Solutions to Dr. Z.'s Intro to Complex Variable Attendance Quiz for Lecture 16

1. Find the Laurent expansion, in powers of z and $\frac{1}{z}$ of the following rational function

$$
f(z)=\frac{1}{(z+1)(z+2)}
$$

a) in $1<|z|<2$
b) in $2<|z|<\infty \quad$.

Sol. of 1: We first, rewrite $f(z)$ using partial fractions, like we did way back in calc2.

$$
\frac{1}{(z+1)(z+2)}=\frac{A}{z+1}+\frac{B}{z+2} .
$$

This means

$$
\frac{1}{(z+1)(z+2)}=\frac{A(z+2)+B(z+1)}{(z+1)(z+2)}=\frac{(A+B) z+(2 A+B))}{(z+1)(z+2)}
$$

Comparing numerators

$$
1=(A+B) z+2 A+B
$$

Hence $A+B=0,2 A+B=1$, hence $B=-A$, hence $A=1$ and $B=-1$. We get

$$
\frac{1}{(z+1)(z+2)}=\frac{1}{z+1}-\frac{1}{z+2}
$$

The only pole of $\frac{1}{z+2}$ is at $z=-2$ so it is analytic in $|z|<2$, and we can express it as a Taylor series in z about $z=0$.

$$
\begin{gathered}
\frac{1}{z+2}=\frac{1}{2(1+z / 2)}=\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{z}{2}\right)^{n} \\
=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} z^{n}
\end{gathered}
$$

valid in $|z|<2$, and hence also in $1<|z|<2$.
On the other hand $1 /(z+1)$ does not have a Taylor expansion in $1<|z|<2$, so we have to express it in powers of $1 / z$. We write

$$
\frac{1}{1+z}=\frac{1}{1+1 /(1 / z)}=\frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{z^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{z^{n+1}}
$$

valid for $1<|z|$ and hence in $1<|z|<2$. Combing we have

$$
\frac{1}{(z+1)(z+2)}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{z^{n+1}}-\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} z^{n}
$$

$$
=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{z^{n+1}}+\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2^{n+1}} z^{n}
$$

Ans. to 1a: The Laurent expansion of the rational function $\frac{1}{(z+1)(z+2)}$ in the region $1<|z|<2$ is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{z^{n+1}}+\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2^{n+1}} z^{n}
$$

Sol. to 1b: When $|z|>2$ we need to express both $1 /(z+1)$ and $1 /(z+2)$ in powers of $1 / z$. We already have done it for $1 /(z+1)$. We now have to do it for $1 /(z+2)$.

$$
\frac{1}{2+z}=\frac{1 / z}{(1+2 / z)}=\frac{1}{z} \sum_{n=0}^{\infty} \frac{(-2)^{n}}{z^{n}}=\sum_{n=0}^{\infty} \frac{(-2)^{n}}{z^{n+1}}
$$

Combining, we have

$$
\frac{1}{(z+1)(z+2)}=\frac{1}{z+1}-\frac{1}{z+2}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{z^{n+1}}-\sum_{n=0}^{\infty} \frac{(-2)^{n}}{z^{n+1}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}-(-2)^{n}}{z^{n+1}}
$$

Ans. to 1b: The Laurent expansion of the rational function $\frac{1}{(z+1)(z+2)}$ in the region $2<|z|<\infty$ is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}-(-2)^{n}}{z^{n+1}}
$$

Note that it only has negative powers of z.

