Lecture Notes for Lecture 1 of Dr. Z.'s Dynamical Systems in Biology

In biology both differential equations with *continuous* time, and difference equations, (also known as recurrences), with *discrete* time are very important.

A general difference equation could be very complicated, it has the format

$$x_n = F(x_{n-1}, x_{n-2}, ..., x_{n-k})$$
 , $n \ge k$

where k is a finite integer, called the **order**, and F is any function with k arguments.

You are also given *initial conditions*

$$x_0 = a_0, \dots, x_{k-1} = a_{k-1}$$

for some numbers a_0, \ldots, a_{k-1} .

In general there is no way to solve such equations, but using a computer you can compute many terms of the sequence, and look whether there is a trend, or limiting behavior as n goes to ∞ .

If F is a linear function, then it is possible to solve them explicitly. It is then called a **linear difference equation** (or **linear recurrence**).

The general format of a linear recurrence is

$$x_n = c_1 x_{n-1} + c_2 x_{n-2} + \ldots + c_k x_{n-k}$$
 , $n \ge k$,

for some **numbers** c_1, \ldots, c_k , and again there are initial conditions as above.

Problem 1.1: Compute x_4 of the sequence satisfying the second-order recurrence

$$x_n = x_{n-1}(x_{n-1} + x_{n-2})$$
 , $n \ge 2$,

subject to the initial conditions

$$x_0 = 2$$
 , $x_1 = 3$.

Sol. to 1.1: we must first compute x_2 , then x_3 , and only then x_4 .

$$x_2 = x_1(x_1 + x_0) = 3 \cdot (2+3) = 15$$
 ,
 $x_3 = x_2(x_2 + x_1) = 15 \cdot (15+3) = 270$,
 $x_4 = x_3(x_3 + x_2) = 270 \cdot (270+15)) = 76950$

Ans. $x_4 = 76950$.

Problem 1.2 In a certain species of animals, only one-year-old, two-year-old females, are fertile.

The probabilities of a one-year-old and two-year-old female to give birth to a new female are p_1 , p_2 respectively. There were c_0 females born at n = 0, c_1 females born at n = 1. Set up a recurrence that will enable you to find the **expected** number of females born at time n.

In terms of c_0, c_1, p_1, p_2 , what is the expected number of females born at n = 4?

Sol. to 1.2: The general recurrence is

$$x_n = p_1 x_{n-1} + p_2 x_{n-2} \quad ,$$

because at generation n there are x_{n-1} one-year-old and x_{n-2} two-year-old. We have

$$x_2 = p_1 x_1 + p_2 x_0 = p_1 c_1 + p_2 c_0 \quad ,$$

$$x_3 = p_1 x_2 + p_2 x_1 = p_1 (p_1 c_1 + p_2 c_0) + p_2 c_1 = c_0 p_1 p_2 + c_1 p_1^2 + c_1 p_2 \quad ,$$

$$x_4 = p_1 x_3 + p_2 x_2 = p_1 (c_0 p_1 p_2 + c_1 p_1^2 + c_1 p_2) + p_2 (p_1 c_1 + p_2 c_0) = c_0 p_1^2 p_2 + c_1 p_1^3 + c_0 p_2^2 + 2 c_1 p_1 p_2 \quad .$$

Ans. to 1.2: At (discrete) time n = 4 the expected number of females is $c_0 p_1^2 p_2 + c_1 p_1^3 + c_0 p_2^2 + 2 c_1 p_1 p_2$.

How to solve Linear Recurrence Equations

To solve a linear recurrence

$$x_n = c_1 x_{n-1} + c_2 x_{n-2} + \ldots + c_k x_{n-k}$$
 , $n \ge k$,

subject to initial conditions $x_0 = a_0, x_1 = a_1, \dots, x_{k-1} = a_{k-1}$ do the following steps.

Step 1: Look for solutions of the form $x_n = z^n$, for some z. These are called **exponential** solutions.

Plug it in the recurrence getting

$$z^{n} = c_1 z^{n-1} + c_2 z^{n-2} + \ldots + c_k z^{n-k}$$

Dividing by z^{n-k} we get the **algebraic equation**

$$z^k - c_1 z^{k-1} - \ldots - c_k = 0 \quad .$$

This is called the **characteristic equation**

Step 2: Solve it, getting (in general, if you are lucky) k distinct roots, (in general complex, but sometimes they happen to be real and even integers). Let's call them z_1, \ldots, z_k

The General Solution (by the principle of superposition) has the template:

$$x_n = C_1 z_1^n + \ldots + C_k z_k^n \quad ,$$

where C_1, \ldots, C_k are arbitrary (i.e. general) constants, to be determined

Step 3: Use the initial conditions to solve for these coefficients by solving the linear system

$$c_0 = C_1 + \ldots + C_k \quad ,$$

$$c_1 = C_1 z_1 + \ldots + C_k z_k \quad ,$$

. . .

$$c_{k-1} = C_1 z_1^{k-1} + \ldots + C_k z_k^{k-1}$$
 ,

Step 4: Plug-in the solutions of the above system of linear equations to the template of general equation.

Problem 1.3 Solve explicitly the recurrence equation

$$x_n = -x_{n-1} + 6x_{n-2} \quad ,$$

with initial conditions

$$x_0 = 2, x_1 = -1$$
.

Sol. to 1.3: The characteristic equation is

$$z^2 = -z + 6$$

In other words

$$z^2 + z - 6 = 0 \quad .$$

Factorizing

$$(z+3)(z-2) = 0$$
.

So the two roots are $z_1 = -3$, $z_2 = 2$.

The general solution is

$$x_n = C_1(-3)^n + C_2 2^n$$
 ,

where C_1, C_2 are to be determined.

Plugging in n = 0 and = 1 using $x_0 = 2, x_1 = -1$, we get the system of two linear equations in the two unknowns, C_1, C_2 :

$$2 = C_1 + C_2$$

$$-1 = -3C_1 + 2C_2 \quad ,$$

whose solution is $C_1 = 1, C_2 = 1$. Going back to the general solution we have

$$x_n = (-3)^n + 2^n \quad .$$

Ans. to 1.3: $x_n = (-3)^n + 2^n$.

What to do if there are repeated roots?:

If there are

- z_1 (repeated a_1 times)
- z_2 (repeated a_2 times)

. . .

 z_r (repeated a_r times)

(where $a_1 + a_2 + \ldots + a_r = k$) then the **general solution** has the format

$$x_n = P_1(n)z_1^n + \ldots + P_r(n)z_r^n \quad ,$$

where $P_1(n)$ is a generic polynomial of degree $a_1 - 1$, $P_2(n)$ is a generic polynomial of degree $a_2 - 1$, ..., $P_r(n)$ is a generic polynomial of degree $a_r - 1$.

$$P_1(n) = C_{1,0} + C_{1,1}n + \ldots + C_{1,a_1-1}n^{a_1-1}$$

. . .

$$P_r(n) = C_{r,0} + C_{r,1}n + \ldots + C_{r,a_r-1}n^{a_r-1}$$

and the k constants $C_{1,0}, \ldots C_{r,a_r-1}$ are determined by plugging-in.

Problem 1.4 Solve explicitly the recurrence equation

$$x_n = -x_{n-1} + x_{n-2} + x_{n-3} \quad ,$$

with initial conditions

$$x_0 = 1$$
 , $x_1 = 0$, $x_2 = 3$.

Sol. to 1.4: The characteristic equation is

$$z^3 = -z^2 + z + 1$$

In other words

$$z^3 + z^2 - z - 1 = 0 \quad .$$

Factorizing

$$(z+1)^2(z-1) = 0$$
.

So there two different roots, z = -1 that is a **double root**, and z = 1 that is a **simple root**.

The general solution template is

$$x_n = (C_0 + C_1 n) \cdot (-1)^n + c_2 \cdot (1)^n$$
,

in other words

$$x_n = (C_0 + C_1 n) \cdot (-1)^n + C_2$$
,

We have to find the values of C_0, C_1, C_2 .

$$1 = x_0 = (C_0 + C_1 \cdot 0) \cdot (-1)^0 + C_2 = -C_1 + C_2$$
$$0 = x_1 = (C_0 + C_1) \cdot (-1) + C_2 \quad ,$$
$$3 = x_2 = (C_0 + 2C_1) \cdot (-1)^2 + C_2 \cdot (1)^2 \quad ,$$

We get the system of equations

$$-C_1 + C_2 = 0$$
 , $-C_0 - C_1 + C_2 = 0$, $-C_0 + 2C_1 + C_2 = 3$

So
$$C_0 = 0$$
, $C_1 = 1$, $C_2 = 1$.

Going back to the general solution template, we have

$$x_n = (0+1 \cdot n) \cdot (-1)^n + 1 = (-1)^n n + 1$$
.

Ans. to 1.4: $x_n = (-1)^n n + 1$.