Solutions to Attendance Quiz for Lecture 13 of Dr. Z.’s Dynamical Models in Biology class

1.: Find the steady-states and the stable steady-states of the 2-dimensional vector recurrence, or
prove that they do not exist.
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To get the steady-states you solve the algebraic system of two equations with two unknowns
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From the first equation 1 = 0 or 25 = 1. From the second equation zo = 0 or 1 = 1. But neither

x1 = 0 nor zo = 0 are legal since if you plug-them-in you get division by 0.
So Ans. to the first part: The only steady-state is (1,1).
Is it stable?

The Jacobian matrix is

This is a matrix of functions. Plugging in the candidate steady-state:
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We have to find the eigenvalues.

det([l__l/\ 1_—1AD =(1-=AN2—(-1)2=1-22+ XA —1=)% -2\

So the characteristic equation is A2 — 2\ = 0. Factoring A\(\A — 2) = 0.

So the eigenvalues are 0 and 2. Since one of them is larger than 1 in absolute value this is not
stable.

Ans. to 2nd part: There are no stable steady-states.



