Solution to Attendance Quiz for Lecture 3 of Dr. Z.'s Dynamical Models in Biology class

1. Solve the following recurrence with the given initial conditions

$$a(n) = 5a(n-1) - 6a(n-2) + 2n - 7$$

subject to the initial conditions

$$a(0) = 2$$
 , $a(1) = 6$.

Sol. to 1: First we use algebra to write the recurrence as

$$a(n) - 5a(n-1) + 6a(n-2) = 2n - 7$$
.

where $a(n), a(n-1), \ldots$ are on the left side and everything else (an expression in n) is on the right side.

Step 1: Find the general solution of the homogeneous version

$$a(n) - 5a(n-1) + 6a(n-2) = 0$$
,

where the right side is replaced by 0.

The characteristic equation is

$$z^2 - 5z + 6 = 0 \quad .$$

Factoring

$$(z-2)(z-3) = 0$$
.

So the general solution of the homogeneous version is

$$a(n) = C_1 2^n + C_2 3^n$$
,

for some arbitrary constants.

Step 2: Find a *particular solution* of the original recurrence, by setting-up an appropriate **template**

- If the right side is a constant, then the template is $a(n) = c_0$
- If the right side is a polynomial of degree 1, then the template is $a(n) = c_0 + c_1 n$

In general, if the right side is a polynomial of degree k, then the template is $a(n) = c_0 + c_1 n + \ldots + c_k n^k$.

More generally if the right side has the form $d^nQ(n)$ for some specific polynomial of degree k then the template is

$$a(n) = (c_0 + c_1 n + \ldots + c_k n^k) d^n .$$

Going back to our problem the template is

$$a(n) = c_0 + c_1 n \quad .$$

Plugging it into the recurrence we get

$$a(n) - 5a(n-1) + 6a(n-2) = (c_0 + c_1n) - 5(c_0 + c_1(n-1)) + 6(c_0 + c_1(n-2)) = (2c_0 - 7c_1) + 2c_1n$$

Equating it to the right side gives:

$$(2c_0 - 7c_1) + 2c_1 n = -7 + 2n$$
.

Equating the free term (coeff. of n^0) and the coefficients of n we get the system of two equations and two unknowns

$$2c_0 - 7c_1 = -7$$
 , $2c_1 = 2$.

whose solution is $c_0 = 0$ and $c_1 = 1$. Going back to the template we have

a particular solution is a(n) = n

Step 3: The **general solution** of the original (inhomogeneous) recurrence is the general solution of the homogeneous version **plus** the above particular solution.

$$a(n) = C_1 2^n + C_2 3^n + n \quad .$$

Now, and only now, it is time to take advantage of the initial conditions a(0) = 2, a(1) = 6

$$a(0) = C_1 2^0 + C_2 3^0 + 0 = C_1 + C_2 = 2$$
.

$$a(1) = C_1 2^1 + C_2 3^1 + 1 = 2C_1 + 3C_2 + 1 = 6$$
.

So we have to solve the system of two linear equations with two unknowns

$$C_1 + C_2 = 2 \quad , \quad 2C_1 + 3C_2 = 5 \quad ,$$

whose solution is $C_1 = 1$, $C_2 = 1$. Going back to the above general solution $a(n) = C_1 2^n + C_2 3^n + n$ we get

Ans. to 1: $a(n) = 2^n + 3^n + n$.