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INTRODUCTION

e The Study of Neuroscience
e From Hodgkin-Huxley to Izhikevich
roject Goals
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BACKGROUND - THE CEREBRAL CORTEX

e [.ocation: Above Cerebrum

e Structure: Layers of grey matter (neuronal cell
bodies) tissue

e Funcrions: Informartion associate and integration

affecting behavior, personality, memory, high-
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BACKGROUND - NEURON SPIKING

e How do neurons communicate with one

another?

e What is the mechanism by which they do -

SO
Valtage of local membrane
@ becomes less positive resulting in

Action Potential Diagram
the membrane reaching the

* How do neurons associate to perform

@ Once the threshold is reached, voltage-

)

on

|
®

gated Na* open, allowing Na' to fiood
inta the call further depolarizing the
membrane

complex tasks?

More voltage-gated Ma* channels open

Depolarization — l—  Action Potential @ causing rapid depolarization along the
length of the membrane until channels
are inactivated and close

Threshold
(:::J @ Voltage peaks at approximately +35 my
] TS ety’ SITIISISES, FRRREERRRITRTSITITS EOTTEORIORER e R at which point the membrane begins to

repolarize

Repolarization cccurs due 1o slow K*
@ channels opening and outflow of K* ions

Membrane potential (mV)
|

Hyperpolarization

@ K* channels remain open for a time so
@ that membrane is briefly hyperpolarize d
| i [ i | i | 1 (mare negative than RMP)

)

TI me (mS} @ RMP i5 restored as Ma* leaks inand
extracellular K* is removed by astrocytes
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BACKGROUND - IZHIKEVICH’S MODEL

d
d—? — 0.04v2 + 5v + 140 — uw + I

V4 C
of v>30mV, then

U< u-+d
d—u:a(bv—u)

dt

<< .
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Name Description
Membrane Potential The difference in voltage across the neuronal membrane
Membrane Recovery Activation of K+ and inactivation of Na™ ion currents
Time Scale of Recovery Variable Scales u - smaller values correlate with slower after-spike recovery

Membrane Potential and Recovery Coupling | Sensitivity of u to sub-threshold activations of v - larger values correlate with stronger couplings

After-Spike Reset (v) Caused by fast, high-threshold K* conductances
After-Spike Reset (u) Caused by slow, high-threshold Na* and K+ conductances
Input Current Synaptic or injected current
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METHODS - MAPLE PROGRAM

SMNS := [0.04%v"2 + 5%v + 140 — u + i, ax(bxv - u)]

convert (EQuP(SMNS, [u, v]), radical)

"Equilibrium points given the parameter values typical for mammalian cotrical neurons - observe that the equilibria are

complex, meaning the system has oscillatory behavior’
= 0.02, b =0.2, c = -65, d =2, i =10], SMNS), [u, v])

EquP(subs([a

"Plotting different neuron spiking dynamics by changing parameters®
“Figure 1: Regular Spiking (RS)®
1= 0.82;
= 0.2;
-65.0;
8.0;
-70.0;
bxv;
[1;
[1;
1= 0.25;
N := round(100/ts);
tspan := [seqlevalflgxts), q =@ .. N)I;
T1 := tspan(-11/10;
for g to N + 1 do
t := tspanlql;
if T1 < t then
i:= 14.0;
else
iz:=0.;
end if;

vix) := v(x) + 0.25%(0.04%diff(v(x), [x $ ~2]1) + 5.0%v(x) + 140.0 — u + i);

U :=u + 0.25%ax(bxv(x) - u);
if 3@ < v(x) then
vv := [op(vv), 30.0];
yixli=ves
u :t=u + d;
else
wv := [op(wv), vi(x)];
end if;
uy := [op(uy), ul;
end do
n := nops(tspan);
P_1 := plots:-listplot([seq([tspanlql, vviqll, g =1 .. n)], color
labels = ["Time (ms)", "Membrane Potential (mV)"], labeldirections
plots:-display(P_1);

black, style = line, title = "Regular Spiking (RS)",
['horizontal', 'vertical'l);
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METHODS - PYTHON PROGRAM

N

import numpy as np
import matplotlib.pyplot as plt

800

200

np.random. rand(Ne, 1)

np.random. rand(Ni, 1)
np.vstack((@.02xnp.ones((Ne,1)),0.02+0.08%ri)).flatten()
np.vstack((@.2xnp.ones((Ne,1)),0.25-0.05%ri)).flatten()
np.vstack((-65+15%rex*2,-65%np.ones((Ni,1)))).flatten()
np.vstack((8-6xrexx2,2xnp.ones((Ni,1)))).flatten()
np.hstack((0.5%np.random. rand (Ne+Ni,Ne) ,-1*np.random. rand (Ne+Ni,Ni)))
—65%np.ones (Ne+Ni)

bxv

firings = []
T = 1000

Ne
Ni
re
ri

for t in range(1,T+1):
I = np.concatenate((5*np,random,randn(Ne), 2¥np.random.randn(Ni)))
fired = np.where(v>=30) [0]
if fired.size > 0:
firings.extend([[t,idx] for idx in fired])
vifired] = c[fired]
ulfired] += d[fired]
I += np.sum(S[:, fired], axis=1)
V += 0.5%(0.04%vkx2 + 5%v +140 - u + I)
V += 0.5%(0.04%vxk2 + 5%v +140 - u + I)
u += ax(bxv - u)

f = np.array(firings.dtype=float)
pit.figure(figsize=(10,6)) |
plt.plot(f[:,0],f[:,1],".", markersize=2,color="black")

plt.xlabel('Time (ms)*)
plt,ylabel('Neuron Number"')

plt,title('Neuron Network Simulation, Size = 1000')
p1t.show()
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RESULTS - PARAMETER VALUES

Spiking Pattern a b C
Regular Spiking (RS) 0.02 | 0.2 | -65
Intrinsically Bursting (IB) 002 | 0.2 | -55
Chattering (CH) 0.02 | 0.2 | -50

Fast Spiking (FS) 0.1 | 0.2 | -65
Thalamo-Cortical (TC) 0.02 | 0.25 | -65
Resonator (RZ) 0.1 | 0.26 | -65
Low-Threshold Spiking (LTS) | 0.02 | 0.25 | -65

\ (NN
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RESULTS - EXCITATORY NEURONS
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Low-Threshold Spiking (LTS)
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OTHER TYPES AND PATTERNS
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RESULTS - NEURON NETWORK SIMULATION

Neuron Network Simulation, Size = 1000
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Neuron Network Simulation, Size = 1000

Neuron Network Simulation, Size = 1000

(=]
LR SF —
T wear LA
s n.uvﬂ.ﬂn. ) .-.W....nu.a 4
v A, T
(=]
- o
(ss]
(=]
=
{f=]
W
E
(il
E
T
(=]
- o
=1
Wy .uu...rw.w,u.....,.......u :
(]
=
d
=]
T T T T T T
o (=] (=] (=] [=] [=]
o (=] (=] (=] o
m w F=} = ™~
Jaquiny uolnan
o
-]
=]
—
o
=
(su]
o
- o
o
A
o
- Q
[} e
e ......1...,.-.-. a o
I
Y .
Y IRR AL
§
o]
=
S
x=
T
(=

400 A

Jaguiny uoinan

810, NI = 190

NE

8035, NI = 195

Neuron Network Simulation, Size = 1000

NE

Neuron Network Simulation, Size = 1000

P T T
ety -
.

N
PR ACH

400 600 800 1000

200

NE

600 A

d2quUnpn uolnan

Time {ms)

Lv v dinp At “.._ﬁ:... ¥
L

LR
LY

e

-
e

.
.
ey -ty
- At b

F sk G
v

g e e et

F by amNTd et

-
g -

ik

i

0

Il
AT

Pt Ll

5

.

"

.rn"r.,

C RN )

L

L a2
T e W

.wo..—
1

400 600 800 1000

200

NE

600
400 4

Jaguinn uoinap

Time (ms)

795, NI = 205

790, NI = 210



13

CONCLUSION

A\

J

The analysis of both single and collective neuron spiking behavior, made
computationally possible by Izhikevich’s model, can reveal a lot of valuable
information about the functions of a neuron or network. Changes in spiking
dynamics of individual neurons is thought to relate to the ever-shifting topology
of neuron networks, and even entire brain areas (Yang et al., 2025). From the
change in behavior of just one neuron, entire neural processes can be elucidated.
The neuron network simulation is helpful in that it reveals how an adjustment
in the ratio of inhibitory to excitatory neurons is displayed in the of size and
distribution of alpha and gamma brain waves. Interestingly, disruption to brain
wave patterns is often indicated in many neuro-pathologies, such as Alzheimer’s
Disease, Depression, and Tinnitus (Guan et al., 2022). Trial therapies for these

and other disease of the central nervous system often include using electrical

(AN

stimulation to increase the frequency of gamma waves.




