
Lecture Notes for Lecture 13 of Dr. Z.’s Dynamical Systems in Biology

These notes are based on Chapters 2 and 3 of Leah Edelsetein-Keshet’s classic textbook “Mathe-

matical Models in Biology”.

How to Find the Steady-Sates of First order Non-Linear k-dimensional Vector Recur-

rences?

Recall that a first-order k-dimensional vector recurrence has the format:

x(n+ 1) = F(x(n) ,

where x(n) is a (column) vector with k components, and F is a mapping from Rk → Rk.

[x1, . . . , xk]→ [f1(x1, . . . , xk), . . . , fk(x1, . . . , xk)] ,

for some multivariable functions, of the k variables x1, . . . , xk, f1, . . . , fk.

Such vectors x0 (if they exist) must satisfy the equation

x(0) = F(x(0))] .

Splled-out if

x(0) = [x
(0)
1 , . . . , x

(0)
k ] .

we have to solve a system of k equations with k unknowns.

x
(0)
1 = f1(x

(0)
1 , . . . , x

(0)
k )

x
(0)
2 = f2(x

(0)
1 , . . . , x

(0)
k )

. . .

x
(0)
k = fk(x

(0)
1 , . . . , x

(0)
k )

Problem 13.1: Find all the steady-states of the system

a1(n+ 1) =
a1(n)

2a1(n) + 3a2(n)
,

a2(n+ 1) =
a2(n)

3a1(n) + 2a2(n)
.

Solution of 13.1: The underlying transformation R2 → R2 is

(x, y)→
(

x

2x+ 3y
,

y

3x+ 2y

)
.
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We have to solve the system of equations

x =
x

2x+ 3y
, y =

y

3x+ xy
.

Moving everything to the left and leaving 0 at the right in both equations, we have

x

(
1− 1

2x+ 3y

)
= 0 , y

(
1− 1

3x+ 2y

)
= 0 .

From the first equation either x = 0 or 2x+ 3y = 1. Plugging in x = 0 in the second equation we

get 1
2y = 1 hence 2y = 1 hence y = 1

2 . So (0, 12 ) is one steady-state.

From the second equation either y = 0 or 3x + 2y = 1. (0, 0) is not possible since then the

transformation is undefined. So ( 1
2 , 0) is another steady-state. Finally, if neither x = 0 nor y = 0

then

2x+ 3y = 1 , 3x+ 2y = 1 ,

whose solution is x = 1
5 , y = 1

5 . Hence ( 1
5 ,

1
5 ) is yet another steady-state.

Solution of 13.1: There are three steady-states: ( 1
2 , 0), (0, 12 ) ( 1

5 ,
1
5 ).

How to find whether a steady-state is stable?

The first, and easiest, if you have a computer is to find the orbit starting at a nearby point and

see if it converges to it. You can use ORB in the Maple file tt DMB14.txt, but there is a more

rigorous, reliable way, but first we need to recall the important notion of the Jacobian Matrix of

a transformation F : Rk → Rk.

Definition: The Jacobian Matrix of the transformation

[x1, . . . , xk]→ [f1(x1, . . . , xk), . . . , fk(x1, . . . , xk)] ,

is the k × k matrix of functions 
∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xk

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xk

. . . . . . . . . . . .
∂fk
∂x1

∂fk
∂x2

. . . ∂fk
∂xk


How to decide whether a steady state is stable?

Step 1: Find the Jacobian matrix, it is a certain matrix of (multi-variable) functions.

Step 2: Plug-in the candidate steady-state, getting a numerical k × k matrix.

Step 3: Find all the eigenvalues of this matrix. If their absolute values are all less than 1 then

it is stable. If even one of the eignevalues have absolute value larger than 1 then it is unstable.

If some of the eigenvalues have absolute value 1 and the other ones less than 1 it is semi-stable.

2



Explanation: For a linear transformation

x→ Ax ,

where A is a k × k matrix, the zero vector 0 is a steady-state. From Linear Algebra we know that

such a matrix can be diagonalized

A = UDU−1

where D is a diagonal matrix with the eigenvalues. Now

Ak = UDkU−1 ,

and if any of the eigenvalues of A (entries of D) has absolute value larger than 1 this would explode

as k →∞.

So much for a linear transformation,

But remember from multi-variable calculus, the multi-variable Taylor expansion around a point

(a1, . . . , ak)

F (x1, . . . xk) = F (a1, . . . , ak) +
∂F

∂x1
(x1 − a1) +

∂F

∂x2
(x2 − a2) + . . .+

∂F

∂xk
(xk − ak) ,

plus higher-degree terms. Near a steady-state (a1, . . . , ak) x1 − a1, . . . , xk − ak are small so we can

ignore higher-degree terms.

Applying it to F = f1 . . . fk, we have, ignoring higher-degree terms

f1(x1, . . . xk)− f1(a1, . . . , ak) =
∂f1
∂x1

(x1 − a1) +
∂f1
∂x2

(x2 − a2) + . . .+
∂f1
∂xk

(xk − ak) ,

f2(x1, . . . xk)− f2(a1, . . . , ak) =
∂f2
∂x1

(x1 − a1) +
∂f2
∂x2

(x2 − a2) + . . .+
∂f2
∂xk

(xk − ak) ,

. . .

fk(x1, . . . xk)− fk(a1, . . . , ak) =
∂fk
∂x1

(x1 − a1) +
∂fk
∂x2

(x2 − a2) + . . .+
∂fk
∂xk

(xk − ak) .

So, since F(a) = a (remember a is s steady-state)

F(x)− F(a) = A(x− a) ,

where A is the (numerical) matrix obtained by plugging-in the candidate steady-state to the Jaco-

bian matrix. From the linear case we know that in order for it to be stable all the eigenvalues must

have absolute values less than 1.

Problem 13.2: Find all the stable steady-states of the first-order vector recurrence.

a1(n+ 1) =
a1(n)

2a1(n) + 3a2(n)
,

3



a2(n+ 1) =
a2(n)

3a1(n) + 2a2(n)
.

Solution of 13.2: We first need the steady-states. That was done in the above problem. The

underlying transformation was

(x, y)→
(

x

2x+ 3y
,

y

3x+ 2y

)
.

The steady-states were (1
2 , 0), (0, 12 ) ( 1

5 ,
1
5 ).

The Jacobian matrix is  ∂
∂x

(
x

2x+3y

)
∂
∂y

(
x

2x+3y

)
∂
∂x

(
y

3x+2y

)
∂
∂y

(
y

3x+2y

)
Using the quotient rule (you do it!) we get

J(x, y) =

[
3y

(2x+3y)2
− 3x

(2x+3y)2

− 3y
(3x+2y)2

3x
(3x+2y)2

]

Now is is time to investigate the three steady-states. For the point ( 1
2 , 0), we have

J(
1

2
, 0) =

[
0 − 3

2
0 2

3

]
The eigenvalues are the solutions of the characteristic equation

−λ(
2

3
− λ) = 0 ,

so the eigenvalues are 0 and 2
3 both of which have absolute value less than 1 so the point ( 1

2 , 0) is

stable.

For the point (0, 12 ), we have

J(0,
1

2
) =

[
2
3 0
− 3

2 0

]
the eigenvalues are also 0 and 2

3 both of which have absolute value less than 1 so the point (0, 12 )

is also stable.

Regarding the steady-state ( 1
5 ,

1
5 ), we have

J(
1

5
,

1

5
) =

[
3
5 − 3

5
− 3

5
3
5

]
.

The characteristic equation is (
λ− 3

5

)2

−
(

3

5

)2

= 0 .
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Expanding

λ2 − 6

5
λ = 0 .

Factoring

(λ− 6

5
)λ = 0 .

So the eigenvalues are 0 and 6
5 . Since the absolute value of 6

5 is larger than 1 this is unstable.

Sol. of 13.2: There are two stable steady-states ( 1
2 , 0) and (0, 12 ).

Host-Parasitoid Systems

• N(n) is the density of host species in generation n

• P (n) is the density of parasitoid species in generation n

• λ is host-reproduction rate.

• c is the average number of viable eggs laid by a parasitoid on a single host.

• f(N(n), P (n)) is the fraction of hosts not parasitized.

Then we have the two-dimensional vector first-order recurrence

N(n+ 1) = λN(n)f(N(n), P (n)) ,

P (n+ 1) = cN(n)(1− f(N(n), P (n))) .

The Nicholson-Bailey model

You take f(N(n), P (n)) = e−aP (n) (so it does not depend on N(n), and a is another numerical

parameter.

N(n+ 1) = λN(n)e−aP (n)

P (n+ 1) = cN(n)(1− e−aP (n)) .

This is not a good model, since it has no stable steady-states.

The Modified Nicholson-Bailey model

It has three parameters, a, r,K.

N(n+ 1) = λN(n)exp(r(1−N(n)/K))− aP (n))

P (n+ 1) = N(n)(1− e−aP (n)) .
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It is impossible to find the steady-states by hand, but you can find them with a computer, and it

has steady stable-states for a wide range of realistic parameter values.
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