
Dr. Z.’s Intro to Complex Variable Lecture 19 Notes: The Zeros of an Analytic Function (Part I)

By Doron Zeilberger

Intuitively Obvious but Important Fact: If f(z) is analytic in a domain D and there is an

infinite sequence of numbers (alias points) {zi}∞i=1 inside D, such that f(zi) = 0 for all of them

and the sequence {zi} converges to a number z0, then f is the zero function.

Explanation: Since there is a sequence of points zi where f is zero, that gets closer-and-closer to

z0, it follows that all the derivatives of f(z) at z = z0 are zero, and hence its Taylor series is 0 and

hence the function is identically zero in D.

Important Consequence: A zero of an analytic function is isolated. You can draw a (possibly

tiny) circle around it where there are no other zeros.

By considering the reciprocal of f(z), the same thing is true for poles.

If z = z0 happens to be a zero of an analytic function f(z) then of course, you can write it as

(z− z0)g(z) where g(z) is also analytic. In other words, you can divide f(z) by z− z0 and still get

an analytic function. If g(z0) 6= 0 then z = z0 is called a simple zero, but if g(z0) = 0 you can

divide again by z − z0. Sooner or later (after a finite number of trials) you will get something that

is not 0 at z0. The largest positive integer m such that you can write

f(z) = (z − z0)mg(z) ,

for g(z) analytic, (and of course then g(z0) 6= 0), is called the order of the zero z = z0, aka

multiplicity.

Analogously, if z = z0 is a pole of f(z) then if (z− z0)f(z) is already analytic, then z = z0 is called

a simple pole. If it is not, then perhaps (z − z0)2f(z) is. The smallest positive integer m such

that (z − z0)mf(z) is analytic at z = z0 is called the order of the pole.

Important Theorem (Theorem 1 on p. 173) Suppose that h is analytic in a domain D except at

a finite number of poles. Let γ be a piecewise smooth positively oriented simple closed curve in D

which does not pass through any pole or zero of h and whose inside lies in D. Then

1

2π i

∫
γ

h′(z)

h(z)
dz = (Number of Zeros inside γ) − (Number of Poles inside γ)

Each zero and pole is counted according to its multiplicity (aka order).

Explanation: This follows from the Residue Theorem, and the facts, proved at the beginning

of Lecture 16, about the residues at zeros and poles of h′(z)/h(z). If z = z0 is a zero of order m,

then the residue at z0 is m, (a positive integer), and if z = z0 is a pole of order n then the residue

at z0 is −n, (a negative integer).
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Recall that every non-zero complex number z can be written in polar representation

z = reiθ , −π ≤ θ < π ,

where r = |z| is the absolute value, and θ is called the Argument. So we can write

z = |z|ei Arg(z) ,

However, since e2iπ = 1 it is also true that z = |z|ei(Arg(z)+2πn) , for every integer n. Hence the

argument in lower case has infinitely many choices.

(Note that the Argument of 0 is undefined).

Similarly, if h(z) is any function then we can write (as long as h(z) 6= 0)

h(z) = |h(z)|eiarg(h(z)) ,

Taking the log we have

log h(z) = log |h(z)|+ iarg(h(z) ,

But log as opposed to Log, is ambiguous (like arg as opposed to Arg), so it folllows, by a clever

argument (see the book), that
1

i

∫
γ

h′(z)

h(z)
dz

describes the change of argument of the function h(z) as it travels, continuously along the

contour γ. The formal proof (for the special case of a circle) is in pp. 174-175 of Fischer’s book

(but you are not expected to reproduce it).

This leads to the very important

Argument Principle (Theorem 2 on p. 176) Suppose that h is analytic in a domain D except

at a finite number of poles. Let γ be a piecewise smooth positively oriented simple closed curve in

D which does not pass through any pole or zero of h and whose inside lies in D. Then (counting

multiplicities)

(Number of Zeros inside γ) − (Number of Poles inside γ)

equals the change of arg h(z) as z travels along γ , divided by 2π.

In particular, if h(z) is analytic (e.g. a polynomial), it has no poles, so to find the number of zeros

(counting multiplicities) you just observe how the argument of h(z) changes as z travels along the

curve.

The argument principle is important both theoretically and practically. Theoretically, it implies, as

we are going to see in the next lecture, the Fundamental Theorem of Algebra, that was open
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for many years, and that was first proved by Carl Friedrich Gauss. It is a theorem in algebra, but

it uses complex analysis! Practically, it is a good way to locate regions where there are zeros, so

that we have good starting points for Numerical methods like Newton-Raphson, and also to make

sure that we got all the zeros in the region.

Let’s illustrate the argument principle with a simple example, h(z) = zn. The equation h(z) = 0

has only one root, namely z = 0, but it has multiplicity n, so ‘the number of roots of the

equation zn = 0’, (which is the same thing as the number of zeros of the function h(z) = zn),

counting multiplicities in any disc |z| ≤ r, is n.

Let’s check the argument principle with this simple example. As we travel along the contour |z| = r,

the parametric equation is z = reiθ, −π ≤ θ < π, so the argument of h(z) = rneniθ is nθ. At the

starting point z = r (θ = 0), the argument is 0, since then h(r) = rn is real and positive so its

Argument is 0. As it moves around the circle, at θ = π/n (i.e. at z = rei
π
n ) the argument is π, alias

−π, since h(rei
π
n ) = rnreiπ, so the argument at that point is π. At z = r e2iπ/n h(z) = rn again,

so the Argument is 0, since 2π is the same as 0 (but it is more convenient to use ‘argument’ and

then it is 2π). So the range (“output”) of the function h(z) = zn completed a full circle as the

input z, moved along the segment of the circle 0 ≤ θ ≤ 2π
n .

In the next segment, we have 2π
n ≤ θ ≤

4π
n , so it covers another full circle. This is repeated n times,

so the total change of argument, until returning to the starting point, z = r, is n times 2π, i.e.

2πn. By the argument principle, the number of zeros inside the contour is the change in argument

divided by 2π, hence we get n.

IMPORTANT WARNING: Do not confuse argument and Argument. The Argument of a

complex number, by definition is always in the half-open half-closed interval [−π, π) i.e. Arg(z)

is the unique θ such that z = reiθ and in addition −π ≤ θ < π. But there are infinitely many θ

such that z = |z| eiθ, namely θ = Arg(z) + 2πn, for any integer n.

When we determine the change of argument of a function h(z) as it transverses (in the positive

direction) a contour γ, we use argument not Argument, since it often passes the “International

date line” Arg(z) = −π several times, and we do not “adjust the clock”. Whenever we transverse

a contour γ starting at a point and returning to the beginning, the “change in Argument” is always

0, so it is not very informative.

Let’s illustrate the argument principle with another simple example.

Problem 19.1: Use the argument principle (no credit for other methods) to find the number

of roots of the equation z2 − i = 0 that lie in the first quadrant, {z : Re z > 0, Im z > 0}.

Sol. of 19.1: Of course for this very simple example, we can do it directly, since we can actually

find all the roots of the equations z2 = i. Let’s do it just for fun (and for checking).

Writing (as we learned, way back in the good old, non-remote classroom days) z = reiθ, and
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i = ei
π
2 , we have

r2e2iθ = ei
π
2

Hence

r = 1 and 2θ =
π

2
+ 2nπ , (n = 0, 1) so

θ =
π

4
,

5π

4
,

and the two roots are

ei
π
4 = cos

π

4
+ i sin

π

4
=

√
2

2
+ i

√
2

2
, ei

5π
4 = cos

5π

4
+ i sin

5π

4
= −
√

2

2
− i
√

2

2
.

So we know that there is exactly one root of the equation z2 − i = 0 in the first quadrant, exactly

one root in the third quadrant, and none in the second and fourth quadrants.

Let’s establish it using the argument principle. The same method can be used to tackle much more

complicated polynomials (and functions) for which it is not so easy to find the zeros.

Consider the quarter-circle, center the origin, of radius R, that lies in the first quadrant, where R

is VERY BIG. Starting at the origin z = 0 let’s transverse it in the positive (counter-clockwise)

direction. It has three segments:

• First segment: Moving along the real (alias x) positive axis from z = 0 to z = R (alias from

(0, 0) to (R, 0))

• Second segment: Moving along the arc {z = Reiθ : 0 ≤ θ ≤ π
2 } from z = R (alias (R, 0)) to

z = iR (alias (0, R))

• Third segment: Moving down the imaginary (alias y) positive axis from z = iR back to z = 0

(alias from (0, R) to (0, 0)).

Let’s examine the change in argument in each segment separately, and at the end, we will add

them up.

In the first segment, it starts out being f(0) = 02 − i = −i = e−i
π
2 , and its Argument is −π2 .

(At first we take the principal argument, i.e. the Argument, that, by convention lies in [−π, π),

but later on we would have to take other choices, since the argument of a continuous function is

continuous). At the end of that segment f(R) = R2 − i i.e. the point (R2,−1). Since R is HUGE

(you can thing of it as practically infinite), this lies very close to the positive real axis, and hence

the argument at the end of the first segment is 0.

Hence: Net Gain of argument due to going along the first segment is 0− (−π2 ) = π
2 .

In the second segment, it starts out with argument 0 (as we saw above). Now f(Reiθ) =

R2ei(2θ)− i is practically the same as R2ei(2θ). The argument is 2θ, so as z moves along the circular

arc 0 ≤ θ ≤ π
2 , the net gain is 2π2 − 2 · 0= π.

4



Hence: Net Gain of argument due to going along the second segment is π.

In the third segment, it starts out with argument π (as we saw above), alias −π (we crossed the

“international date line”), and when we go down the y axis f(iy) = −y2− i travels along the third

quadrant until it reaches the origin and then the argument, as we sat at the very beginning of the

journey is −π2 .

Hence: Net change of argument due to going along the third segment is −π2 − (−π) = π
2 .

Combining the three changes we have

Total change in argument traveling along our contour = π
2 + π + π

2 = 2π.

Dividing by 2π, we get (not surprisingly) that

Ans. to 19.1: the number of zeros of f(z) = z2 − i in the first quadrant is 1.

Note that in the above example, all the changes were positive. Sometimes, some of the segments

give you negative contributions. So let’s do the following problem.

Problem 19.2: Use the argument principle (no credit for other methods) to find the number

of roots of the equation z2 − i = 0 that lie in the second quadrant, {z : Re z < 0, Im z > 0}.

Sol. of 19.2: We know (by doing it directly) that the answer should be zero. Let’s check it, and

see whether the argument principle agrees.

Consider the quarter-circle, center the origin, of radius R, that lies in the second quadrant, where

R is VERY BIG. Starting at the origin z = 0 let’s transverse it in the positive (counter-clockwise)

direction. It has three segments:

• First segment: Moving up along the imaginary (alias y) positive axis from z = 0 to z = Ri

(alias from (0, 0) to (0, R))

• Second segment: Moving along the arc {z = Reiθ : π
2 ≤ θ ≤ π} from z = Ri (alias (0, R)) to

z = −R (alias (−R, 0))

• Third segment: Moving left on the real (alias x) negative axis from z = −R back to z = 0

(alias from (−R, 0) to (0, 0)).

Let’s examine the change in argument in each segment separately, and at the end, we will add

them up.

In the first segment, it starts out being f(0) = 02− i = −i = e−i
π
2 , and its Argument is −π2 . At

the end of the segment f(iR) = −R2− i i.e. the point (−R2,−1). Since R is HUGE (you can thing

of it as practically infinite), this lies very close to the negative real axis, and hence the argument

at the end of the first segment is −π.
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Hence: Net Gain of argument due to going along the first segment is −π − (−π2 ) = −π2 .

Comment: Note that in this segment the change in argument is negative. It is like retrograde

movements of planets in the night sky.

In the second segment, it starts out with argument −π (as we saw above). As before, f(Reiθ) =

R2ei(2θ)− i is practically the same as R2ei(2θ). The argument is 2θ, increasing from θ = π
2 to θ = π,

so the net gain is π.

Hence: Net Gain of argument due to going along the second segment is π.

In the third segment, from z = −R to z = 0 it starts out at f(−R) = R2 − i that is practically

pointing right, so the argument is 0 and then since f(−x) = x2 − i, stays in the fourth quadrant,

the argument goes down from being 0 to being −π2 .

Hence: Net change of argument due to going along the third segment is (−π2 )− 0 = −π2 .

Combining the three changes we have:

Total change in argument traveling along our contour equals −π2 + π − π
2 = 0.

Dividing by 2π, we get that the number of zeros of f(z) = z2 − i in the second quadrant is 0.

Now let’s tackle a much more complicated problem.

Problem 19.3: Use the argument principle (no credit for other methods) to find the number of

zeros of the equation f(z) = z9− iz5 + 100i that lie in the first quadrant, {z : Re z > 0, Im z > 0}.

Sol. of 19.3: Consider the quarter-circle, center the origin, of radius R, that lies in the first

quadrant, where R is VERY BIG. Starting at the origin, z = 0, let’s transverse it in the positive

(counter-clockwise) direction. It has three segments:

• First segment: Moving along the real (alias x) positive axis from z = 0 to z = R (alias from

(0, 0) to (R, 0))

• Second segment: Moving along the arc {z = Reiθ : 0 ≤ θ ≤ π
2 } from z = R (alias (R, 0)) to

z = iR (alias (0, R))

• Third segment: Moving down the imaginary (alias y) positive axis from z = iR back to z = 0

(alias from (0, R) to (0, 0)).

Let’s examine the change in argument in each segment separately, and at the end, we will add

them up.

In the first segment, it starts out being f(0) = 100i, and its Argument is π
2 . A typical value

of f(z) along this segment is x9 − ix5 + 100i that is the point (x9, 100 − x5) that for large R is

6



(R9, 100−R5), and its argument arctan 100−R5

R9 tends to arctan(0) = 0. so the argument goes down

to 0, and at ‘infinity’ equals 0.

Hence: Net Gain of argument due to going along the first segment is 0− π
2 = −π2 .

In the second segment, it starts out with argument 0 (as we saw above). Now f(Reiθ) is ap-

proximately R9ei(9θ) (only the leading term matters). The argument is 9θ, so as z moves along the

circular arc 0 ≤ θ ≤ π
2 , the net gain is 9π2 .

Hence: Net Gain of argument due to going along the second segment is 9π
2 .

In the third segment, it starts out with argument 9π
2 alias π

2 and since f(0) = 100i has argument
π
2 , the argument does not change along this segment.

Hence: Net change of the argument due to going along the third segment is 0.

Combining the three changes we have

Total change in argument traveling along our contour = −π2 + 9π
2 + 0 = 4π.

Dividing by 2π, we get

Ans. to 19.3: The number of zeros of f(z) = z9 − iz5 + 100i in the first quardrant is 2.

The next two examples concern the number of zeros in half-planes.

Problem 19.4: Use the argument principle (no credit for other methods) to find the number

of zeros of the equation f(z) = z7 − i that lie in the upper half plane {z : Imz > 0}.

Solution to 19.4: We now consider the half-circle

{z = Reiθ : 0 ≤ θ ≤ π} ∪ {z = x+ i0 : −R < x < R} .

Now there are only two pieces. First let’ go (in the rightbound direction) from z = −R to z = R

along the real axis. Since f(−R) is essentially −R7 so its argument is the same as −1, i.e. −π. On

the other hand f(R) is essentially R7 so its argument is the same as 1, in other words 0. The net

gain to the argument of f(z) along that segment (i.e. along the x axis from (−R, 0) to (R, 0) is

0− (−π) = π.

Going along the circular arc, f(Reiθ) is essentially R7e7iθ so the argument goes up by 7π. Together

the gain is π + 7π = 8π and dividing by 2π gives 4.

Ans. to 19.4: The function f(z) = z7 − i has 4 roots in the upper half-plane {z : Imz > 0}.

Problem 19.5: Use the argument principle (no credit for other methods) to find the number
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of zeros of the equation f(z) = z7 − i that lie in the lower half plane {z : Imz < 0}.

Solution to 19.5: We now consider the lower half-circle

{z = Reiθ : −π ≤ θ ≤ 0} ∪ {z = x+ i0 : −R < x < R} .

Again there are only two pieces. Now we go from z = R to z = −R along the real axis (we have to

go from right to left, rather than from left to right as in the previous problem, since the movement

is always counter-clockwise).

f(R) is essentially R7 so its argument is the same as 1, i.e. 0. On the other hand f(−R) is essentially

−R7 so its argument is the same as −1, in other words −π. The net gain to the argument of f(z)

along that segment (i.e. along the x axis from (R, 0) to (−R, 0) is −π − 0 = −π.

Going along the circular arc, f(Reiθ) is essentially R7e7iθ going from θ = −π to θ = 0. So the

argument goes up by 7π. Combining the contributions from the two pieces, the total gain is

−π + 7π = 6π and dividing by 2π gives 3.

Ans. to 19.5: The function f(z) = z7 − i has 3 roots in the lower half-plane {z : Imz < 0}.
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