Lecture Notes for Lecture 13 of Dr. Z.’s Dynamical Systems in Biology
These notes are based on Chapters 2 and 3 of Leah Edelsetein-Keshet’s classic textbook “Mathe-
matical Models in Biology”.

How to Find the Steady-Sates of First order Non-Linear k-dimensional Vector Recur-
rences?

Recall that a first-order k-dimensional vector recurrence has the format:
x(n+1) = F(x(n) |

where x(n) is a (column) vector with k components, and F is a mapping from R* — RF.

[T1,.. 2] = [filzr, o yxk), ooy fe(@r, ooy z)]

for some multivariable functions, of the k variables x1,...,zg, f1,.-., [k
Such vectors xq (if they exist) must satisfy the equation
<(0) — F(X(O))]

Splled-out if

x(0) = [x(lo), e ,:cg))]

we have to solve a system of k equations with k& unknowns.

2 = A,

2y = foal”, .
ZL‘ECO) = fk(:pgo), e ,:Eg)))

Problem 13.1: Find all the steady-states of the system

_ a1 (n)
a(n+1) = 2a1(n) + 3az(n) '
ax(n+1) = 221

~ 3ai(n) + 2az(n)
Solution of 13.1: The underlying transformation R? — R? is

z Y
) — ’
(z,9) <2x—|—3y 33:—1—2y>
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We have to solve the system of equations

T Y
r= ———— , =
2z + 3y 4 3T+ zy

Moving everything to the left and leaving 0 at the right in both equations, we have

1 1
1-—— ) =0 1-—)=o0
x( 2:U+3y) ’ y( 3m+2y>

From the first equation either x = 0 or 2z + 3y = 1. Plugging in = = 0 in the second equation we
get % =1 hence 2y = 1 hence y = % So (0, %) is one steady-state.

From the second equation either y = 0 or 3z + 2y = 1. (0,0) is not possible since then the

1

transformation is undefined. So (3,

then

0) is another steady-state. Finally, if neither x = 0 nor y = 0

20 4+3y=1 , 3z+2y=1 ,

whose solution is x = %, Yy = % . Hence (%, %) is yet another steady-state.

) 5)-

Solution of 13.1: There are three steady-states: (%,0), (0, 3) (

(S
=

How to find whether a steady-state is stable?

The first, and easiest, if you have a computer is to find the orbit starting at a nearby point and
see if it converges to it. You can use ORB in the Maple file tt DMB14.txt, but there is a more
rigorous, reliable way, but first we need to recall the important notion of the Jacobian Matrix of
a transformation F : R — RF.

Definition: The Jacobian Matrix of the transformation

[x1,... 2] = [filzr, .y xk), ooy fe(xr, ooy )]

is the k x k matrix of functions

ofi  Ofr of1
ox1 Oxao e oxy,
9fs  Ofa Of2
8:v1 8:132 te 69%
Ofx  Ofk Ofk
o1 Oxo et Oxy,

How to decide whether a steady state is stable?
Step 1: Find the Jacobian matrix, it is a certain matrix of (multi-variable) functions.
Step 2: Plug-in the candidate steady-state, getting a numerical k£ x k matrix.

Step 3: Find all the eigenvalues of this matrix. If their absolute values are all less than 1 then
it is stable. If even one of the eignevalues have absolute value larger than 1 then it is unstable.
If some of the eigenvalues have absolute value 1 and the other ones less than 1 it is semi-stable.
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Explanation: For a linear transformation
x — Ax

where A is a k x k matrix, the zero vector 0 is a steady-state. From Linear Algebra we know that

such a matrix can be diagonalized
A=UDU™!

where D is a diagonal matrix with the eigenvalues. Now
AP =uptu—t |

and if any of the eigenvalues of A (entries of D) has absolute value larger than 1 this would explode
as k — oo.

So much for a linear transformation,

But remember from multi-variable calculus, the multi-variable Taylor expansion around a point

(al,...,ak)

oF OF oF
F(xy,...zk) :F(al,...,ak)—{—a—xl(:cl —al)—|—a—x2(x2—a2)—l—...+a—%(azk—ak) ,
plus higher-degree terms. Near a steady-state (ai,...,ar) 1 —aq,..., T, — a are small so we can
ignore higher-degree terms.
Applying it to F' = f1 ... fr, we have, ignoring higher-degree terms
0 0 0
fi(zy, .o oxn) = fi(an, .. a) = 8;2(% —ay)+ 62(@ —az)+...+ 83‘2@16 —ax)
_0f af2 df2
fg(acl,...xk) f2(a1,...,ak) = 11 (.’131 a1)+ 83:2(302 a2)+...+ (%:k(xk ak) R
_ Ofk O fk O fr
fk(.’El,....%'k) fk(al"”’aw_aixl(xl al)—l—a—@(xg ag)—l——i—a—mk(mk ak)

So, since F(a) = a (remember a is s steady-state)
F(x) -F(a)=A(x—a) ,

where A is the (numerical) matrix obtained by plugging-in the candidate steady-state to the Jaco-
bian matrix. From the linear case we know that in order for it to be stable all the eigenvalues must
have absolute values less than 1.

Problem 13.2: Find all the stable steady-states of the first-order vector recurrence.

_ a1 (n)
afn+1) = 2a1(n) + 3az(n) '
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az(n)
3a1(n) + 2az2(n)

az(n+1) =

Solution of 13.2: We first need the steady-states. That was done in the above problem. The

underlying transformation was

The steady-states were (3,0), (0,3) (3, 1).

The Jacobian matrix is

Using the quotient rule (you do it!) we get

_ Y z
(Ba+2y)®  (3z+2y)®

3y 5 _ 3x 5
J(z,y) = [ (et 2) By ]

Now is is time to investigate the three steady-states. For the point (%, 0), we have
1 0o -3
J(=,0) = 2
50=[o 3]

The eigenvalues are the solutions of the characteristic equation

2
-Az—A)=0
(3 ) ’

so the eigenvalues are 0 and % both of which have absolute value less than 1 so the point (%, 0) is
stable.

For the point (0, 1), we have

the eigenvalues are also 0 and % both of which have absolute value less than 1 so the point (0, %)

is also stable.

Regarding the steady-state (%, %), we have

The characteristic equation is



Expanding

A2 — §>\ =
5
Factoring
6
A—-)A=0
(-3)

So the eigenvalues are 0 and %. Since the absolute value of g is larger than 1 this is unstable.
Sol. of 13.2: There are two stable steady-states (3,0) and (0, 3).
Host-Parasitoid Systems
e N(n) is the density of host species in generation n
e P(n) is the density of parasitoid species in generation n
e )\ is host-reproduction rate.
e c is the average number of viable eggs laid by a parasitoid on a single host.
e f(N(n),P(n)) is the fraction of hosts not parasitized.
Then we have the two-dimensional vector first-order recurrence

N(n+1) = AN(n)f(N(n), P(n)) ,

P(n+1) = eN(n)(1 = f(N(n), P(n)))

The Nicholson-Bailey model

You take f(N(n),P(n)) = e ™ (so it does not depend on N(n), and a is another numerical

parameter.

N(n+1) = AN (n)e oP™
P(n+1) = cN(n)(1 — e 2P™)
This is not a good model, since it has no stable steady-states.
The Modified Nicholson-Bailey model

It has three parameters, a,r, K.

N(n+1) =AN(n)exp(r(l — N(n)/K)) —aP(n))
P(n+1)= N(n)(1 —e ™)
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It is impossible to find the steady-states by hand, but you can find them with a computer, and it
has steady stable-states for a wide range of realistic parameter values.



