Solutions to Dr. Z.'s Intro to Complex Variable Attendance Quiz for Lecture 6

1. Show that $F(z) = e^z$ maps the strip

 $S = \{ z = x + iy : -\infty < x < \infty, -\pi/2 \le y \le \pi/2 \} ,$

onto the region

$$\Omega = \{ w = u + iv : u \ge 0, w \ne 0 \}$$

and that F is one-to-one on S.

Furthermore, show that F maps the boundary of S onto all the boundary of Ω except w = 0. Explain what happens to each of the horizontal lines $\{z : Im z = \pi/2\}$ and $\{z : Im z = -\pi/2\}$.

Sol. to 1: Writing z = x + iy, $-\infty < x < \infty$, $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, we have

$$w = u + iv = e^{z} = e^{x+iy} = e^{x}(\cos y + i\sin y) = e^{x}\cos y + ie^{x}\sin y$$

Since $\cos y$ is never negative in $-\pi/2 \le y \le \pi/2$, the range of F is the right half-plane, $\operatorname{Re} w \ge 0$, except w = 0, since e^z is never zero.

It is onto since if w = u + iv, with $u \ge 0$, we can take $x = \log(|w|)$, and there is a always a y between $-\pi/2$ and $\pi/2$ such $\tan y = u/v$. It is **one-to-one**, since whenever $e^{z_1} = e^{z_2}$ we have $\operatorname{Re} z_1 = \operatorname{Re} z_2$ and $\operatorname{Im} z_1 - \operatorname{Im} z_2$ is an integer multiple of 2π . Since the width of the strip is π we are safe, and for every w in the range there is only **one** z such that w = F(z).

Regarding the boundary, when $\operatorname{Im} z \, = \, y \, = \, \, \frac{\pi}{2}$, we have

$$F(z) = e^{x + i\frac{\pi}{2}} = e^x \cos(\frac{\pi}{2}) + ie^x \sin(\frac{\pi}{2}) = e^x \cdot 0 + ie^x \cdot 1 = ie^x \quad ,$$

and since $e^x > 0$ we see that the horizontal line $y = \frac{\pi}{2}$ gets mapped to the open half-line v > 0.

When $Im z = y = -\frac{\pi}{2}$, we have

$$F(z) = e^{x - i\frac{\pi}{2}} = e^x \cos(-\frac{\pi}{2}) + ie^x \sin(-\frac{\pi}{2}) = e^x \cdot 0 + ie^x \cdot (-1) = -ie^x$$

and since $e^x > 0$ we see that the horizontal line $y = -\frac{\pi}{2}$ gets mapped to the open half-line v < 0.

