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Fig. 3 Responses to whoopgobble calls when group is in the 
centre or periphery of its home range: comparison of experimen­
tal playbacks and naturally occurring calls. Conventions as in 
Fig. 2. Sample sizes: (experiments) 5, 10: (observations) 7, 30, 8. 

ofvocaliser, identity and size of vocal ising groups, and level and 
location of resources can be investigated experimentally6. 
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Dynamic complexity in predator-prey 
models framed in difference equations 
THE complicated dynamics associated with simple first-order, 
nonlinear difference equations have received considerable 
attention (refs 1-4andR. M. May and G. F. Oster, unpublished). 
In an ecological context, equations of this type provide a power­
ful and realistic means of modelling the behaviour of animal 
populations with r')n-overlapping generations, typified by 
many arthropods in temperate regions. May4 has shown that 
such models, incorporating density dependence, have three 
regimes of dynamic solution in their parameter space, namely 
(1) a stable equilibrium point; (2) bifurcating cycles of period 
2", O<n< W, where n is a positive integer and (3) behaviour 
which has been termed chaotic, that is, cycles of any integral 
period or complete aperiodicity, depending on the initial condi­
tions. May4 has indicated that such complexity can also occur 
in the wider context of competition between two species, de­
scribed by two first-order. nonlinear difference equations of 
similar form to those governing single-species growth. 

In this paper, we illustrate the dynamics of a predator- prey 
model for populations with non-overlapping generations 
and show that the model yields patterns of behaviour closely 
analogous to those observed in the -first-order (single-species) 
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situation. These may be compared with results on the type of 
solution possible in predator-prey models framed as differential 
equations, which guarantee for a large class of models the 
existence of either stable equilibria or stable limit cycless. 

The model we chose to investigate is an extension of the 
familiar Nicholson-Bailey host-parasite equations6, which 
purport to describe the interactions between a population of 
herbivorous arthropods and their insect parasitoids. The original 
model is unstable for all parameter values7

• Our extension, which 
eliminates this unrealistic behaviour, involves the inclusion of 
density-dependent self-regulation by the prey. The equations of 
the model are: 

H t+1 = H t exp(r(l - Ht/K) - aPt] 

Pt+1 = aHt(1 - exp( - aPt)] 
(I) 

The self-regulation of the prey in the absence of predators has 
already been documented by May" with a stable equilibrium 
point for 0 < r < 2, bifurcating cycles for 2 < r < 2.692 and 
chaos for 2.692 < r. The choice of an identical form of density 
dependence in a predator-prey model therefore enables us to 
compare the parameter values at which chaotic behaviour 
ensues, and hence indicate whether the introduction of a preda­
tor makes the onset of chaotic behaviour more or less likely. 

Analysis of the local stability properties of the model was 
performed using the method of Beddington8

• The conditions for 
stability were found to depend on whether the roots of the 
equation 

"-2 _ "-(\ - r + cp) + (\ - rq) cp + r 2q(1 - q) = 0 
(2) 

where cp = r (\ - q)/{l - exp( - r(1 - q)]} 

lay within the unit circle. The parameter q is defined as the 
equilibrium prey population density, H*, divided by the carrying 
capacity K; q is therefore a measure of the extent to which the 
predator can depress the prey below its carrying capacity. 
Application of the Schur-Cohn criteria9 to equation (2) yields 
the demarcation of stable-from unstable parameter space: this is 
illustrated in Fig. I. Extensive numerical investigations within 
the domain of stable parameter space indicate that the equilib­
rium point is globally stable, although a Lyapunov function for 
the system has not been constructed. 

Before considering the non-equilibrium behaviour of the 
model, we digress to point out the difficulties involved in 
recognising complicated dynamic behaviour in second-order 
models. A priori, we would expect limit cycles of integer period 
to be rare; it is more likely that the periods of any limit cycles 
that do exist will be predominantly non-integral, or indeed 

Fig. 1 Stability bou~da.ries fOT t~e pred~to~-prey model, 
equation (1). The eqUIlibrIum pomt IS stable mSlde the hatched 
area only. Simulations for the points marked on the transect 

q = 0.4 are illustrated in Figs 2 and 3. 
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irrational. Correspondingly, limit cycles will be extremely 
difficult to detect simply by viewing the trajectory of one or both 
populations as a function of time. At most, this will permit a 
distinction only between integer cycles and other behaviour. In 
general, we '.Yould expect the existence of limit cycles in second­
order models to be characterised by the populations following 
closed trajectories in phase space. We have performed our 
numerical simulations with this in mind: the non-equilibrium 
behaviour of the model was investigated by plotting the realised 
trajectory in phase space, using a storage oscilloscope on line to 
a computer. 

The results of the simulations are presented in the context of a 
transect in parameter space (Fig. I). The various types of 
behaviour of the model , corresponding to points on the transect, 
are illustrated in Figs 2 and 3. An initially stable point is 
succeeded by a hierarchy of stable limit cycles of increasing, non­
integral period and increasing complexity, ultimately breaking 
down to cycles of integral period k (where k = 5), which then 
bifurcate to cycles of period 2k, 4k, ... , 2nk. These are followed 
by a regime of complex, but bounded, behaviour consisting 
either of limit cycles of high integral period (2 "k > I 0,000) or of 
aperi0dic chaos. The implications of the model in other zones of 

S9 

Fig. 2a, The realised trajectory for the model in the 
domain of oscillatorily stable parameter space r = 0.5, 
initial densities H 0 = 8.6, Po = 1.1. The plot indicates 
the time path followed to the equilibrium point. 
q = 0.4, a = I, K = 10 throughout Figs 2 and 3. All 
plots are shown to the same scale. b, A succession of 
closed trajectories, realised after varying time periods 
from the initial point H 0 = 3, Po = 3. The parameter 
values, moving outward from the smallest curve, are 
(I) r = 0.75, (2) r = 0.9, (3) r = 1.1 , (4) r = 1.35, (5) r 
= 1.8. Simulations indicated that the lJopulations homed 
in on the closed curve trajectories from all regions of 
phase space. c, The realised trajectory of the model 
with r = 2.1 and initial densities close to equilibrium. 
The final closed curve is substantially different from the 
family of curves illustrated in b. d, as c with r = 2.15. 
The closed curve has now developed five kinked areas 
where the population points occur more frequently. 

Ordinates and abscissae are H, and P, respectively. 

parameter space will be discussed elsewhere. The most im­
portant difference in these regions hinges on the basic period, 
k, of the integer cycles. Clearly, when compared with May's4 
results for a single-species model, the introduction of a predator 
has produced qualitatively new behaviour. 

In the particular example illustrated predation has resulted in 
chaotic or high period limit cyclic behaviour for values of the 
prey growth rate parameter r only slightly below that in the 
single-species case. For other values of the parameter q however, 
we find that the onset of chaos occurs at values of r both sig­
nificantly below (for example, q = 0.30, r ~ 2.1) and signifi­
cantly above (for example, q = 0.50, r ~ 3.3) that of the single­
species case (r = 2.692). A rough characterisation of what is 
obviously a somewhat complicated relationship is that the 
further the predator depresses the prey below its carrying 
capacity, the lower is the growth rate required for chaos. As a 
caveat, we note that the introduction of thresholds into popu­
lation models (for example, an Alleelo effect) will necessarily 
exclude the high amplitude limit cycles and larger chaotic 
domains. Nevertheless, our preliminary studies suggest that 
models incorporating such thresholds display effectively similar 
patterns of behaviour. 

Fig. 3 a and b, Point limit cycles of period 5 and 20 
realised after 100 iterations of the model from an 
initial point. Parameter values: (a) r = 2.2;(b) r = 2.488. 
Between these two points in parameter space lies a 
domain of stable ten-point cycles and for r> 2.488 
cycles of period 40, 80 ... have been found. c and d, 
Realisation of 10,000 points from the population 
trajectory started at initial densities Ho = 3, Po = 3. 
c, r = 2.55. The structured, bounded figure shown 
possesses well defined areas where no points appear for 
itcrations > 100,000. d, r = 2.75. Increased numbers of 
iterations yield a dense cover over the whole figure, 
within the limits of the oscilloscope resolution. 

Ordinates and abscissae are H, and P, respectively. 
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The existence of high period cycles or chaotic behaviour in 
predator-prey models (the distinction is unimportant for 
practical purposes) may be of considerable importance in 
interpreting the patterns of fluctuation shown by many arthro­
pod populations in the field , as this implies the possibility of 
long term coexistence between predator and prey within well 
defined limits, but of a seemingly random nature. The temptation 
to ascribe such behaviour to 'environmental fluctuation' is obvi­
ous. Thus a recognition that such behaviour may occur in an 
extremely simple, entirely deterministic predator-prey model 
is of considerable importance. 
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Prey death rates and rate of increase 
of arthropod predator populations 
CENTRAL to our understanding of predator-prey dynamics is 
the relationship between the death rate imposed on the prey 
by the predators and the rate of increase, or numerical response, 
of the predator population. Most of the familiar mathematical 
models of predator-prey systems involve the assumption that 
there is a simple linear relationship between the number of 
prey killed and predator reproduction l - 4 • Although this 
assumption is valid for most insect host-parasitoid systems2, 

the rate of increase of other predatory arthropods is a more 
complex function of the prey consumed. For successful repro­
duction, each instar must find and eat several prey to complete 
development. Thus the predator rate of increase will depend 
on the duration of, and the survival rate within each instar 
and the fecundity of the adults. Where models for the predator 
rate of increase have incorporated more complex nonlinear 
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relationships5 .6, these relationships are of too abstract a 
character to allow simple experimental corroboration or 
refutation. In this paper we propose models that characterise the 
effect of prey consumption on the components of the predator 
rate of increase that are specifically designed to relate our 
hypotheses to field or laboratory data. 

Much of the data available for testing these models comes 
from experiments in which a number of predators are exposed 
to a variety of prey densities. Thus it is necessary to utilise an 
expression for the number of prey attacked in terms of prey 
density N and predator density P. Indeed this is ultimately the 
form in which population models are likely to be framed. An 
instantaneous form for the number of prey attacked per predator, 
N . , in time T assuming random search and random distribution 
of prey is, with unit area 

(1) 

where a defines the rate of encounters between predators and 
prey, Th is the handling time, b the encounter rate between 
predators and Tw the time wasted on an encounter between 
predators7• In many cases the assumptions of random search 
and random prey distribution are invalid 2

•
8 and in these 

situations a and b will be functions of the relative distribution 
of predator and prey. 

For simplicity, and because this is the most usual type of 
experimental design, we explore the relationship between the 
prey death rate defined by equation (1) and the predator rate 
of increase for a single predator confronting a variety of prey 
densities. This simplifies equation (J) to 

(2) 

the well known 'disc equation' of Holling9 •1O• 

Energetic considerations demand that a predator must 
allocate at least some food for maintenance. Accordingly this 
determines a threshold below which growth will not take place 
and eggs will not be produced. The growth rate of a predator g 
and the fecundity F will therefore be related to the energy 
intake 1 from food consumption by essentially similar models; 
thus 

g = o(l- c) (3) 

F = A(l-C) (4) 

where c is a constant determined by the maintenance energy 
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Fig. 1 Relationships between feeding rate and predator 
fecundity (a-c) or predator growth rate (d, e). Data are for (a) a 
coccinellid l 2 (Coecinella undeeimpunetata aegyptiaca Reiche), 
(b) an hemipteran" (Podisus maeulivenlris (Say», (e) a mite'" 
(Typhlodromus oecidenlalis Nesbitt), (d) an hemipteran l ; 

(Notonecta undulata Say) and (e) a spiderl3 (Linyphia triangularis 
Clerck). The relationships all seem to be linear and of the form 

specified by equat ions (3) and (4). 
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