Homework for Lecture 12 of Dr. Z.'s Dynamical Models in Biology class

Email the answers (as .pdf file) to

ShaloshBEkhad@gmail.com

by 8:00pm Monday, Oct. 20, 2025.

Subject: hw12

with an attachment hw8FirstLast.pdf and/or hw12FirstLast.txt

Using

http://sites.math.rutgers.edu/~zeilberg/Bio25/DMB12.txt

1. What is the ultimate period of

$$evalf(Orb((1-x)*(2-x)*(3-x)/12,x,0.5,1000,1010),10);?$$

By Playing 'high-low', estimate the cut-offs r_1 , r_2 , r_3 , r_4 such that

the recurrence

$$a(n+1) = (1 - a(n))(2 - a(n))(3 - a(n))/r$$
,

has

- ultimate period 1 for $r_1 < r$
- ultimate period 2 for $r_2 < r < r_1$
- ultimate period 4 for $r_3 < r < r_2$

(challenging!):

• ultimate period 8 for $r_4 < r < r_3$

2.

In the Maple package http://sites.math.rutgers.edu/~zeilberg/Bio25/DMB12.txt

Run the following line 20 times

$$T:=RT([x,y],30); SSg(T,[x,y]); ORB(T,[x,y,z],[100., 200.],1000,1020);$$

Here the first command, T:=RT([x,y],30); generates a random rational transformation in \mathbb{R}^2 , the second command, SSg(T,[x,y]);, finds steady-states (i.e. fixed points of the transformation T, using

Maple's solve command, but unfortunately not all, and the last command, ORB(T,[x,y],[100., 200.],1000,1020); finds the long-term behavior.

If all goes well, the ultimate beahvior of the orbit should be ONE of the outputs of SSg, but sometimes it misses it. Out of the 20 tries, list all the cases where

```
ORB(T,[x,y],[100., 200.],1000,1020)[-1];
```

was not part of the output of

SSg(T,[x,y]);

3.

In the Maple package http://sites.math.rutgers.edu/~zeilberg/Bio25/DMB12.txt

Run the following line 20 times

```
T:=RT([x,y,z],10); SSg(T,[x,y,z]); ORB(T,[x,y,z],[100., 200.,300.],1000,1020);
```

Here the first command, T:=RT([x,y,z],10); generates a random rational transformation in \mathbb{R}^3 , the second command, SSg(T,[x,y,z]);, finds steady-states (i.e. fixed points of the transformation T, using Maple's solve command, but unfortunately not all, and the last command, ORB(T,[x,y,z],[100.,200.,300.],1000,1020); finds the long-term behavior.

If all goes well, the ultimate beahvior of the orbit should be ONE of the outputs of SSg, but sometimes it misses it. Out of the 20 tries, list all the cases where

```
ORB(T,[x,y,z],[100., 200.,300.],1000,1020)[-1];
```

was not part of the output of

SSg(T,[x,y,z]);