Lecture Notes for Lecture 7 of Dr. Z.’s Dynamical Systems in Biology

These notes are based on sections 2.1 and 2.2 of Leah Edelstein-Keshet’s excellent textbook:
https://sites.math.rutgers.edu/ zeilberg/Bio25/keshet/keshet2.pdf

You should read these two sections carefully.

Quick overview of Fundamental Notions

Given any function defined on the real numbers, f(x), the corresponding recurrence is

x(n+1) = fla(n))

You are also given an initial condition x(0).
Unless f(z) = az + b for some numbers a,b, this is a non-linear recurrence.

Important concept: The orbit of a non-linear recurrence starting at z(0), of length k is the

sequence of numbers

In other words

Problem 7.1: Find the orbit of length 5 starting at x(0) = 5 of the recurrence

N[

z(n+1) = 2x(n)

Solution of 7.1: .
[57 17 27 47 8]

Problem 7.2: Find the orbit of length 5 starting at #(0) = 1 of the recurrence

z(n+1) = 2z(n) (1 —x(n))

Solution of 7.2:
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Ans. to 7.2:
1 3 15 255 255 65535

35 3 512 512" 131072
Important Concept A number c that is a fixed-point of x — f(x) is called a steady-state.

l.e. ¢ satisfies

fle)=c

Note that if 2(0) = ¢ then (1) = ¢, 2(2) = ¢, etc. and the orbit of any length consists of only c.
The steady-state of a linear first-order recurrence

Ifx(n+1) = ax(n)+0b

then to get the steady-state we solve

c=ac+b

solving for ¢ we get

Fact: If a # 1, then the only steady-state of z(n+1) = az(n) +bis c = &

Note that for the stady-state ¢ = %a, we have:

1

(z(n+1) = ¢) = a-(z(n) - ¢

Hence
Important Fact: For a linear recurrence z(n + 1) = az(n) +b

e if |a| < 1, then the distance of the members of the orbit, starting anywhere, keep shrinking and

eventually the orbit converges to the steady-state ¢ = ﬁ. This is the case of a stable steady-state.

e if |a|] > 1, then the distance of the members of the orbit, starting anywhere, keeps growing

exponentially, and the sequence diverges.

This is the case of an unstable steady-state.



How to Find all the steady-states of a non-linear recurrence, and to determine their
stability

If it is linear, we already know how to do it. Otherwise consider the non-linear recurrence

z(n+1) = f(z(n))

Step 1: Solve the (algebraic, or trig, or whatever) equation

z = f(x)

Discard all the complex roots (we live in a real world) and let them be

Z15R2y .+ Rk

These are the steady-states.

To determine stability, first compute f’(x) and for each z;
o If | f'(z;)] < 1 then z; is a stable steady-state.

o If | f'(z;)] > 1 then z; is an unstable steady-state.

o If | f'(2;)] = 1 then z; is a semi-stable steady-state.

Explanation : By Taylor’s expansion f(z; +h) — f(z;) = f'(z:) h+ (f"(2:)/2) - h* +. ... For small
h only the first term is significant. If |f’(z;)| < 1 then it is like a linear recurrence with |a| < 1 so
the distances to the steady-state shrinks as you keep iterating the function. If |f/(z;)| > 1 then it
is like a linear recurrence x(n + 1) = az(n) + b with |a| > 1 so the distances to the steady-state
explodes as you keep going. If |f'(z;)| = 1 then it is none of the above.

Problem 7.3

For the non-linear recurrence

z(n+1)= iaz(n)g — 3x(n)* + 5Zla:(n) —-15

(i) Verify that the following three points are steady-states: © = 3, v =4, z = 5.
(ii) For each of them decide whether they are stable or not.

(iii) For one unstable, and one stable steady-state, take a number close to it, and compute the first
six members of the orbits (you can use Maple or a calculator). See if it seems to converge to the
steady-state or runs away from it.



Sol. to 7.3:

The underlying function is

We have f(3) =3, f(4) =4, f(5) =5 (check!)

Now

When x = 3 we have

Since |3| > 1, we have: z = 3 is an unstable steady-state.

When z = 4 we have

ya =5

Since |2| < 1, we have: z = 4 is an unstable steady-state.

When x = 5 we have

Since |%] > 1, we have: x = 5 is an unstable steady-state.
(iii) In Maple define
fi=x -> 1/4xx**3 -3*xx**2+51/4%x-15;

For the unstable steady-state z = 3, let’s take z(0) = 3.1. We have

2(1) = f(3.1) = 3.14275000

2(2) = £(3.14275000) = 3.19956905 |
2(3) = £(3.19956905) = 3.27146981 |
z(4) = f(3.27146981) = 3.35693437 |

4



2(5) = f(3.35693437) = 3.45121851

You see that indeed as you keep going the terms of the recurrence go further and further from
= 3.

For the stable steady-state = = 4, let’s take x(0) = 4.1. We have
2(1) = f(4.1) = 4.07525000

2(2) = £(4.075250004) = 4.05654404 |,

2(3) = f(4.05654404) = 4.04245322
z(4) = f(4.04245322) = 4.03185904 |
z(5) = £(4.03185904) = 4.02390236

You can see that the terms of the sequence get closer-and-closer to the steady-state x = 4, that
confirms that it is steady.



