
Lecture Notes for Lecture 17 of Dr. Z.’s Dynamical Systems in Biology

These notes are based on parts of Chapters 4,5, and 6 of Leah Edelstein-Keshet’s classic “Mathe-

matical Models in Biology”.

A 1-dimensional continuous dynamical system

It is a differential equation, where the unknowns function x(t) of times satisfies the differential

equation
dx

dt
= F (x(t), t)

where F is some function of two variables. If F only depends on x(t) (i.e. only depends on time

via x(t)) it is called autonomous. We will only consider this case, so the format is

dx

dt
= F (x(t)) .

Often you write it as
dx

dt
= F (x) ,

where it is understood that x is a function of t.

For any initial condition x(t0) = x0 x(t) will evolve as time t goes to infinity. Often it would go to

infinity, but sometimes it would tend to some stable steady-state, that in the continuous case is

more often called stable equilibrium.

Def. A number x0 is called an equilibrium if it solves the (algebraic) equation F (x0) = 0.

Problem 17.1: Find all the equilibrium points of the 1D continuous dynamical system

dx

dt
= (x(t)− 1)(x(t)− 2)(x(t)− 3)(x(t)− 4)(x(t)− 5) .

Sol. of 17.1: We have to solve

(x− 1)(x− 2)(x− 3)(x− 4)(x− 5) = 0 .

whose solutions are x = 1, x = 2, x = 3, x = 4, x = 5.

Ans. to 17.1: The set of equilibrium points of this differential equation is {1, 2, 3, 4, 5}.

If the quantity (e.g. population of some species) is exactly at an equilibrium point, then it stays

there for ever after, so the solution of the initial value differential equation 1 with

• initial condition x(0) = 1 is x(t) = 1
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• initial condition x(0) = 2 is x(t) = 2

• initial condition x(0) = 3 is x(t) = 3

etc.

But for some equilibrium points, if you just move a tiny bit, you would go very far away. These

are unstable equilibrium points. For other equilibrium points, if you start at a nearby value (and

often pretty far), in the long run it would be attracted to it.

How to decide whether an equilibrium point is stable?

If x0 is an equilibrium point of x′(t) = F (x(t)), in other words F (x0) = 0. Look at F ′(x0).

Stability Criterion

x0 is stable if F ′(x0) < 0. It is unstable if F ′(x0) > 0. It is semi-stable if F ′(x0) = 0.

Problem 17.2: Find all the stable equilibrium points of the 1D continuous dynamical system

dx

dt
= (x(t)− 1)(x(t)− 2)(x(t)− 3)(x(t)− 4)(x(t)− 5) .

Sol. of 17.2: By the product rule

F ′(x) = (x− 2)(x− 3)(x− 4)(x− 5) + (x− 1)(x− 3)(x− 4)(x− 5) + (x− 1)(x− 2)(x− 4)(x− 5)

+(x− 1)(x− 2)(x− 3)(x− 5) + (x− 1)(x− 2)(x− 3)(x− 4) .

please do not expand.

We know from 17.1 that the candidates are {1, 2, 3, 4, 5}.

When x = 1, we have F ′(1) = (1 − 2)(1 − 3)(1 − 4)(1 − 5) = 24 since this is positive, we know

that x = 1 is unstable.

When x = 2, we have F ′(2) = (2 − 1)(2 − 3)(3 − 4)(2 − 5) = −6 since this is negative, we know

that x = 2 is stable.

When x = 3, we have F ′(3) = (3− 1)(3− 2)(3− 4)(3− 5) = 2 since this is positive, we know that

x = 3 is unstable.

When x = 4, we have F ′(4) = (4 − 1)(4 − 2)(4 − 3)(4 − 5) = −6 since this is negative, we know

that x = 4 is stable.

When x = 5, we have F ′(5) = (5 − 1)(5 − 2)(5 − 3)(5 − 4) = 24 since this is positive, we know

that x = 3 is unstable.
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Ans. to 17.2: The set of stable equilibria is {2, 4}.

Dynamical Systems in Several Variables (species)

A k-dimensional continuous dynamical system (we only do autonomous ones) is a system

of k differential equations, with k unknown functions of time, x1(t), . . . , xk(t) (e.g. the relative

occurrence of each species, concentration of nutrients, ratio of infected) of the form

dx1
dt

= F1(x1(t), . . . , xk(t) ) ,

dx2
dt

= F2(x1(t), . . . , xk(t) ) ,

. . .

dxk
dt

= Fk(x1(t), . . . , xk(t) ) ,

where F1, ..., Fk are k multi-variable functions of k variables. The underlying transformation is

F : Rk → Rk ,

given by

F(x1, . . . , xk) = (F1(x1, . . . xk), . . . , Fk(x1, . . . xk)) .

How to find the Equilibrium points?

Solve the system of k algebraic (or tanscendental) equations x = F(x). In other words

F1(x1, . . . , xk) = 0 , F2(x1, . . . , xk) = 0 quad, . . . Fk(x1, . . . , xk) = 0 .

How to find the Stable Equilibrium points?

Recall that for discrete dynamical systems, we find the Jacobian of the underlying transformation,

a certain matrix of functions. Then we find all the steady-states, and for each and every one of

them we plug into the Jacobian, getting a matrix of numbers. Then we look at the eigenvalues.

If all of them have absolute value less than 1 then we know it is stable. For the continuous case we

do the same except that we have a different criterion.

An equilibrium point x0 is stable if and only if all the eigenvalues of J(x0) have negative real part.

If they have non-negative real parts and some of them are purely imaginary (i.e. the real part is

0) then it is a semi-stable equilibrium point.

Why is it True?

Again using multi-variable Taylor we get that, near the equilibrium point x0,

F(x)− x0 = J(x0)(x− x0) + TINY .
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A linear system

x′(t) = Lx(t) ,

where L is a numerical matrix, 0 is obviously an equilibrium. By diagonalizing

L = UDU−1 ,

where D is a diagonal matrix consisting of the eigenvalues, By a change of variable y = U−1x we

have the system

y′(t) = Dy(t) ,

spelling it out

y′1(t) = λ1y1(t) ,

y′2(t) = λ2y2(t) ,

. . .

y′k(t) = λkyk(t) ,

Hence

y1(t) = eλ1 t , yk(t) = eλk t ,

If the real part of any of the λi-s is positive the corresponding yi(t) would blow up as t gets larger

and larger.

Problem 17.3: Find all equilibrium points of the continuous dynamical system

dx

dt
= 2− 5x

1 + 4y

dy

dt
=

5

9
− 5y

1 + 4x

Solution pf 17.3

We have to solve

2− 5x

1 + 4y
= 0 ,

5

9
− 5y

1 + 4x
= 0 .

Cross-multiplying and simplifying we get

5x− 8y = 2 , −4x+ 9y = 5 ,

whose only solution is (x, y) = (2, 1).

Answer to 17.3: The only equilibrium point of the system is (2, 1).

Problem 17.4: Find all stable equilibrium points of the continuous dynamical system

dx

dt
= 2− 5x

1 + 4y
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dy

dt
=

5

9
− 5y

1 + 4x

The underlying transformation is

(x, y)→ (2− 5x

1 + 4y
,

5

9
− 5y

1 + 4x
) .

The Jacobian is

J(x, y) =

[
− 5

1+4y
20x

(1+4y)2

20y
(1+4x)2 − 5

1+4x

]
.

From 17.3 we know that the only equilibrium point is (2, 1). Plugging it in we get

J(2, 1) =

[ − 5
1+4·1

20·2
(1+4·1)2

20·1
(1+4·2)2 − 5

1+4·2

]
.

[
−1 8

5
20
81 − 5

9

]
The characteristic equation is

(−1− λ)(−5

9
− λ)− 8

5
· 20

81
= 0 .

Simplifying:

λ2 +
14

9
λ+

13

81
= 0 .

Factorizing:

(λ+
1

9
)(λ+

13

9
) = 0 .

So the two eigenvalues are − 1
9 and − 13

9 . Both are negative real numbers (and hence they have

negative real parts, the imaginary part being 0), and we found out that (2, 1) is a stable equilibrium

point.

Ans. to 17.4: The only stable equilibrium point is (2, 1).

Two Important Dynamical Systems in Mathematical Biology

The Chemostat: If N is the bacterial population and C is the nutrient, and a1, a2 are two

parameters that depend on the particular situation (determined experimentally) then the system

is
dN

dt
= a1 ·

CN

C + 1
−N

dC

dt
= − CN

C + 1
− C + a2
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The equilibrium points are

(0, a2) , (
a1(a2a1 − a2 − 1)

a1 − 1
,

1

a1 − 1
) .

(0, a2) is not stable, but the other one often is.

The (continuous) SIRS model, due to Kermack and MacKendrick with population N = S+ I+R,

where S is susceptible but not infected, I is infected, and R = N − I − S is removed. there are

biological parameters β, γ, ν and we also consider N as a parameter. The variables are S and I.

The two differential equations are:

dS

dt
= −βS I + γ(N − S − I)

dI

dt
= βS I − νI

The equilibrium points are

(N, 0) , (
ν

β
, γ
N − ν

β

ν + γ
) .

In the first one no one is infected (but everyone is susceptible), the second one can only happen if

it is positive i.e.

N − ν

β
> 0 ,

i.e.
Nβ

ν
> 1 .

R0 =
Nβ

ν

is a famous number called the infectious contact number. It is the cutoff . If it is less than 1 no

one is infectedm but if it is larger than 1 some pople will be infected.
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