Solutions to Attendance Quiz for Lecture 4 of Dr. Z.'s Dynamical Models in Biology class

Use Maple to find the following numbers:

1. a(200), if a(n) is the sequence satisfying the recurrence equation with the given initial conditions:

$$a(n) - 3a(n-1) + 3a(n-2) - a(n-3) = 0$$
 , $a(0) = 0$, $a(1) = 1$, $a(2) = 4$.

Sol. to 1: The Maple command is

$$rsolve(a(n)-3*a(n-1)+3*a(n-2)-a(n-3)=0, a(0)=0, a(1)=1, a(2)=4,a(n));$$

and you get

$$2\left(n+1\right)\left(\frac{n}{2}+1\right)-3n-2$$

You first need to simplify it so you type:

expand(%);

getting n^2 , so

Ans. to 1:
$$a(200) = (200)^2 = 40000$$

2. y(2.1) (in decimals) if y(x) is the solution of the differntial equation

$$y^{(4)}(x) - 16y(x) = 0$$
 , $y(0) = 1$, $y'(0) = 1$, $y''(0) = 1$, $y'''(0) = 1$.

Sol. to 2: The Maple command is

dsolve(diff(y(x),x,x,x,x)-16*y(x),y(0)=1, D(y)(0)=1, D(D(y))(0)=1, D(D(D(y)))(0)=1, y(x));

getting

$$y(x) = \frac{5e^{-2x}}{32} + \frac{15e^{2x}}{32} + \frac{3\sin(2x)}{16} + \frac{3\cos(2x)}{8}$$

Then to get the value at x = 2.1 you do

evalf(subs(x=2.1,op(2,%)));.

Ans. to 2:
$$y(2.1) = 30.91429247$$

3. The (1,2) entry of the matrix A^{10} if

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$$

```
Sol. to 3: You first have to type:
with(linalg);
You enter the matrix as follows:
A:=matrix([[1,2],[3,1]]); ,
then you type
evalm(A^10)[1,2];
getting:
Ans. to 3: (A<sup>10</sup>)<sub>1,2</sub> = 97364 .
```