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Abstract

Predator prey interactions are a fundamental part of biological and ecological systems
that have been modeled using mathematical models/equations to understand population
dynamics over time. Continuous models can predict stable equilibria or regular population cycles
throughout generations. However, discrete time models, such as the Nicholson-Bailey, which are
based on host parasite systems, incorporate density dependent self regulation of the prey
population. This model demonstrates that simple biological assumptions can generate stable
equilibria, periodic cycles, and chaotic fluctuations. These findings are significant because they
show that highly irregular population dynamics that are observed in nature may arise from
intrinsic biological interactions. This is instead of the external environmental randomness. Being
able to analyze and understand these dynamics can improve our ability to interpret biological
patterns and predict long term species dynamics.

Introduction and Background

For a long time, scientists have used continuous mathematical models that predict either
stable population levels or smooth, repeating cycles. However, more recent work with discrete
time models has shown that population behavior can be a lot more complex. The paper,
“Dynamic complexity in predator-prey models framed in difference equation”, explains that
simple non linear difference equations can produce stable points, repeating cycles, chaotic and
unpredictable behavior. This type of modeling is especially useful for insects and arthropods that
have non overlapping generations. According to the paper, difference equation models give a
more “realistic means of modeling the behavior of animal populations” compared to continuous
models (Beddington). The most well known discrete model is the Nicholson-Bailey host parasite
model which was designed to describe how insect parasitoids interact with their hosts.

The original Nicholson-Bailey model had major weaknesses, as it is biologically
unrealistic due to the unstable parameter values. These caused unbounded population
fluctuations. To alleviate this, researchers added density-dependent self-regulation in the prey
population. This improved version of the model can now mimic and create more realistic
outcomes. This paper highlights the complex and seemingly random population patterns that can
appear even with no environmental randomness. It describes how the system can shift from
stable behavior to limit cycles and eventually to chaotic dynamics purely due to internal predator
prey interactions. Instead of assuming that strange population changes are always caused by
weather or other outside factors, this model shows chaos can be built into the system itself.
Studying the Nicholson-Bailey model will help show how real insect or arthropod populations
might stay bound over time while still appearing random and unpredictable. This is useful for
fields like pest control and conservation because it helps scientists understand why populations
sometimes suddenly spike or reach even when the environment conditions seem stable.



Methods

In the new version of the model, prey populations are regulated through density
dependent growth, which is what makes the system more biologically realistic than the original
formulation. Unlike the original Nicholson-Bailey equations which produce unstable and
unrealistic population trajectories, the modified model allows prey populations to self-regulate in
the absence of predators. This adjustment creates the more realistic dynamic and allows the
system to exhibit stable equilibria, periodic cycles, and complex oscillations depending on
parameter values.

The model equations used in this study are
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(parasite) population, r is the intrinsic
growth rate of the prey, K is the carrying
capacity, and a is the predator attack rate.

To analyze stability, the study followed an approach where "analysis of the local stability
properties of the model was performed” using linearization and characteristics equations
(Beddington).
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where g=r( - q)/{l wxp| it q)]} the model was
linearized around the equilibrium point and a characteristic equation was derived. The stability of
the system was determined by examining the roots, eigenvalues, of the following characteristic
equation. The parameter ¢ represents the equilibrium prey density relative to the carrying
capacity. The roots of this equation were evaluated using the Schur Cohn stability criteria to
determine whether they lay inside the unit circle in the complex plane. Parameters producing
eigenvalues inside the unit circle were classified as stable, while the ones outside were unstable.
This approach allowed the mapping of stable and unstable regions in parameter space, consistent
with the methods described in the original study.
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Results

Using the Beddington and Nicholson-Bailey equations, three parameter sets were
simulated with the Maple procedures NBH, ORB, and EvalNBH. Each produced distinct
population dynamics.



Casel:r=1.2,a=0.10, K=50
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The host and predator
J populations showed stable
| oscillations that gradually settled
\ into a repeating pattern. The
A EvalNBH eigenvalues were inside
il the unit circle, confirming the

L : equilibrium was stable.

Phase Portrait: H vs P

‘ Case 2:1=0.5,2=0.20, K=50

' Both populations quickly converged
to a stable fixed point. Oscillations were
’ small and stability analysis again
returned eigenvalues with magnitude < 1.
This parameter set showed the strongest
damping.

Phase Portrait: H vs P




Case3:r=5,a=1,K=10

This simulation produced
irregular, chaotic like fluctuations
with no convergence. Populations
repeatedly overshot and crashed,
eigenvalues from EvaINMH
exceeded 1 in magnitude,
indicating an unstable
equilibrium.

Phase Portrait: H vs P

Across all simulations, changes in pre growth rate (r ) and interaction strength (a) determined
whether the system was stable, cyclic, or chaotic. This matches the behaviors described in the

paper.

Conclusion

This project used code to implement and explore the modified Nicholson-Bailey predator
prey model described in the paper, Dynamic complexity in predator-prey models framed in
difference equations. The simulations and stability analysis showed that small changes in model
parameters can shift the system from stable behavior to cycles and chaotic fluctuations. These
results matched the paper’s findings and demonstrated that complex population dynamics can
arise from simple, deterministic biological interactions. Overall, this project showed how
mathematical models and coding can be combined to better understand real world biological
population patterns.



