K−1∑
l3=4K

(
− c(L− l3 + 1) + c(L− l3 + 1)

)
φ(Li + m) = 0

• Case 2: (m = 1) In this case we will have to simplify φ(Li + m) =
φ(Li+1) slightly differently since we often subtract 1 from (L−lk)i+m,
and a((L− lk)i + m) 6= a((L− lk)i + (m− 1)) as it did in case 1.

φ(Li + 1) = a(Li + 1)− a((L− 1)i + i)−

−
2K−1∑
l1=1

(
− a((L− l1)i + 1) + a((L− l1 − 1)i + i)

)
−

−
4K−1∑
l2=2K

[
2K2 + 8K + 3

](
a((L− l2)i + 1)− a((L− l2 − 1)i + i)

)
−

−
6K−1∑
l3=4K

(
− a((L− l3)i + 1) + a((L− l3 − 1)i + i)

)
Again we can use Proposition 2 to write φ(Li + 1) in terms of the
{c(n)} sequence.

φ(Li + 1) = c(L + 1)− c(L)−

−
2K−1∑
l1=1

(
− c(L− l1 + 1) + c(L− l1)

)
−

−
4K−1∑
l2=2K

[
2K2 + 8K + 3

](
c(L− l2 + 1)− c(L− l2)

)
−

−
6K−1∑
l3=4K

(
− c(L− l3 + 1) + c(L− l3)

)
Each of these sums is telescoping, so we can write them as

2K−1∑
l1=1

(
− c(L− l1 + 1) + c(L− l1)

)
= −c(L) + c(L− (2K − 1))
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4K−1∑
l2=2K

[
2K2 + 8K + 3

](
c(L− l2 + 1)− c(L− l2)

)
=

[
2K2 + 8K + 3

](
c(L− 2K + 1) − c(L− (4K − 1))

)
6K−1∑
l3=4K

(
− c(L− l3 + 1) + c(L− l3)

)
=

−c(L− 4K + 1) + c(L− (6K − 1))

So we can simplify φ(Li + 1) as

φ(Li+1) = c(L+1)−
[
2K2 + 8K + 4

](
c((L+1)−2K)+c((L+1)−4K)

)
−c((L+1)−6K)

But we know from Proposition 1 that this equals 0.

In either case we have φ(Li + m) = 0 without using induction. Therefore,
the linear recurrence in question annihilates the sequence generated by the
quadratic recurrence (3)

When I proved Proposition 2 and 3 I noticed they depended on the re-
currence for k odd and i = 1. I wondered if similar statements would be true
for k even and i = 1. The first step was to find if the case where k is even
and i = 1 had a nice linear recurrence. The following two propositions are
the analog to what I proved in my paper with Paul Heideman for the case
where k is even and i = 1. Their proofs are almost identical to the proofs
given in that paper, and thus I will omit them. Proposition 4 was conjec-
tured by a Maple program that I wrote by modifying a program written by
Professor Zeilberger.

Proposition 4. The initial 6K − 2 terms of the sequence {a2K,1,K(n)} =
{a(n)} given by the quadratic recurrence relation (1), i.e.:

a(n)a(n− 2K) = a(n− 1)a(n− 2K + 1) + 2a(n−K) (6)

with the initial conditions a(n) = 1 for n ≤ 2K are also generated by the
following polynomials:

a(i) = 1 for 1 ≤ i ≤ 2K
a(2K + i) = 2i + 1 for 1 ≤ i ≤ K
a(3K + i) = 1 + 2K + 4i + 2i2 for 1 ≤ i ≤ K − 1
a(4K + i) = 4K2i + 2i2 + 8Ki + 6K2 + 2i + 10K − 1 for 0 ≤ i ≤ K − 1
a(5K + i) = 12Ki2 + 16K2i + 4K2 + 4K2i2 − 2i2+

+48Ki + 42K2 − 10i + 36K − 9 for 0 ≤ i ≤ K − 2
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Proposition 5. The sequence {a2K,1,K(n)} = {a(n)} defined by the quadratic
recurrence relation (6), with initial conditions a(n) = 1 for n ≤ 2K is also
generated by the linear recurrence relation defined by

d(n) =
[
2K2 + 6K − 1

]
(d(n−2K +1)−d(n−4K +2))+d(n−6K +3) (7)

with the first 6K − 2 terms of {d(n)} taken to be the first 6K − 2 terms of
the sequence {a(n)}.

After proving the above, I experimented to see if the analogs to Propo-
sitions ?? and 3 seemed to be true for the k even case. It was indeed, and
the following are those analogous Propositions.

Proposition 6. Consider the sequence {a2Ki,i,Ki(n)}n∈N from (1), i.e.-
{a2Ki,i,Ki(n)} = {a(n)} is defined by:

a(n)a(n− 2Ki) = a(n− i)a(n− (2K − 1)i) + 2a(n−Ki) (8)

with initial conditions a(n) = 1 for n ≤ 2Ki. Consider also the sequence
{a2K,1,K(n)} = {d(n)} defined by

d(n)d(n− 2K) = d(n− 1)d(n− (2K − 1)) + 2d(n−K) (9)

with initial conditions d(n) = 1 for n ≤ 2K. Then we have the following
relationship

a(Li + m) = d(L + 1) for m ∈ [1, i] (10)

Proposition 7. If the sequence {a2Ki,i,Ki(n)} = {a(n)}n∈N is given by equa-
tion (8) then it is also annihilated by the linear recurrence relation defined
by

a(n) = a(n− 1) +
2K−2∑
l1=1

(
− a(n− l1i) + a(n− (l1i + 1))

)
+

+
4K−3∑

l2=2K−1

[
2K2 + 6K − 2

](
a(n− l2i)− a(n− (l2i + 1)

)
+

+
6K−4∑

l3=4K−2

(
− a(n− l3i) + a(n− (l3i + 1))

)
Proofs of Propositions 6 and 7 are practically the same as the proofs of

Propositions 2 and 3 respectively, thus they will be excluded.

7



3 Future Plans

I would like to eventually have a full characterization of sequences gener-
ated by recurrence relation (1). I have collected a lot of information from
my program to find a minimal recurrence. I have many conjectured linear
recurrence relations and would like to fit their coefficients with a function.
Unfortunately I don’t currently believe that a polynomial will do the job. I
hope to research other types of functions, similar to polynomials, that may
serve as the general coefficient for the linear recurrences.
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