Solutions to Real Quiz 7 of Dr. Z.’s Dynamical Models in Biology class

Name: Dr. Z.

1. (a): (3 points) . Prove that (0,0) is a steady-state of the first-order vector recurrence
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Explain!
Sol. to 1:

The unerlying transformation from R? to R? is
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Sol of 1(a):

Plugging in x = 0 and y = 0 on the right side gives (0,0), so (0,0) is a fixed point of the transfor-
mation, and so a1(n) = 0,a2(n) = 0 is a steady-state.

Sol of 1(b): The jacobian matrix is
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Plugging-in z = 0, y = 0 we have
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The characteristic equation is (A — 3)(A — 1) = 0, whose solutions are 1 and 1. So the
eigenvalues are % and % Both of them have asbsolute value less than 1, so this proves that
(0,0) is a stable steady-state.

Ans. to 1(b): (0,0) is a stable steady-state.



