Lecture Notes for Lecture 11 of Dr. Z.’s Dynamical Systems in Biology

Version of Oct. 8, 2025
The logistic map and advancement to Chaos
The (discrete) logistic equation
aln+1)=7r-a(n)- (1 —a(n)) ,

modeling a population of a biological species with fertility factor r, but due to competition for
food and other resources, has a damping factor that gets smaller and smaller as the population
gets larger, and is assumed to be (1 — a(n)). (It is assumed that the maximal occupancy of the
habitat is 1).

For any r there are two steady-states. The underlying function is f(x) = ra(1 — z). Solving
x = f(x) we get
x =rzx(l—ux)

Moving everything to the left we get

z—rz(l—x)=0

Factoring
z(l—r(l—2))=0

Simplifying
z(re —(r—1))=0

We get two steady-states
r—1

r

Since everything takes place in 0 < < 1, only = 0 makes sense when r < 1. Let’s see whether
or not it is a stable steady-state.

We have, since f(z) = rz — ra?

fl(x) =r—2rx

and we have, sinnce f/(0) = r, and since right now, 0 < r < 1, we get that |f’(0)| < 1, and we have
the following fact.

Important Fact: The only stable steady-state of the logistic recurrence a(n+1) = ra(n)(1—a(n)),
when 0 < r < 1, is « = 0. No matter what the initial population was, it is doomed to extinction.
For any xy between 0 and 1 the orbit goes to 0. So for 0 < r > 1, x = 0 is the only stable
steady-state.



When r > 1, z = 0 is no longer a stable steady-state, since |f’(0)] = r is larger than 1. Let’s see

’”;1 , is stable.

for what values of r, the other steady-state, namely z =

We have ) )
f’(r ):r—2r-r =2—-r
r r
So when
2—r/<1 |,
T = % is the only stable steady-state, i.e. when .
1<r<3

Important Fact: When 1 < r < 3 the only stable steady-state is ¢ = T;1 and every orbit,

regardless of the starting point zy between 0 and 1, in the long-run, converges to that number. So
the population of the species stabilizes and eventually doesn’t change from one year to the next.

But when r > 3, there are no stable steady states, so what happens? If you run for example, in
DMB8.txt the orbit when r = 3.2, starting at ¢ = 0.3

Orb(3.2*x*(1-x),x,0.3,10000,10010) ;
you get

[0.7994554906, 0.5130445091, 0.7994554906, 0.5130445091, 0.7994554906, 0.5130445091,
0.7994554906, 0.5130445091, 0.7994554906, 0.5130445091, 0.7994554906]

If you start at o = 0.7, typing
Orb(3.2*x*(1-x),x,0.7,10000,10010) ;

you get the same! So in the long run the population alternates between two values, and repeats
itself, every two years. In other words the result of applying the mapping z — rz (1 — z) twice,
let’s call it fi(z):

filz) = f(f(z) = —r3xt 230 — 3 — 222 4%,

seems to have stable steady-states. If you enter, in DMB8.txt

SS(f1,x) you get four steady-states, let’s call them s1(r), sa(r), s3(r), sa(r) (of course, they depend
on r)




Of course, as we already know, the first two, s1(r) = 0 and ss(r) = "1 are not stable, but it is

possible to show (with Maple, or other software) that for

3 < r < 34494897, |f1(ss(r))] < 1, |fi(sa(r))| < 1 (we will demonstrate this in the next Maple
class).

Moving right along, in the range

3.4494897 < r < 3.5440903

No matter where you start, for example x¢g = 0.3, zg = 0.5, g = 0.7,

Orb(r*x*(1-x),x,0.3,10000,10010); , Orb(r*x*(1-x),x,0.5,10000,10010); , Orb(r*x*(1-
x),x,0.7,10000,10010) ;

will converge to the same ultimate period-4 orbit. Upping r a little more, would give an ultimate
period-8 orbit, then upping r a tiny bit more, an ultimate period-16 etc. This is called period-
doubling.

The transition values of r, from one power-of-two ultimate period to the next one, are called
bifurcation values. Let’s call them

[ala az,as, a4, ]

They have the meaning that for a; < r < a;41 every orbit, in the long run, converges to an ultimate
orbit of period 2°.

Mitchell Feigenbaum found that the first 8 values of a; are

[3,3.4494897, 3.5440903, 3.5644073, 3.5687594, 3.5696916, 3.5698913, 3.5699340]

and then he discoverd, numerically (and later gave a “physics proof”) the following amazing fact.
Amazing fact: there is a constant, denoted by 4, called the Feigenbaum constant, such that
Aj4+1 — a4

lim
100 (42 — 441

=5

and Feigenbaum computed that:

0 =4.6692...



When you keep raising r, the ultimate periods get to be of period 256, then 512, and before you
know it, for r > 3.571... you get complete chaos.

Non-Linear Higher Order Non-Linear Recurrences

The format is
a(n+k) = fla(n+k—-1),...,a(n)) ,

for some function of k variables, f(z1,...,2).
It also needs initial conditions: a(1) = ay,...a(k) = a.

Once you have the first £ initial values, you can get a(k + 1), then a(k + 2), etc., etc.. Note that
unlike a first-order recurrence, where today’s value only depends on what happened yesterday, now
it depends also on the day-before-yesterday (if the order (k) is > 2), the value three days ago (if
k > 3), etc. Sometimes this is called memory-k recurrence.

How to find the potential stable-steady-state numerically

Assuming that the orbit eventually converges to one value, z, we set a(n),a(n+1),...,a(n+k) to
a common value, let’s call it z, and simply solve the algebraic equation:

z=f(z,2,...,2)

Problem 11.1: Find the possible long-term behavior of the third-order recurrence

_1+4a(n+2)+a(n+1)+a(n)
a(n+3)—2+a(n+2)+3a(n+1)+7a(n) )

Sol. to 11.1: We have to solve

1+2+2+2
z =
24+ 2+324+72
So
_ 1+ 3z
Ty
So
1+3,z_
U9 1.
So
1122—2—1_0
2411z

Solving 1122 — z — 1 = 0 we have

1+3vV5 1-3V5
2 ’ 2



First order Non-Linear k-dimensional Vector Recurrence

They have the format
x(n+1) = F(x(n)

where x(n) is a (column) vector with k& components, and F is a mapping from R¥ — RF.

[z1, ... zk] = [fi(xe, .o oyzk)y ooy fe(ze, oo )]

for some multivariable functions, of the k variables x1,...,zg, f1,.-., [k
How to convert an order k recurrence to a first-order vector recurrence?

Let
x(n) =la(n+k—1),...,a(n)]

Then the recurrence
a(n+k) = fla(n+k—1),...,a(n))

is equivalent to
x(n+1) =F(x(n)) ,

where

F([z1,...,zx)) = [f(x1,...,2k), 21, T2, . ., Th—1]

Problem 11.2: Convert the non-linear third-order recurrence
a(n +3) = cos(a(n + 2)) + 2™+ L sin(a(n))
to a first-order vector recurrence in R>.

Sol. to 11.2: Here

f(z1,x2,23) = cos(x1) + €72 + sin(x3)

Hence. setting as usual
x(n) = [a(n +2),a(n + 1),a(n)]

We have
x(n+1) = F(x(n))

where F is the transformation in R3:

(1,22, 23] — [cos(x1) + €™ + sin(z3), 21, 2]



