Solutions to Dr. Z.'s Intro to Complex Variable Attendance Quiz for Review Session for Exam 1

1. Consider the mapping $f(z):=z^{6}$ defined on the domain

$$
D=\left\{z=r e^{i \theta}: 0 \leq r<\infty, 0 \leq \theta \leq \frac{\pi}{6}\right\}
$$

(a) Find the image (alias range) $f(D)$, and prove that it is indeed the image, i.e. that it is onto.
(b) Prove that the mapping is one-to-one.

Sol. of $\mathbf{1}$ (a): Since $f\left(r e^{i \theta}\right)=r^{6} e^{i(6 \theta)}$ and $0 \leq 6 \theta \leq \pi$, it is reasonable to guess that the image is

$$
f(D)=\left\{z=r e^{i \theta}: 0 \leq r<\infty, 0 \leq \theta \leq \pi\right\}
$$

that happes to be the upper-half plane, $\operatorname{Im} z \geq 0$.
To prove that it is onto, let $w=R e^{i \theta}$ (with $R \geq 0$ and $0 \leq \theta \leq \pi$). We have to show that there exists $z \in D$ such that $f(z)=w$. Putting $z=r e^{i \alpha}$, we have

$$
r^{6} e^{6 i \alpha}=R e^{i \theta}
$$

Hence $r^{6}=R$ and $6 \alpha=\theta$ and we get $r=R^{1 / 6}$ and $\alpha=\theta / 6$ (since $0 \leq \theta \leq \pi, 0 \leq \alpha \leq \frac{\pi}{6}$), so $z \in D$.

Sol. to 1(b)
Suppose that

$$
f\left(z_{1}\right)=f\left(z_{2}\right)
$$

Write

$$
z_{1}=r_{1} e^{i \theta_{1}} \quad, \quad z_{2}=r_{2} e^{i \theta_{2}}
$$

with $0 \leq r_{1}<\infty$, and $0 \leq r_{2}<\infty$ and $0 \leq \theta_{1} \leq \frac{\pi}{6}, 0 \leq \theta_{2} \leq \frac{\pi}{6}$. Hence

$$
r_{1}^{6} e^{6 i \theta_{1}}=r_{2}^{6} e^{6 i \theta_{2}}
$$

Comparing the absolute values we get

$$
r_{1}^{6}=r_{2}^{6},
$$

and since r_{1} and r_{2} are non-negative real numbers, we have $r_{1}=r_{2}$.
Hence

$$
e^{6 i \theta_{1}}=e^{6 i \theta_{2}}
$$

Hence

$$
e^{6 i\left(\theta_{1}-\theta_{2}\right)}=1
$$

Hence

$$
6\left(\theta_{1}-\theta_{2}\right)=2 \pi n
$$

with n being an integer. But (assuming, without loss of generality that $\theta_{1} \geq \theta_{2}$), since both of them are between 0 and $\frac{\pi}{6}$, we have $0 \leq \theta_{1}-\theta_{2} \leq \frac{\pi}{6}$ and hence $0 \leq 6\left(\theta_{1}-\theta_{2}\right) \leq \pi$, so n must be 0 , hence $\theta_{1}=\theta_{2}$.

Since $r_{1}=r_{2}$ and $\theta_{1}=\theta_{2}$ it follows that $z_{1}=z_{2}$, proving that it is one-to-one.

