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Fig. 3 Responses to whoopgobble calls when group is in the
centre or periphery of its home range: comparison of experimen-
tal playbacks and naturally occurring calls. Conventions as in
Fig. 2. Sample sizes: (experiments) 5, 10: (observations) 7, 30, 8.

of vocaliser, identity and size of vocalising groups, and level and
location of resources can be investigated experimentally®,
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Dynamic complexity in predator-prey

models framed in difference equations

THE complicated dynamics associated with simple first-order,
nonlinear difference equations have received considerable
attention(refs 1-4and R. M. May and G. F. Oster, unpublished).
In an ecological context, equations of this type provide a power-
ful and realistic means of modelling the behaviour of animal
populations with ron-overlapping generations, typified by
many arthropods in temperate regions. May* has shown that
such models, incorporating density dependence, have three
regimes of dynamic solution in their parameter space, namely
(1) a stable equilibrium point; (2) bifurcating cycles of period
2" 0<n< oo, where n is a positive integer and (3) behaviour
which has been termed chaotic, that is, cycles of any integral
period or complete aperiodicity, depending on the initial condi-
tions. May* has indicated that such complexity can also occur
in the wider context of competition between two species, de-
scribed by two first-order, nonlinear difference equations of
similar form to those governing single-species growth,

In this paper, we illustrate the dynamics of a predator-prey
model for populations with non-overlapping generations
and show that the model yields patterns of behaviour closely
analogous to those observed in the first-order (single-species)
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situation. These may be compared with results on the type of
solution possible in predator-prey models framed as differential
equations, which guarantee for a large class of models the
existence of either stable equilibria or stable limit cycles®.

The model we chose to investigate is an extension of the
familiar Nicholson-Bailey host-parasite equations®, which
purport to describe the interactions between a population of
herbivorous arthropods and their insect parasitoids. The original
model is unstable for all parameter values’. Our extension, which
eliminates this unrealistic behaviour, involves the inclusion of
density-dependent self-regulation by the prey. The equations of
the model are:

H..y = Hexp[e(l — H,/K) — aP:]
(n
Py = aH,[l — exp(— aP,)]

The self-regulation of the prey in the absence of predators has
already been documented by May?, with a stable equilibrium
point for 0<r<2, bifurcating cycles for 2<r<2692 and
chaos for 2.692<r. The choice of an identical form of density
dependence in a predator—prey model therefore enables us to
compare the parameter values at which chaotic behaviour
ensues, and hence indicate whether the introduction of a preda-
tor makes the onset of chaotic behaviour more or less likely.

Analysis of the local stability properties of the model was
performed using the method of Beddington®. The conditions for
stability were found to depend on whether the roots of the
equation

MMl —r+@) + (1 —rgo+rig(l —q) =0

(2)
where o =r(1 — g/t —exp[ — r(1 — I}
lay within the unit circle. The parameter g is defined as the
equilibrium prey population density, H*, divided by the carrying
capacity K ; g is therefore a measure of the extent to which the
predator can depress the prey below its carrying capacity.
Application of the Schur-Cohn criteria® to equation (2) yields
the demarcation of stable-from unstable parameter space: this is
illustrated in Fig. 1. Extensive numerical investigations within
the domain of stable parameter space indicate that the equilib-
rium point is globally stable, although a Lyapunov function for
the system has not been constructed.

Before considering the non-equilibrium behaviour of the
model, we digress to point out the difficulties involved in
recognising complicated dynamic behaviour in second-order
models. A priori, we would expect limit cycles of integer period
to be rare; it is more likely that the periods of any limit cycles
that do exist will be predominantly non-integral, or indeed

Fig. 1 Stability boundaries for the predator-prey model,

equation (1). The equilibrium point is stable inside the hatched

area only. Simulations for the points marked on the transect
g = 0.4 are illustrated in Figs 2 and 3.
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irrational. Correspondingly, limit cycles will be extremely
difficult to detect simply by viewing the trajectory of one or both
populations as a function of time. At most, this will permit a
distinction only between integer cycles and other behaviour. In
general, we would expect the existence of limit cycles in second-
order models to be characterised by the populations following
closed trajectories in phase space. We have performed our
numerical simulations with this in mind: the non-equilibrium
behaviour of the model was investigated by plotting the realised
trajectory in phase space, using a storage oscilloscope on line to
a computer.

The results of the simulations are presented in the context of a
transect in parameter space (Fig. 1). The various types of
behaviour of the model, corresponding to points on the transect,
are illustrated in Figs 2 and 3. An initially stable point is
succeeded by a hierarchy of stable limit cycles of increasing, non-
integral period and increasing complexity, ultimately breaking
down to cycles of integral period 4 (where k& = 5), which then
bifurcate to cycles of period 2k, 4k, . . ., 2"k. These are followed
by a regime of complex, but bounded, behaviour consisting
either of limit cycles of high integral period (27 > 10,000) or of
aperiodic chaos. The implications of the model in other zones of
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Fig. 2a, The realised trajectory for the model in the
domain of oscillatorily stable parameter space r = 0.5,
initial densities H, = 8.6, P, = 1.1. The plot indicates
the time path followed to the equilibrium point.
g = 04, a = |,K = 10 throughout Figs 2 and 3. All
plots are shown to the same scale. b, A succession of
closed trajectories, realised after varying time periods
from the initial point H, = 3, P, = 3. The parameter
values, moving outward from the smallest curve, are
(M r=0752)r=093)r=1.1,@)r=135)r
= 1.8. Simulations indicated that the populations homed
in on the closed curve trajectories from all regions of
phase space. ¢, The realised trajectory of the model
with r = 2.1 and initial densities close to equilibrium.
The final closed curve is substantially different from the
family of curves illustrated in b. d, as ¢ with r = 2.15.
The closed curve has now developed five kinked areas
where the population points occur more frequently.
Ordinates and abscissae are H, and P, respectively.

parameter space will be discussed elsewhere. The most im-
portant difference in these regions hinges on the basic period,
k, of the integer cycles. Clearly, when compared with May's*
results for a single-species model, the introduction of a predator
has produced qualitatively new behaviour.

In the particular example illustrated predation has resulted in
chaotic or high period limit cyclic behaviour for values of the
prey growth rate parameter # only slightly below that in the
single-species case. For other values of the parameter g however,
we find that the onset of chaos occurs at values of r both sig-
nificantly below (for example, ¢ = 0.30, r ~ 2.1) and signifi-
cantly above (for example, g = 0.50, r ~ 3.3) that of the single-
species case (r = 2.692). A rough characterisation of what is
obviously a somewhat complicated relationship is that the
further the predator depresses the prey below its carrying
capacity, the lower is the growth rate required for chaos. As a
caveat, we note that the introduction of thresholds into popu-
lation models (for example, an Allee!® effect) will necessarily
exclude the high amplitude limit cycles and larger chaotic
domains. Nevertheless, our preliminary studies suggest that
models incorporating such thresholds display effectively similar
patterns of behaviour.

Fig. 3 a and b, Point limit cycles of period 5 and 20
realised after 100 iterations of the model from an
initial point. Parameter values: (a) r = 2.2;(b) r = 2.488.
Between these two points in parameter space lies a
domain of stable ten-point cycles and for r>2.488
cycles of period 40, 80 . . . have been found. ¢ and d,
Realisation of 10,000 points from the population
trajectory started at initial densities Hy, = 3, Py = 3
¢, r = 2.55. The structured, bounded figure shown
possesses well defined areas where no points appear for
iterations > 100,000, d, r == 2.75. Increased numbers of
iterations yield a dense cover over the whole figure,
within the limits of the oscilloscope resolution.
Ordinates and abscissae are H, and P, respectively.

© 1975 Nature Publishing Group



60

The existence of high period cycles or chaotic behaviour in
predator-prey models (the distinction is unimportant for
practical purposes) may be of considerable importance in
interpreting the patterns of fluctuation shown by many arthro-
pod populations in the field, as this implies the possibility of
long term coexistence between predator and prey within well
defined limits, but of a seemingly random nature. The temptation
to ascribe such behaviour to ‘environmental fluctuation’ is obvi-
ous. Thus a recognition that such behaviour may occur in an
extremely simple, entirely deterministic predator-prey model
is of considerable importance.
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Prey death rates and rate of increase
of arthropod predator populations

CENTRAL to our understanding of predator-prey dynamics is
the relationship between the death rate imposed on the prey
by the predators and the rate of increase, or numerical response,
of the predator population. Most of the familiar mathematical
models of predator-prey systems involve the assumption that
there is a simple linear relationship between the number of
prey killed and predator reproduction* . Although this
assumption is valid for most insect host—parasitoid systems?,
the rate of increase of other predatory arthropods is a more
complex function of the prey consumed. For successful repro-
duction, each instar must find and eat several prey to complete
development. Thus the predator rate of increase will depend
on the duration of, and the survival rate within each instar
and the fecundity of the adults. Where models for the predator
rate of increase have incorporated more complex nonlinear
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relationships®®, these relationships are of too abstract a
character to allow simple experimental corroboration or
refutation. In this paper we propose models that characterise the
effect of prey consumption on the components of the predator
rate of increase that are specifically designed to relate our
hypotheses to field or laboratory data.

Much of the data available for testing these models comes
from experiments in which a number of predators are exposed
to a variety of prey densities. Thus it is necessary to utilise an
expression for the number of prey attacked in terms of prey
density N and predator density P. Indeed this is ultimately the
form in which population models are likely to be framed. An
instantaneous form for the number of prey attacked per predator,
N, in time T assuming random search and random distribution
of prey is, with unit area

N, = aNT/[1+aTl N+ bT (P—1)] (1)

where a defines the rate of encounters between predators and
prey, Ty is the handling time, b the encounter rate between
predators and T, the time wasted on an encounter between
predators?. In many cases the assumptions of random search
and random prey distribution are invalid®® and in these
situations a and b will be functions of the relative distribution
of predator and prey.

For simplicity, and because this is the most usual type of
experimental design, we explore the relationship between the
prey death rate defined by equation (1} and the predator rate
of increase for a single predator confronting a variety of prey
densities. This simplifies equation (1) to

Na = aNT/(1 +aT,N) (2)

the well known ‘disc equation’ of Holling®!*.

Energetic considerations demand that a predator must
allocate at least some food for maintenance. Accordingly this
determines a threshold below which growth will not take place
and eggs will not be produced. The growth rate of a predator g
and the fecundity F will therefore be related to the energy
intake [ from food consumption by essentially similar models;
thus

g =08I-c) (3)
F=MI—c¢) 4)

where ¢ is a constant determined by the maintenance energy
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% Fig. 1 Relationships between feeding rate and predator
'2‘ i 2.0 / 0'83 fecundity (a—c) or predator growth rate (d, e). Data are for (a) a
2 B0 . 0. gl coccinellid!? (Coccinella undecimpunetata aegyptiaca Reiche),
2o / 0.02t / (b) an hemipteran'® (Podisus maculiventris (Say)), (c) a mite!*
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0= 0 1.0 2.0 0 1 0.2 04 06 Clerck). The relationships all seem to be linear and of the form
Eaten per day (mg dry weight) specified by equations (3) and (4).

© 1975 Nature Publishing Group



	Dynamic complexity in predator-prey models framed in difference equations



