
Dr. Z.’s Intro to Complex Variable Lecture 20 Notes: The Zeros of an Analytic Function (Part II)

By Doron Zeilberger

Recall from the last lecture the very important

Argument Principle (Theorem 2 on p. 176) Suppose that h is analytic in a domain D except

at a finite number of poles. Let γ be a piecewise smooth positively oriented simple closed curve in

D which does not pass through any pole or zero of h and whose inside lies in D. Then (counting

multiplicities)

(Number of Zeros inside γ) − (Number of Poles inside γ)

equals the change of arg h(z) as z travels along γ , divided by 2π.

In particular, if h(z) is analytic (e.g. a polynomial), it has no poles, so to find the number of zeros

(counting multiplicities) you just observe how the argument of h(z) changes as z travels along the

curve.

So far, all our examples were about finding the number of zeros of polynomials in quarter or half

planes. The next example is about a transcendental function.

Problem 20.1: Use the argument principle to find the number of solutions of the equation

2z + e−3z = 2 ,

in the right half-plane {z : Re z > 0}.

Solution: We need to find the number of zeros of the function f(z) = 2z + e−3z − 2 in the right

half plane. We consider the left semi-circle |z| = R, where R is HUGE. (See Fig. 3.4 on p. 176 of

Stephen Fisher’s book for the diagram) .

We move around it, starting at z = −iR (alias (0,−R)) we go around the circular arc z = Reiθ,

−π2 < θ < π
2 , ending at z = iR (alias (0, R)), and then we go down the y-axis back to the starting

point z = −iR.

In the circular arc, f(z) is practically 2z since |e−3z| = |e−3x+3iy| = e−3x < 1 since x > 0, and

|2z| = 2R. So the argument is (practically) the same as 2Reiθ, that is θ. So the change in argument

along the circular arc is π.

Since

f(iy) = 2iy + e−3iy − 2 = (cos 3y − 2) + i(2y − 2) ,

its real part is always negative (in fact less than −1) and the imaginary part starts out very

positive (so it is very up in the second quadrant, and then it slides down going very low in the third

quadrant). In other words, it increases from π
2 to 3π

2 . So the net gain is π.
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Adding the two contributions, we get that the change of argument is π + π = 2π, and dividing by

2π we get that the number of zeros of f(z) = 2z + e−3z − 2 which is the same as the number of

roots of the equation 2z + e−3z = 2 is exactly one.

Ans. to 20.1: The number of solutions of the equation 2z + e−3z = 2 in the right half plane is

one.

We now have a very important theorem. Its proof is simple enough that you should know how

to reproduce it.

Rouché’s Theorem Suppose that f and g are analytic on an open set containing a piecewise

smooth simple closed curve γ and its inside. If

|f(z) + g(z)| < |f(z)| for all z ∈ γ ,

then f and g have an equal number of zeros inside γ, counting multiplicities.

The proof is very elegant. First observe that neither f(z) nor g(z) can have zeros on γ (If there

exists z0 ∈ γ such that f(z0) = 0 and g(z0) 6= 0 then |NonZero| < 0 nonsense, if there exists z0 ∈ γ
such that f(z0) 6= 0 and g(z0) = 0 then |f(z0)| < |f(z0)| nonsense, if there exists z0 ∈ γ such that

both f(z0) = 0 and g(z0) = 0 then 0 < 0 nonsense).

Assume WLOG that all comon zeros of f(z) and g(z) have been canceled (if not cancel them out,

it does not change the difference between their number of zeros).

Let h = g/f . Dividing the condition |f(z) + g(z)| < |f(z)| by |f(z)| we get

|h(z) + 1| < 1 for all z ∈ γ ,

So the range of h(z) lies inside a circle center −1 and radius 1. This region does not include the

origin z = 0, hence the change of argument is 0 (this is true for any countour whose inside does

not including the origin. The “change of argument” is called the winding number, the number of

times it winds around the origin. If the origin is outside the contour the winding number is of

course 0.)

By the argument principle, the number of zeros of h(z) (counting multiplicities) is the same as the

number of poles (counting multiplicities). But the zeros of h(z) are the zeros of its numerator, g(z),

while the poles of h(z) are the zeros of its denominator, f(z). QED.

Rouché’s theorem is very good in proving that all the roots of a polynomial lie in a certain annulus.

Problem 20.2: Show that all the five zeros of

p(z) = z5 + 2 i z2 + 2 i z − 101 ,

lie in the annulus 2 < |z| < 3.
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Solution of Problem 20.2: On the circle |z| = 2 (by the triangle inequality)

|p(z) + 101| = |z5 + 2 i z2 + 2 i z| ≤ |z|5 + 2|z|2 + 2|z| = 25 + 2 · 22 + 2 · 2 = 32 + 8 + 4 = 44 < 101 ,

So, by Rouché, p(z) and f(z) = 101 have the same number of zeros inside the circle |z| = 2. But

101, being a constant, has no zeros, so neither does p(z).

On the circle |z| = 3 we have, again by the triangle inequality

|p(z)−z5| = |2 i z2+2 i z−101| ≤ 2·|z|2+2·|z|+101 = 2·32+2·3+101 = 18+6+101 = 125 < 243 = |− z5|

(since 35 = 243).

So, by Rouché, p(z) and f(z) = z5 have the same number of zeros inside the circle |z| = 3. Of

course f(z) = −z5 has five zeros (counting multiplicity). Since any polynomial of degree n has

altogether n roots (see the Fundamental Theorem of Algebra, coming up shortly) these are

all of them.

So there are five roots in |z| < 3 and none of them in |z| < 2, so all five of them must be in the

annulus 2 < |z| < 3.

Rouché’s theorem can also be used to prove one of the most important theorems in mathematics.

The Fundamental Theorem of Algebra: A polynomial of degree n has exactly n zeros, counting

multiplicities.

Proof: WLOG the coefficient of zn is 1 (such a polynomial is called a monic polynomial). So

p(z) = zn + an−1z
n−1 + . . .+ a1z + a0 ,

For large values of |z| = R, ∣∣∣∣p(z)− znzn

∣∣∣∣ = |an−1z
−1 + . . .+ a0z

−n|

≤ |a0|+ . . .+ |an−1|
R

≤ 1

2
.

Hence |p(z)− zn| ≤ 1
2 |z|

n < |− zn| for |z| = R, so thanks to Monsieur le professeur Eugene Rouché

p(z) has the same number of zeros in |z| ≤ R as f(z) = − zn, that is of course is n. QED.

Comment: The above is an example of a formal proof. An informal proof is to use the ‘semi-

formal’ language of Lecture 19. When R id huge, the leading term, zn dominates, so the value of our

general polynomial is very close to Rnen i theta so the argument is essentially nθ. As we move, along

the circle |z| = R, from a starting point, say z = R back to it, moving along counter-clockwise, the

argument increases by n2π. Dividing by 2π gives n.
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