
Lecture Notes for Lecture 7 of Dr. Z.’s Dynamical Systems in Biology

These notes are based on sections 2.1 and 2.2 of Leah Edelstein-Keshet’s excellent textbook:

https://sites.math.rutgers.edu/~zeilberg/Bio25/keshet/keshet2.pdf .

You should read these two sections carefully.

Quick overview of Fundamental Notions

Given any function defined on the real numbers, f(x), the corresponding recurrence is

x(n + 1) = f(x(n)) .

You are also given an initial condition x(0).

Unless f(x) = ax + b for some numbers a,b, this is a non-linear recurrence.

Important concept: The orbit of a non-linear recurrence starting at x(0), of length k is the

sequence of numbers

[x(0), x(1), x(2), . . . , x(k − 1)]

In other words

[x(0), f(x(0)), f(f(x(0))), f(f(f(x(0)))), . . .].

Problem 7.1: Find the orbit of length 5 starting at x(0) = 1
2 of the recurrence

x(n + 1) = 2x(n)

Solution of 7.1:

[
1

2
, 1, 2, 4, 8]

Problem 7.2: Find the orbit of length 5 starting at x(0) = 1
4 of the recurrence

x(n + 1) = 2x(n) (1− x(n)) .

Solution of 7.2:

x(0) =
1

4
,

x(1) = 2 · 1

4
· (1− 1

4
) =

3

8
,

1



x(2) = 2 · 3

8
· (1− 3

8
) =

15

32
,

x(3) = 2 · 15

32
· (1− 15

32
) =

255

512
,

x(4) = 2 · 255

512
· (1− 255

512
) =

65535

131072
,

Ans. to 7.2:

[
1

2
,

3

8
,

15

32
,

255

512
,

255

512
,

65535

131072
] .

Important Concept A number c that is a fixed-point of x→ f(x) is called a steady-state.

i.e. c satisfies

f(c) = c .

Note that if x(0) = c then x(1) = c, x(2) = c, etc. and the orbit of any length consists of only c.

The steady-state of a linear first-order recurrence

If x(n + 1) = ax(n) + b

then to get the steady-state we solve

c = a c + b

solving for c we get

Fact: If a 6= 1, then the only steady-state of x(n + 1) = ax(n) + b is c = b
1−a

Note that for the stady-state c = b
1−a , we have:

(x(n + 1) − c) = a · (x(n) − c) .

Hence

Important Fact: For a linear recurrence x(n + 1) = ax(n) + b

• if |a| < 1, then the distance of the members of the orbit, starting anywhere, keep shrinking and

eventually the orbit converges to the steady-state c = b
1−a . This is the case of a stable steady-state.

• if |a| > 1, then the distance of the members of the orbit, starting anywhere, keeps growing

exponentially, and the sequence diverges.

This is the case of an unstable steady-state.
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How to Find all the steady-states of a non-linear recurrence, and to determine their

stability

If it is linear, we already know how to do it. Otherwise consider the non-linear recurrence

x(n + 1) = f(x(n)) .

Step 1: Solve the (algebraic, or trig, or whatever) equation

x = f(x) .

Discard all the complex roots (we live in a real world) and let them be

z1, z2, . . . , zk

These are the steady-states.

To determine stability, first compute f ′(x) and for each zi

• If |f ′(zi)| < 1 then zi is a stable steady-state.

• If |f ′(zi)| > 1 then zi is an unstable steady-state.

• If |f ′(zi)| = 1 then zi is a semi-stable steady-state.

Explanation : By Taylor’s expansion f(zi +h)− f(zi) = f ′(zi)h+ (f ′′(zi)/2) ·h2 + . . .. For small

h only the first term is significant. If |f ′(zi)| < 1 then it is like a linear recurrence with |a| < 1 so

the distances to the steady-state shrinks as you keep iterating the function. If |f ′(zi)| > 1 then it

is like a linear recurrence x(n + 1) = a x(n) + b with |a| > 1 so the distances to the steady-state

explodes as you keep going. If |f ′(zi)| = 1 then it is none of the above.

Problem 7.3

For the non-linear recurrence

x(n + 1) =
1

4
x(n)3 − 3x(n)2 +

51

4
x(n)− 15

(i) Verify that the following three points are steady-states: x = 3, x = 4, x = 5.

(ii) For each of them decide whether they are stable or not.

(iii) For one unstable, and one stable steady-state, take a number close to it, and compute the first

six members of the orbits (you can use Maple or a calculator). See if it seems to converge to the

steady-state or runs away from it.
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Sol. to 7.3:

The underlying function is

f(x) =
1

4
x3 − 3x2 +

51

4
x− 15 .

We have f(3) = 3 , f(4) = 4, f(5) = 5 (check!)

Now

f ′(x) =
3

4
x2 − 6x +

51

4
.

When x = 3 we have

f ′(3) =
3

2
.

Since | 32 | > 1, we have: x = 3 is an unstable steady-state.

When x = 4 we have

f ′(4) =
3

4
.

Since | 34 | < 1, we have: x = 4 is an unstable steady-state.

When x = 5 we have

f ′(5) =
3

2

Since | 32 | > 1, we have: x = 5 is an unstable steady-state.

(iii) In Maple define

f:=x -> 1/4*x**3 -3*x**2+51/4*x-15;

For the unstable steady-state x = 3, let’s take x(0) = 3.1. We have

x(1) = f(3.1) = 3.14275000

x(2) = f(3.14275000) = 3.19956905 ,

x(3) = f(3.19956905) = 3.27146981 ,

x(4) = f(3.27146981) = 3.35693437 ,
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x(5) = f(3.35693437) = 3.45121851 .

You see that indeed as you keep going the terms of the recurrence go further and further from

x = 3.

For the stable steady-state x = 4, let’s take x(0) = 4.1. We have

x(1) = f(4.1) = 4.07525000

x(2) = f(4.075250004) = 4.05654404 ,

x(3) = f(4.05654404) = 4.04245322 ,

x(4) = f(4.04245322) = 4.03185904 ,

x(5) = f(4.03185904) = 4.02390236 .

You can see that the terms of the sequence get closer-and-closer to the steady-state x = 4, that

confirms that it is steady.
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