Solutions to Dr. Z.'s Intro to Complex Variable Attendance Quiz for Lecture 11

1. Prove the fact that $\int_{\Gamma} f(z) dz = 0$ for the special case where Γ is the circle |z| = R, and $f(z) = z^n$, $f(z) = z^n$ where n is a non-negative integer.

Sol. to 1: On the boundary of the circle $z = Re^{i\theta}$, $0 \le \theta \le 2\pi$. So $dz = Re^{i\theta}id\theta$. We have

$$\begin{split} \int_{\Gamma} f(z) \, dz &= \int_{0}^{2\pi} R^n e^{in\theta} i R e^{i\theta} i d\theta \, = \, R^{n+1} i \int_{0}^{2\pi} e^{i(n+1)\theta} d\theta \\ &= R^{n+1} i \frac{e^{i(n+1)\theta}}{i(n+1)} |_{0}^{2\pi} = R^{n+1} i \frac{e^{i(n+1)(2\pi)} - 1}{i(n+1)} = 0 \quad , \end{split}$$

since n+1>0 we do not divide by 0 and here we used Euler's famous result that $e^{2i\pi}=1$ and hence $e^{2ik\pi}=1$ for all integers k.

Comment: The above is true for any integer n, positive or negative, except for n = -1. Then it equals $2\pi i$.