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​Abstract​
​Predator prey interactions are a fundamental part of biological and ecological systems​

​that have been modeled using mathematical models/equations to understand population​
​dynamics over time. Continuous models can predict stable equilibria or regular population cycles​
​throughout generations. However, discrete time models, such as the Nicholson-Bailey, which are​
​based on host parasite systems, incorporate density dependent self regulation of the prey​
​population. This model demonstrates that simple biological assumptions can generate stable​
​equilibria, periodic cycles, and chaotic fluctuations. These findings are significant because they​
​show that highly irregular population dynamics that are observed in nature may arise from​
​intrinsic biological interactions. This is instead of the external environmental randomness. Being​
​able to analyze and understand these dynamics can improve our ability  to interpret biological​
​patterns and predict long term species dynamics.​

​Introduction and Background​
​For a long time, scientists have used continuous mathematical models that predict either​

​stable population levels or smooth, repeating cycles. However, more recent work with discrete​
​time models has shown that population behavior can be a lot more complex. The paper,​
​“Dynamic complexity in predator-prey models framed in difference equation”, explains that​
​simple non linear difference equations can produce stable points, repeating cycles, chaotic and​
​unpredictable behavior. This type of modeling is especially useful for insects and arthropods that​
​have non overlapping generations. According to the paper, difference equation models give a​
​more “realistic means of modeling the behavior of animal populations” compared to continuous​
​models (Beddington). The most well known discrete model is the Nicholson-Bailey host parasite​
​model which was designed to describe how insect parasitoids interact with their hosts.​

​The original Nicholson-Bailey model had major weaknesses, as it is biologically​
​unrealistic due to the unstable parameter values. These caused unbounded population​
​fluctuations. To alleviate this, researchers added density-dependent self-regulation in the prey​
​population. This improved version of the model can now mimic and create more realistic​
​outcomes. This paper highlights the complex and seemingly random population patterns that can​
​appear even with no environmental randomness. It describes how the system can shift from​
​stable behavior to limit cycles and eventually to chaotic dynamics purely due to internal predator​
​prey interactions. Instead of assuming that strange population changes are always caused by​
​weather or other outside factors, this model shows chaos can be built into the system itself.​
​Studying the Nicholson-Bailey model will help show how real insect or arthropod populations​
​might stay bound over time while still appearing random and unpredictable. This is useful for​
​fields like pest control and conservation because it helps scientists understand why populations​
​sometimes suddenly spike or reach even when the environment conditions seem stable.​



​Methods​
​In the new version of the model, prey populations are regulated through density​

​dependent growth, which is what makes the system more biologically realistic than the original​
​formulation. Unlike the original Nicholson-Bailey equations which produce unstable and​
​unrealistic population trajectories, the modified model allows prey populations to self-regulate in​
​the absence of predators. This adjustment creates the more realistic dynamic and allows the​
​system to exhibit stable equilibria, periodic cycles, and complex oscillations depending on​
​parameter values.​

​The model equations used in this study are​
​shown to the left. H​​t​ ​represents the prey​
​(host) population, P​​t​ ​represents the predator​
​(parasite) population, r is the intrinsic​
​growth rate of the prey, K is the carrying​
​capacity, and a is the predator attack rate.​

​To analyze stability, the study followed an approach where "analysis of the local stability​
​properties of the model was performed” using linearization and characteristics equations​
​(Beddington).​

​To analyze local​
​stability of the​
​predator prey system,​
​the model was​

​linearized around the equilibrium point and a characteristic equation was derived. The stability of​
​the system was determined by examining the roots, eigenvalues, of the following characteristic​
​equation. The parameter ϕ represents the equilibrium prey density relative to the carrying​
​capacity. The roots of this equation were evaluated using the Schur Cohn stability criteria to​
​determine whether they lay inside the unit circle in the complex plane. Parameters producing​
​eigenvalues inside the unit circle were classified as stable, while the ones outside were unstable.​
​This approach allowed the mapping of stable and unstable regions in parameter space, consistent​
​with the methods described in the original study.​

​Results​
​Using the Beddington and Nicholson-Bailey equations, three parameter sets were​

​simulated with the Maple procedures NBH, ORB, and EvalNBH. Each produced distinct​
​population dynamics.​



​Case 1​​: r = 1.2, a = 0.10, K =50​
​The host and predator​

​populations showed stable​
​oscillations that gradually settled​
​into a repeating pattern. The​
​EvalNBH eigenvalues were inside​
​the unit circle, confirming the​
​equilibrium was stable.​

​Case 2:​​r = 0.5, a = 0.20, K =50​
​Both populations quickly converged​

​to a stable fixed point. Oscillations were​
​small and stability analysis again​
​returned eigenvalues with magnitude < 1.​
​This parameter set showed the strongest​
​damping.​



​Case 3​​: r = 5, a = 1, K = 10​
​This simulation produced​

​irregular, chaotic like fluctuations​
​with no convergence. Populations​
​repeatedly overshot and crashed,​
​eigenvalues from EvalNMH​
​exceeded 1 in magnitude,​
​indicating an unstable​
​equilibrium.​

​Across all simulations, changes in pre growth rate (r ) and interaction strength (a)  determined​
​whether the system was stable, cyclic, or chaotic. This matches the behaviors described in the​
​paper.​

​Conclusion​
​This project used code to implement and explore the modified Nicholson-Bailey predator​

​prey model described in the paper, Dynamic complexity in predator-prey models framed in​
​difference equations. The simulations and stability analysis showed that small changes in model​
​parameters can shift the system from stable behavior to cycles and chaotic fluctuations. These​
​results matched the paper’s findings and demonstrated that complex population dynamics can​
​arise from simple, deterministic biological interactions. Overall, this project showed how​
​mathematical models and coding can be combined to better understand real world biological​
​population patterns.​


