
Lecture Notes for Lecture 11 of Dr. Z.’s Dynamical Systems in Biology

Version of Oct. 8, 2025

The logistic map and advancement to Chaos

The (discrete) logistic equation

a(n+ 1) = r · a(n) · (1− a(n)) ,

modeling a population of a biological species with fertility factor r, but due to competition for

food and other resources, has a damping factor that gets smaller and smaller as the population

gets larger, and is assumed to be (1 − a(n)). (It is assumed that the maximal occupancy of the

habitat is 1).

For any r there are two steady-states. The underlying function is f(x) = rx(1 − x). Solving

x = f(x) we get

x = rx(1− x) .

Moving everything to the left we get

x− rx(1− x) = 0 .

Factoring

x(1− r(1− x)) = 0

Simplifying

x(rx− (r − 1)) = 0 .

We get two steady-states

x = 0 , x =
r − 1

r
.

Since everything takes place in 0 < x < 1, only x = 0 makes sense when r < 1. Let’s see whether

or not it is a stable steady-state.

We have, since f(x) = rx− rx2

f ′(x) = r − 2rx .

and we have, sinnce f ′(0) = r, and since right now, 0 < r < 1, we get that |f ′(0)| < 1, and we have

the following fact.

Important Fact: The only stable steady-state of the logistic recurrence a(n+1) = ra(n)(1−a(n)),

when 0 < r < 1, is x = 0. No matter what the initial population was, it is doomed to extinction.

For any x0 between 0 and 1 the orbit goes to 0. So for 0 < r > 1, x = 0 is the only stable

steady-state.
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When r > 1, x = 0 is no longer a stable steady-state, since |f ′(0)| = r is larger than 1. Let’s see

for what values of r, the other steady-state, namely x = r−1
r , is stable.

We have

f ′(
r − 1

r
) = r − 2r · r − 1

r
= 2− r .

So when

|2− r| < 1 ,

x = r−1
r is the only stable steady-state, i.e. when .

1 < r < 3 .

Important Fact: When 1 < r < 3 the only stable steady-state is x = r−1
r and every orbit,

regardless of the starting point x0 between 0 and 1, in the long-run, converges to that number. So

the population of the species stabilizes and eventually doesn’t change from one year to the next.

But when r > 3, there are no stable steady states, so what happens? If you run for example, in

DMB8.txt the orbit when r = 3.2, starting at x0 = 0.3

Orb(3.2*x*(1-x),x,0.3,10000,10010);

you get

[0.7994554906, 0.5130445091, 0.7994554906, 0.5130445091, 0.7994554906, 0.5130445091,

0.7994554906, 0.5130445091, 0.7994554906, 0.5130445091, 0.7994554906]

If you start at x0 = 0.7, typing

Orb(3.2*x*(1-x),x,0.7,10000,10010);

you get the same! So in the long run the population alternates between two values, and repeats

itself, every two years. In other words the result of applying the mapping x → r x (1 − x) twice,

let’s call it f1(x):

f1(x) = f(f(x)) = −r3x4 + 2r3x3 − r3x2 − r2x2 + r2x ,

seems to have stable steady-states. If you enter, in DMB8.txt

SS(f1,x) you get four steady-states, let’s call them s1(r), s2(r), s3(r), s4(r) (of course, they depend

on r)

[s1(r), s2(r), s3(r), s4(r)] :=

[
0,
r − 1

r
,
r
2 + 1

2 +
√
r2−2r−3

2

r
,
r
2 + 1

2 −
√
r2−2r−3

2

r

]
,
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Of course, as we already know, the first two, s1(r) = 0 and s2(r) = r−1
r are not stable, but it is

possible to show (with Maple, or other software) that for

3 < r < 3.4494897, |f ′1(s3(r))| < 1, |f ′1(s4(r))| < 1 (we will demonstrate this in the next Maple

class).

Moving right along, in the range

3.4494897 < r < 3.5440903 .

No matter where you start, for example x0 = 0.3, x0 = 0.5, x0 = 0.7,

Orb(r*x*(1-x),x,0.3,10000,10010); , Orb(r*x*(1-x),x,0.5,10000,10010); , Orb(r*x*(1-

x),x,0.7,10000,10010);

will converge to the same ultimate period-4 orbit. Upping r a little more, would give an ultimate

period-8 orbit, then upping r a tiny bit more, an ultimate period-16 etc. This is called period-

doubling.

The transition values of r, from one power-of-two ultimate period to the next one, are called

bifurcation values. Let’s call them

[a1, a2, a3, a4, ...] .

They have the meaning that for ai < r < ai+1 every orbit, in the long run, converges to an ultimate

orbit of period 2i.

Mitchell Feigenbaum found that the first 8 values of ai are

[3, 3.4494897, 3.5440903, 3.5644073, 3.5687594, 3.5696916, 3.5698913, 3.5699340]

and then he discoverd, numerically (and later gave a “physics proof”) the following amazing fact.

Amazing fact: there is a constant, denoted by δ, called the Feigenbaum constant, such that

lim
i→∞

ai+1 − ai
ai+2 − ai+1

= δ ,

and Feigenbaum computed that:

δ = 4.6692 . . . .
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When you keep raising r, the ultimate periods get to be of period 256, then 512, and before you

know it, for r > 3.571 . . . you get complete chaos.

Non-Linear Higher Order Non-Linear Recurrences

The format is

a(n+ k) = f(a(n+ k − 1), . . . , a(n)) ,

for some function of k variables, f(x1, . . . , xk).

It also needs initial conditions: a(1) = a1, . . . a(k) = ak.

Once you have the first k initial values, you can get a(k + 1), then a(k + 2), etc., etc.. Note that

unlike a first-order recurrence, where today’s value only depends on what happened yesterday, now

it depends also on the day-before-yesterday (if the order (k) is ≥ 2), the value three days ago (if

k ≥ 3), etc. Sometimes this is called memory-k recurrence.

How to find the potential stable-steady-state numerically

Assuming that the orbit eventually converges to one value, z, we set a(n), a(n+ 1), . . . , a(n+ k) to

a common value, let’s call it z, and simply solve the algebraic equation:

z = f(z, z, . . . , z) .

Problem 11.1: Find the possible long-term behavior of the third-order recurrence

a(n+ 3) =
1 + a(n+ 2) + a(n+ 1) + a(n)

2 + a(n+ 2) + 3a(n+ 1) + 7a(n)
,

Sol. to 11.1: We have to solve

z =
1 + z + z + z

2 + z + 3z + 7z
,

So

z =
1 + 3z

2 + 11z
,

So

z − 1 + 3z

2 + 11z
= 0 .

So
11z2 − z − 1

2 + 11z
= 0 .

Solving 11z2 − z − 1 = 0 we have

1 + 3
√

5

2
,

1− 3
√

5

2
.
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First order Non-Linear k-dimensional Vector Recurrence

They have the format

x(n+ 1) = F(x(n) ,

where x(n) is a (column) vector with k components, and F is a mapping from Rk → Rk.

[x1, . . . , xk]→ [f1(x1, . . . , xk), . . . , fk(x1, . . . , xk)] ,

for some multivariable functions, of the k variables x1, . . . , xk, f1, . . . , fk.

How to convert an order k recurrence to a first-order vector recurrence?

Let

x(n) = [a(n+ k − 1), . . . , a(n)] .

Then the recurrence

a(n+ k) = f(a(n+ k − 1), . . . , a(n)) ,

is equivalent to

x(n + 1) = F(x(n)) ,

where

F ([x1, . . . , xk]) = [f(x1, . . . , xk), x1, x2, . . . , xk−1] .

Problem 11.2: Convert the non-linear third-order recurrence

a(n+ 3) = cos(a(n+ 2)) + ea(n+1) + sin(a(n)) ,

to a first-order vector recurrence in R3.

Sol. to 11.2: Here

f(x1, x2, x3) = cos(x1) + ex2 + sin(x3) .

Hence. setting as usual

x(n) = [a(n+ 2), a(n+ 1), a(n)] .

We have

x(n+ 1) = F(x(n)) .

where F is the transformation in R3:

[x1, x2, x3] → [cos(x1) + ex2 + sin(x3), x1, x2] .
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