
Limit Cycles,
Oscillations,
and Excitable Systems

One ring to rule them all, one ring to find them,
One ring to bring them all, and in the darkness bind them

J.R.R. Tolkien (1954) The Lord of the Rings, Part 1 Ballantine Books,
NY (1965)

Periodicity is an inherent phenomenon in living things. From the cell cycle, which
governs the rate and timing of mitosis (cell division), to the diurnal (circadian) cycle
that results in sleep-wake patterns, to the ebb and flow of populations in their natural
environment—life proceeds in a rhythmic and periodic style. The stability of these
periodic phenomena, the fact that they are not easily disrupted or changed by a noisy
and random environment, leads us to believe that the pattern is a ubiquitous part of
the process of growth, of biochemical and metabolic control systems, and of popula-
tion fluctuations.

Oscillations are easily found in such physical examples as spring-mass systems
and electrical circuits, which ideally are linear in behavior. Nonlinear equations such
as the Lotka-Volterra predation model yield oscillations too. However, as previously
suggested, the Lotka-Volterra equations are not sufficiently descriptive of the oscil-
lations encountered in natural population cycles. For one thing, the Lotka-Volterra
cycles are neutrally stable. This means that the amplitude of oscillations depends on
the initial population level. (We shall see in Section 8.8 that all conservative systems
share this property.) Another unrealistic feature is that the Lotka-Volterra model is
structurally unstable: very slight modifications of the equations will disrupt the cy-
cling behavior (see comments in Chapter 6).

For this combination of reasons, we are led to consider more suitable descrip-
tions of the stable biological cycles. It transpires that the notion of a limit cycle
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312	 Continuous Processes and Ordinary Differential Equations

answers this need. In phase-plane plots a limit cycle is any simple oriented closed
curve trajectory that does not contain singular points (points we have been call-
ing steady states and at which the phase flow is stagnant). The curve must be closed
so that a point moving along the cycle will return to its starting position at fixed time
intervals and thus execute periodic motion. It must be simple (cannot cross itself)
by the uniqueness property of differential equations [see Figure 8.1(a,b) and prob-
lem 1].

(a) (b) (c)

(d) (e)

Q /

(1)

Figure 8.1 (a) A simple closed, oriented curve. (b)
This curve is not simple since it crosses itself. (c) If
P is a steady state, this curve cannot be a limit
cycle. Limit cycles come in several varieties. (d)
This limit cycle is stable since all neighboring

(g)

points are contained in trajectories that approach it
as t -4 +-. (e, f) These are unstable. (g) A
multiplicity of limit cycles, some stable and some
not, are shown.

What distinguishes a limit cycle from the cycles that surround a neutral center
(see Chapter 5) is the fact that it represents the limiting behavior of adjacent trajecto-
ries; points nearby will approach the limit cycle either for t — + 0o or for t —' —00.

If the former case holds (for all adjacent trajectories) the limit cycle is stable. Other-
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Limit Cycles, Oscillations, and Excitable Systems 	 313

wise it is unstable. Figure 8.1 provides several examples of stable and unstable limit
cycles in a two-dimensional phase plane.

In this chapter we are concerned with identifying criteria that point to the exis-
tence (or nonexistence) of limit cycles. We shall address this issue primarily within
the context of the system of the two equations

dx
 (la)

dt = G(x, y). (1b)

About F and G we shall assume that these are continuous functions with con-
tinuous partial derivatives with respect to x and y so that a unique solution to (la,b)
will exist for a given set of initial values (xo, yo).

Before launching into the mathematical techniques that are useful in determin-
ing whether limit cycles to a system such as equations (la,b) exist, we discuss neural
excitation by way of a motivating example. Some of the basic concepts and physio-
logical detail are described in Section 8.1. A model due to Hodgkin and Huxley is
then derived and partially analyzed in Section 8.2, to be followed later by a simpler
set of equations due to Fitzhugh and Nagumo in Section 8.5. We find that both mod-
els have the potential for exhibiting sustained oscillations typical of a limit cycle
solution, as well as excitable behavior: by this we mean that a stimulus larger than
some threshold will provoke a very large response. (This type of behavior is
depicted by a large excursion away from some steady state and then back to it as
excitation subsides.) While phase-plane analysis (described in Chapter 5) suffices
for understanding Sections 8.1 and 8.2, we find it useful to draw on new results in
Section 8.5.

The Poincare-Bendixson theory is a cornerstone on which much of the theory
of limit cycles rests. Section 8.3 provides an informal introduction, and the results
are then applied in Section 8.4 to a system of equations known as the van der Pol
oscillator. This prototype serves to illustrate how a nullcline configuration in which
one or both nullclines is S-shaped tends to produce oscillatory or excitable behavior.
Many examples drawn from the literature are based on similar principles. Among
these is Fitzhugh's model for neural excitation described in Section 8.5.

Another mathematical method commonly encountered in the quest for limit-cy-
cle solutions is the Hopf bifurcation theorem (Section 8.6). Here we are more
specific about the spectrum of possible effects that are encountered close to a steady
state of a nonlinear system at which linear stability calculations predict a transition
from a stable focus- through a neutral center to an unstable focus as some parameter
is varied. (The comments at the end of Section 5.9 were deliberately vague in antici-
pation of the upcoming discussion.)

In Sections 8.7 and 8.8 we apply the new mathematical techniques to problems
stemming from population fluctuations and oscillations in chemical systems. These
sections are extensions of material covered in Chapters 6 and 7 respectively.

For a shorter course, any one of the following sequences is suitable: (1) Sec-
tions 8.1 and 8.2 (based only on previous material); (2) Sections 8.1 to 8.5
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314	 Continuous Processes and Ordinary Differential Equations

(physiological emphasis); (3) Sections 8.3 and 8.7 (population biology); (4) Sections
8.3, 8.4, 8.6, and 8.8 (mathematical techniques with examples drawn from molecu-
lar models).

8.1 NERVE CONDUCTION, THE ACTION POTENTIAL,
AND THE HODGKIN-HUXLEY EQUATIONS

One of the leading frontiers of biophysics is the study of neurophysiology, which
only several decades ago spawned an understanding of the basic processes underly-
ing the unique electrochemical communication system that constitutes our nervous
system. Our brains and every other subsystem in the nervous system are composed
of cells called neurons. While these vary greatly in size, shape, and properties, such
cells commonly share certain typical features (see Figure 8.2). Anatomically, the
cell body (soma) is the site at which the nucleus and major subcellular structures are
located and is the central point from which synthesis and metabolism are coordi-
nated.

A more prominent feature is a long tube-like structure called the axon whose
length can exceed 1 meter (that is, —10 5 times the dimension of the cell body). It is
known that the propagation of a nerve signal is electrical in nature; after being ini-
tiated at a site called the axon hillock (see Figure 8.2) propagates down the length of
the axon to terminal branches, which form loose connections (synapses) with neigh-
boring neurons. A propagated signal is called an action potential (see Figure 8.3).

A neuron has a collection of dendrites (branched, "root-like" appendages),
which receive incoming signals by way of the synapses and convey them to the
soma.

How the detailed electrochemical mechanism operates is a fascinating story
that, broadly speaking, is now well understood. It is known that neuronal signals
travel along the cell membrane of the axon in the form of a local voltage difference
across the membrane. A word of explanation is necessary. In the resting state the
cytoplasm (cellular fluid) inside the axon contains an ionic composition that makes
the cell interior slightly negative in potential (-50 mV difference) with respect to
the outside (see Figure 8.4). Such a potential difference is maintained at a metabolic
expense to the cell by active pumps located on the membrane. These continually
transport sodium ions (Na') to the outside of the cell and convey potassium ions
(K+) inwards so that concentration gradients in both species are maintained. The dif-
ferences in these and other ionic concentrations across the membrane result in the
net electric potential that is maintained across the membrane of the living cell. In
this section we take the convention that the voltage v is the potential difference
(inside minus outside) for the membrane.

Thinking of the axon as a long electrical cable is a vivid but somewhat erro-
neous conception of its electrical properties. First, while a current is implicated, it is
predominantly made up of ionic flow (not electrons), and its direction is not longitu-
dinal but transverse (into the cell) as shown in Figure 8.5. Second, while a passive
cable has fixed resistance per unit length, an axon has an excitable membrane whose
resistance to the penetration of ions changes as the potential difference v is raised.
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Dendrites
Presynaptic` terminal

f	 INTEGRATION

POST-_:a: SYNAPTIC
Soma	 x'` CURRENT

Axon SPIKE INITIATIO
hillock	 _-----

IMPULSE

/
CONDUCTION

I

Axon

TRANSMITTER SECRETION

1	 •
Figure 8.2 Schematic representation of a neuron	 connections (synapses) with other neurons. [From
showing the cell body (soma) which receives stimuli Eckert, R., and Randall, D. Animal Physiology, 2d
via the dendrites, the axon along which impulses 	 edition. W. H. Freeman and Company. Copyright
are conducted, and the terminal branches that form © 1983, p. 179.]
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Figure 8.3 The action potential consists of local
changes in voltage across the axon membrane
accompanied by changes in the conductivities of the
membrane to Na' and K+ (gN., gK) in a time
sequence shown here. (Note: mho, a unit commonly
used for conductance, is equivalent to 1/ohm.) This

signal is generally propagated along the neuronal
axon from soma to terminal branches. [After
Hodgkin and Huxley (1952), from Kuffler, Nicholls,
and Martin (1984) p. 151, fig, 13A, From Neuron
to Brain, 2nd edition, by permission of Sinauer
Associates Inc.]

The flow of charged ions across a cell membrane is restricted to specific
molecular sites called pores, which are sprinkled liberally along the membrane sur-
face. It is now known that many different kinds of pores (each specific to a given
ion) are present and that these open and close in response to local conditions includ-
ing the electrical potential across the membrane. This can be broadly understood in
terms of changes in the conformation of the proteins making up these pores, al-
though the biophysical details are not entirely known.

To understand the process by which an action potential signal is propagated,
we must look closely at events happening in the immediate vicinity of the mem-
brane. Starting the process requires a threshold voltage: the potential difference must
be raised to about —30 to —20 mV at some site on the membrane. Experimentally

Figure 8.4 In the resting state, cells have an ionic	 higher potassium (K + ) concentration inside the cell.
composition (given here in millimolar units) that 	 Cl- and A- represent respectively chlorine ions and
differ from that of their environment. Active	 other ionic species such as proteins.
transport maintains a lower sodium (Na') and a
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 1
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Figure 8.5 When the axon of a neuron receives a	 membrane, creating local currents. Since adjacent
sufficiently large stimulus at some point along its 	 portions of the membrane are thereby stimulated,
length, the conductivities of the membrane for Na' 	the wave of activity known as the action potential
and K+ changes. This permits ions to cross the 	 can be propagated.

this can be done by a stimulating electrode that pierces a single neuron. Biologically
this happens at the axon hillock in response to an integrated appraisal of excitatory
inputs impinging on the soma. As a result of reaching this threshold voltage, the fol-
lowing sequence of events occurs (see Figure 8.6):

1. Sodium channels open, letting a flood of Na' ions enter the cell interior. This
causes the membrane potential to depolarize further; that is, the inside be-
comes positive with respect to the outside, the reverse of resting-state polariza-
tion.

2. After a slight delay, the potassium channels open, letting K+ leave the cell.
This restores the original polarization of the membrane, and further causes an
overshoot of the negative rest potential.

3. The sodium channels then close in response to a decrease in the potential dif-
ference.

4. Adjacent to a site that has experienced these events the potential difference ex-
ceeds the threshold level necessary to set in motion step 1. The process re-
peats, leading to spatial conduction of the spike-like signal. The action poten-
tial can thus be transported down the length of the axon without attenuation or
change in shape. Mathematically, this makes it a traveling wave.

The finer details of this somewhat impressionistic description were uncovered
in 1952 in a series of brilliant but painstaking experiments due to Hodgkin, Huxley,
and Katz on the giant squid axon, a cell whose axonal diameter is large enough to
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318	 Continuous Processes and Ordinary Differential Equations

Figure 8.6 Schematic time sequence depicting the followed by changes in the other gates. [From
membrane of the axon. Shown are separate pores, Kuffler, Nicholls, and Martin (1984), p. 149,
governed by gates, for the ions Na' and K. At rest fig. 12. From Neuron to Brain, 2nd edition, by
the m and n gates are closed. When a threshold permission of Sinauer Associates Inc.]
voltage is applied, the m gates open rapidly,

permit intracellular recording of the voltage by microelectrodes. One technique par-
ticularly useful in elucidating the time sequence of ionic conductivities is the
voltage-clamp experiments. In these, an axon is excised from its cell and its contents
are emptied (in a manner akin to squeezing a tube of toothpaste). A thin wire in-
serted into the hollow axon replaces its cytoplasm and permits an artificially constant
voltage to be applied simultaneously along its length. Provided the preparation is
kept physiologically active, one can observe a spatially constant but time-varying
voltage across the membrane. This voltage has typical action-potential characteris-
tics.

It is further possible to follow the time behavior of the ionic conductivities by a
variety of techniques. These include patch-clamp experiments, in which single pores
are isolated on bits of membrane by suction using fine micropipettes or by selective
ionic blocking using agents, such as tetrodotoxin, that bind to ionic pores in a
specific way. The detailed structure of some ionic pores is beginning to emerge by a
combination of techniques including electron microscopy. (See Figure 8.7.)

With this physiological description we can now discuss the mathematical
model that has played a significant role in the advances in neurophysiology. First, a
brief review of terminology and properties of an electrical circuit is provided in the
box.

The example given in the box, when somewhat modified, can be used to depict
electrical properties of the axonal membrane. The idea underlying the approach on
which the Hodgkin-Huxley model is based is to use an electric-circuit analog in
which physical properties such as ionic conductivities are represented as circuit ele-
ments (resistors). The voltage across the membrane thus corresponds to voltage
across a collection of resistors, each one depicting a set of ionic pores that selec-
tively permit a limited current of ions. By previous discussions, the resistance (or
equivalently, the conductivities of such pores) depends on voltage.
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Figure 8.7 Recent biochemical, electron
microscope, and electrophysiological information
leads to this schematic sketch of a voltage-sensitive
sodium channel. Shown are the activation gates and
a constriction that permits selectivity to Na'. Also

shown to scale are molecules of water, sodium, and
the blocking agent tetrodotoxin (TTX). [From
Kuffler, Nicholls, and Martin (1984), p. 156,
fig. 15. From Neuron to Brain, 2nd edition, by
permission of Sinauer Associates Inc.]

Figure 8.8 (a) Simple electric circuit. (b) Circuit showing several elements in parallel.
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320	 Continuous Processes and Ordinary Differential Equations

A Simple Electric Circuit

The following terms are applied in describing a circuit, such as the one shown in Figure
8.8(a).

q (t) = the charge (net positive or negative charge carried by particles in the cir-
cuit at time t),

1(t) = the current (rate of flow of charge in the circuit) = dq/dt,
V(t) = the voltage (electromotive force that causes motion of charge; also a

measure of the difference in the electrical potential across a given ele-
ment or set of elements),

R = resistance (property of a material that tends to impede the flow of
charged particles),

g = conductance = 1/R,
C = capacitance (a property of any element that tends to separate physically

one group of charged particles from another; this causes a difference in
electric potential across the element, called a capacitor).

The following physical relationships hold in a circuit:

1. Ohm's law: the voltage drop across a resistor is proportional to the current
through the resistor; R or 1 /g is the factor of proportionality:

	V R (t) = I (t)R = 1(t) .	 (2)
8

2. Faraday's law: the voltage drop across a capacitor is proportional to the electric
charge; 1/C is the factor of proportionality:

VV (t) = q(t) .	 (3)
C

3.	 Kirchhoff s law: the voltage supplied is equal to the total voltage drops in the cir-
cuit. For example:

V(t) = VR (t) + V(t).

4. For several elements in parallel, the total current is equal to the sum of currents
in each branch; the voltage across each branch is then the same. In the example
shown in Figure 8.8(b) the current is

	I (t) = h (t) + Iz (t) + I, (t) = V 	
V
	

V

= V(g1 + g2 + g3). 	 (4a)

Also,

V(t) = q(t)C.	 (4b)

Differentiating (4b) leads to

dV _ 1 dq _ I(t)	
(4c)

dt Cdt	 C

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Limit Cycles, Oscillations, and Excitable Systems 	 321

Thus

dV = V(t) (81 + gz + g3)•	 (4d)

In the circuit analog of an axon shown in Figure 8.9, resistance to ionic flow
across the membrane is depicted by the conductivities gK, gNa , and L. Resistance to
ionic motion inside the axon in an axial direction is represented by longitudinal ele-
ments whose resistance per unit length is fixed and much higher than that of the
medium surrounding the outer membrane. (The axon has a small radius, which im-
plies greater resistance to flow.) The finite thickness of the membrane is associated
with its property of capacitance, that is, a separation of charge. We must remember,
in looking at this schematic representation, that the axon is cylindrical. Therefore the
following modified definitions prove convenient:

q (x, t) = charge density inside the axon at location x and time t (units of
charge per unit length),

C = capacitance of the membrane per unit area,
a = radius of the axon,

1; (x, t) = net rate of exit of positive ions from the exterior to the interior
of the axon per unit membrane area at (x, t),

v (x, t) = departure from the resting voltage of the membrane at (x, t).

Then by previous remarks the following relationship is satisfied:

q (x, t) = 2 iraCv (x, t). 	 (5)

We shall now assume that a voltage clamp is applied to the axon so that
q = q (t), I ; = I, (t), and v = v (t) and thus all points on the inside of the axon are at
the same voltage at any instant. This means that charge will not move longitudinally
(there is no force leading to its motion). It can only change by currents that convey
ions across the cell membrane. In this case the rate of change of internal charge can
be written

dt = —2iral,. 	 (6)

The current I ; can be further expressed as a sum of the three currents 'Na, IK , and IL

(sodium, potassium, and all other ions) and related to the potential difference that
causes these, as follows:

dq = —21ra(IN,, + IK + IL),	 (7)dt
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322	 Continuous Processes and Ordinary Differential Equations

Ro	 Ro

Figure 8.9 A schematic version of the electric 	 and Ro represent the resistance of inside and
wiring diagram roughly equivalent to the axonal 	 outside environments; C depicts the membrane
membrane. gK, gNa, and gci are the voltage-	 capacitance. (Note: gc, is assumed to be constant.)
dependent conductivites to K + , Na', and Cl - ; R ;

'Na = gNa(V 	 VNa),	 (8a)
IK = gK(v — VK),	 (8b)
IL = gL(v — VL)•	 (8c)

Here VNa, VK, and VL represent that part of the resting membrane potential that is due
to the contributions of the ions Na', K + , and L (all other mobile species). Further-
more, equation (7) in its entirety may be written in terms of voltage by using equa-
tion (5), with the result that

dt	 I [gNa(V)(V — VNa) + gK(v)(v — VK) + gL(v — VL)J.	 (9)

It is generally assumed that gL is independent of v (is constant). At this point
Hodgkin, Huxley, and Katz departed somewhat from a straightforward electrical
analysis and went on to speculate on a possible mechanism governing the ionic con-
ductivities 9Na and gKK. After numerous trial-and-error models, laboriously solved on
mechanical calculators, they found it necessary to introduce three variables n, m,
and h in the dynamics of the ionic pores. These hypothetical quantities could perhaps
be interpreted as concentrations of proteins that must act in concert to open or close
a pore. (See Figure 8.6.) However, the equations were chosen to fit the data, not
from a more fundamental knowledge of molecular mechanisms.
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They defined

gNa — gNam 3 h,
	 (10)

gK = SKn a ,
	 (11)

where g 's are constant conductivity parameters. They suggested that n, m, and h are
voltage-sensitive gate proteins (see Figures 8.6 and 8.7), that obey differential equa-
tions in which voltage dependence is described:

do _ 
a„(v)(1 — n) — f3(v)n,	 (12a)

dt

dm _ 
a,,(v)(1 — m) — ßm(v)m, 	 (12b)

dt

dh = ah(v)(1 — h) — ßh(v)h. 	 (12c)
dt

In addition, the quantities a, am, ah, ß^, ßm, and ßh are assumed to be voltage-de-
pendent as follows:

am (v) = 0.1(v + 25)(e(°+25V/10 _ 1) - ',	 ß,„(v) = 4 e' 8 ,	 (13a b)

ah(v) = 0.07 e' 20 ,	 ßh(v) = (etv+30'1° + 1) - ',	 (13c,d)
a„(v) = 0.01(v + 10)(e(°+10)/10 — 1)-1,	 ß„(v) = 0.125e°180 .	 (13e,,f)

The values of other constants appearing in the equations are g Na = 120, gx = 36,
and gL = 0.3 mmho cm -Z ; vNa = —115, VK = 12, and vL _ —10.5989 mV.

With a physiological system as intricate as the neural axon, it is reasonable to
expect rather complicated interactions between variables. In assessing the Hodgkin-
Huxley model, we should keep in mind that all but one of its equations were tailored
to fit experimental observations. Part of the surprisingly great success of the model
lies in its ability to predict fairly accurately the results of many other observations
not used in formulating the equations. A valid criticism of the model is that the inter-
nal variables m, n, and h do not clearly relate to underlying molecular mechanisms;
these were, of course, unknown at the time).

The Hodgkin-Huxley equations consist of four coupled ODEs with highly non-
linear terms. For this reason they are quite difficult to understand in an analytic
mathematical way. In the next section we explore this model in the elegant way sug-
gested by Fitzhugh. After drawing certain conclusions about the behavior of these
equations, we will go on to a much simpler model that captures essential features of
the dynamics.

8.2 FITZHUGH'S ANALYSIS OF THE HODGKIN-HUXLEY EQUATIONS

In an elegant paper written in 1960 Fitzhugh set out "to expose to view part of the
inner working mechanism of the Hodgkin-Huxley equations.” In the year this paper
appeared, the three most advanced techniques applied to analysis of nerve conduc-
tion models were (1) calculations on a desk calculator (Hodgkin and Huxley's
method), (2) Runge-Kutta integration on the digital computers of the late 1950s, (3)
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324	 Continuous Processes and Ordinary Differential Equations

use of the analog computer. Fitzhugh (1960) notes that on the digital computer the
solution was very slow, "involving a week or more for a solution, including time for
relaying instructions to the operating personnel ...." The analog computer used by
Fitzhugh was an electronic device consisting of 40 operational amplifiers, six diode
function generators, and five servo multipliers. Being much faster than the digital
machines then in use, it permitted greater flexibility in experimenting with the equa-
tions, but special precautions were necessary to overcome inaccuracies that would
have drastically changed the results for reasons that will become clear presently.

Fitzhugh was the first investigator to apply qualitative phase-plane methods to
understanding the Hodgkin-Huxley equations. Since this is a system of four coupled
equations (in the variables V, m, n, and h), the phase space resides in R4 . To make
headway in gaining analytic insight, Fitzhugh first considered the variables that
change most rapidly, viewing all others as slowly varying parameters of the system.
In this way he derived a reduced two-dimensional system that could be viewed as a
phase plane. We follow his method here.

The voltage convention adopted by Fitzhugh V = vou, — v ;n is unfortunately
opposite to what subsequently became entrenched in the scientific literature. Thus
the first and second quadrants of his phase plane appear reversed relative to the
Hodgkin-Huxley model. To avoid possible confusion in conventions we use capital
V when referring to Fitzhugh's analysis.

From the Hodgkin-Huxley equations Fitzhugh noticed that the variables V and
m change more rapidly than h and n, at least during certain time intervals. By arbi-
trarily setting h and n to be constant we can isolate a set of two equations which de-
scribe a two-dimensional (V, m) phase plane. Plotting the functional relationships
representing the nullcline equations (m = 0 and V = 0) we obtain Figure 8.10. On
this figure the three intersections A, B, and C are steady states; A and C are stable
nodes, and B is a saddle point.

The directions of flow in this plane prescribe the following: A small displace-
ment from the "rest state" at A causes a return to this stable node, but a slightly
larger deviation (for example, m = 0 and V = —20 mV) will lead to a large excur-
sion whose final destination is the attracting point C. Note, however, that the null-
clines intersect at very small angles at the points A and B. [See enlarged view, Fig-
ure 8.11(a).] Consequently there is great sensitivity to any parameter variations that
tend to produce small displacements in these curves. This essentially is the effect of
incorporating the modulating influence of the other variables. As some critical
parameter changes, a displacement is produced, resulting in the following sequence
of dynamic behavior:

1. The points A and B approach each other and coalesce.
2. These both vanish as the nullclines separate, leaving a single stable steady state

at C. When this transition has occurred, any initial state in the Vm plane is
drawn towards C.

Adding a third variable, we might next consider the (V, m, h) equations. A
heuristic interpretation given by Fitzhugh is to imagine that as a point traces out a
trajectory of Figure 8.10(a) the orbits themselves are "wiggling," so that the phase
plane is changing with time. By considering the equation for h, Fitzhugh remarks
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C

6.3
o	 m nullcline

^	 C	 (m•0)
Reduced H-H

Eqns. (V,m)	 m
1=0

V nullcline
I

-100	
0V(mV) 

(a)

(b)

Figure 8.10 (a) The reduced phase plane. (b) A 	 figs. 2 and 9. Reproduced from the J. Gen. Physiol.
projection of the complete Hodgkin-Huxley model 	 1960, vol. 43, pp. 867-896 by copyright permission
on the Vm phase plane. [From Fitzhugh (1960), 	 of the Biophysical Society.]

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



326 Continuous Processes and Ordinary Differential Equations

\m= 0
m

V=off

B
6.3•C

/ Red ed H-H/	 Egm.(V.m)
h0

V (mv)

(a)

m

j
6.3•C

duad H-H
pnv. (V.m)

V•0

V (mv)

(b)

Figure 8.11 Expanded view of the region of the Vm
phase plane near the steady states B and A. (a) In
the absence of stimulating current, A is a stable
node and B a saddle point. (b) For super-
threshold stimulation, A and B coalesce and
disappear; only C will be a steady state. (c) An

(c)

inhibitory stimulus can cause a greater separation
of A and B, making it less likely that threshold will
be exceeded. [From Fitzhugh (1960), figs. 3, 5,
and 6. Reproduced from the J. Gen. Physiol. 1960,
vol. 43, pp. 867-896 by copyright permission of the
Biophysical Society.]

that as V becomes negative, h decreases, causing an upwards movement in the V
nullcline. For small displacements from rest state A this means that B moves to the
left, escaping from the moving phase point, which would then return to A. Larger
displacements may initially lie to the left of B, in a region that is initially attracted
towards C. However, as the geometry shifts, these points may be overtaken by the
moving nullclines and forced back to the rest state of A. Fitzhugh gives more details,
described in greater subtlety, in a good expository way.

The entire Vmhn phase space was reconstructed and represented by a schematic
diagram, a projection into the Vm plane. In the complete system there is no saddle
point. However, for the variables h and n close to their resting values the system is
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Limit Cycles, Oscillations, and Excitable Systems 	 327

essentially equivalent to the reduced (V, m) system in which the point B is a saddle
point. As seen in Figure 8.10(b) small deviations from the stable resting point do not
lead to excitation, but rather to a gradual return to rest. Larger, above-threshold de-
viations result in a large excursion through phase space, in which V first increases
and finally returns with overshoot to the resting state. Such superthreshold trajecto-
ries are the phase-space representations of an action potential. The regions marked
on these curves with circled numbers correspond to parts of the physiological re-
sponse which have been called the (1) regenerative, (2) active, (3) absolutely refrac-
tory, and (4) relatively refractory phases.

A familiarity with the Hodgkin-Huxley equations underscores the following:

1. Excitability: Above-threshold initial voltage leads to rapid response with large
changes in the state of the system.

2. Stable oscillations: While not described earlier, the presence of an applied
input current represented by an additional term, 1(t), on the RHS of equation
(9) (e.g. a step function with I = —10 µA cm -Z) can lead to the formation of a
stable limit cycle in the full model (see Fitzhugh, 1961).

Working with these basic characteristics of the Hodgkin-Huxley model led
Fitzhugh to propose a simpler model that gives a descriptive portrait of the neural
excitation without direct reference to known or conjectured physiological variables.
In preparation for an analysis of his much simpler model we take a mathematical de-
tour to become acquainted with several valuable techniques that will prove useful in
a number of upcoming results.

8.3. THE POINCARE-BENDIXSON THEORY

As previously mentioned, two-dimensional vector fields and thus also two-dimen-
sional phase planes have attributes quite unlike those of their n-dimensional counter-
parts. One important feature, on which much of the following theory depends, is the
fact that a simple closed curve (for example, a circle) subdivides a plane into two
disjoint open regions (the "inside" and the "outside"). This result, known as the Jor-
dan curve theorem implies (through a chain of reasoning we shall briefly highlight in
Appendix 2 for this chapter) that there are restrictions on the trajectories of a smooth
two-dimensional phase flow. As discussed in Chapter 5, a trajectory can approach as
its limiting value only one of the following: (1) a critical point, (2) a periodic orbit,
(3) a cycle graph (see Figure 8.12), and (4) infinite xy values. A trajectory contained
in a bounded region of the plane can only fall into cases 1 to 3.

The following result is particularly useful for establishing the existence of peri-
odic orbits.

Theorem 1: The Poincare-Bendixson Theorem
If for t ? to a trajectory is bounded and does not approach any singular
point, then it is either a closed periodic orbit or approaches a closed peri-
odic orbit for t -* .
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328	 Continuous Processes and Ordinary Differential Equations

Comment: The theorem still holds if we replace t >— to with t < to and t —p 00 with
t—> —oo.

The boxed material outlines properties of a phase plane that are essentially
equivalent to the Poincare-Bendixson theorem and that serve equally well for discov-
ering periodic orbits.

Theorem 2

Suppose the direction field of the system of equations (la,b) has the following proper-
ties:

1. There is a bounded region D in the plane that contains a single repelling steady
state and into which flow enters but from which it does not exit. Then the system
(la,b) possesses a periodic solution (represented by a closed orbit lying entirely
inside A or D.

2. There is a bounded annular region A in the plane into which flow enters but from
which flow does not exit, and A contains no steady states of equations (la,b).

It is shown in the appendix that the steady state in part 1 can only be an unstable
node or focus.

Two other statements outline the stability properties of periodic solutions.

Theorem 3

1. If either of the regions described in theorem 2 contains only a single periodic so-
lution, that solution is a stable limit cycle.

2. If I', and F2 are two periodic orbits such that I' 2 is in the interior of the region
bounded by I', and no periodic orbits or critical points lie between I', and F 2 ,

then one of the orbits must be unstable on the side facing the other orbit.

Much of the theoretical work on proving the existence of oscillatory solutions
to nonlinear equations such as (I a,b) rests on identifying regions in the phase plane
that have the properties described in theorem 2. We now summarize the Poincare-
Bendixson limit-cycle recipe.

Existence of Periodic Solutions

If you can find a region in the xy phase plane containing a single repelling steady state
(i.e. unstable node or spiral) and show that the arrows along the boundary of the region
never point outwards, you may conclude that there must be at least one closed periodic
trajectory inside the region.
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D

(a)

•

(c)

/0
(e)

Figure 8.12 The Poincare-Bendixson theory
prescribes the existence of a limit cycle in two
equivalent cases: (a) Flow cannot leave some
region D that contains an unstable node or focus.
(b) Flow is trapped inside an annular region A in

-	 z(&-
YL

(b)

/0
(d)

the xy plane. There are three possible fates of a
bounded semiorbit: (c) approach to a steady state,
(d) approach to a periodic orbit, and (e) approach
to a cycle graph.

An analogous statement corresponding to Figure 8.12(b) can be made. We
shall see several examples of the usefulness of the Poincare-Bendixson theory in this
chapter.

The two following criteria are sometimes useful in ruling out the presence of a
limit cycle, and for this reason have been called the negative criteria:

1. Bendixson's criterion. Suppose D is a simply connected region of the plane (that
is, D is a region without holes). If the expression aaF/ax + aG/ay is not identi-
cally zero (i.e. is not zero for all (x, y) in D) and does not change sign in D, then
there are no closed orbits in this region.

2. Dulac's criterion: Suppose D is a simply connected region in the plane, and sup-
pose there exists a function B (x, y), continuously differentiable on D, such that
the expression
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330	 Continuous Processes and Ordinary Differential Equations

a(BF) + a(BG)
ax	 ay

is not identically zero and does not change sign in D. Then there are no closed
orbits in this region.

The proof of Bendixson's criterion is based on Green's theorem and is accessi-
ble to students who have had advanced calculus (see appendix to this chapter). Du-
lac's criterion is an extension that results by substituting BF for F and BG for G in
the proof of Bendixson's criterion. For an interesting example of the utility of Du-
lac's criterion, consider a two-species competition model with carrying capacity ic ; :

dx
dt = r'x K

' 	K ' ß'2y
	(14a)

dy
dt = r2y K

z KZ ßzix .	
(14b)

For eliminating limit cycles, Bendixson's criterion fails, but Dulac's criterion
succeeds by choosing B (x, y) = 1/xy. (See problem 5.) Based on Bendixson's crite-
rion, the following result is readily established.

Corollary of Bendixson's Criterion:

If equations (la,b) are linear in x and y, then the only possible oscillations are the neu-
trally stable ones. (Limit cycles can only be obtained with nonlinear equations.)

To understand why this is true, consider the system (la,b) where f(x, y) =
ax + by, G (x, y) = cx + dy; then F, + Gy = a + d. This is a constant and has a
fixed sign. Thus the criterion is only satisfied trivially if a + d = 0 in which case
the equations would be dx/dt = by and dy/dt = dx. Such equations have neutral
cycles (not limit cycles), provided b and d have opposite signs.

Comments: Bendixson's negative criterion does not say what happens if the ex-
pression aF/ax + 3G/3y does change sign. (No conclusions can then be drawn
about the existence of limit cycles.) In other words, the theorem gives a necessary
but not a sufficient condition to test.

8.4 THE CASE OF THE CUBIC NULLCLINES

As one application of the Poincare-Bendixson theorem we examine, a rather classical
phase-plane geometry that almost invariably leads to the properties of oscillation or
excitability. We first discuss a prototype in which one of the nullclines is a simple
cubic curve [equation (16)]. As the qualitative analysis will illustrate, this
configuration creates the geometry to which the Poincare-Bendixson theorem ap-
plies. An extension to more general S-shaped nullclines will easily follow.
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Consider the system of equations

ü = v — G (u),	 (15a)
v = — u,	 (15b)

where for our prototype we take G (u) to be

u 3
G (u) = 3 — u.	 (16)

We shall postpone a discussion of the motivation underlying these equations and
concentrate first on understanding their behavior. One important feature of the func-
tion to be exploited presently is that

G(u) = —G(—u),

that is, G is an odd function. Nullclines of this system are the loci of points

v = G (u)	 (the u nullcline),	 (17)
u = 0	 (the v nullcline).	 (18)

The term cubic nullcline now becomes somewhat more transparent. The shape
of the loci given by equation (17) is that of a cubic curve, symmetric about the
origin. The two humps to the left and right of the origin also play an important role
in the properties of the system. (For this reason the function G (u) = u 3 would not
be satisfactory; see problem 10 and Figure 8.13.)

Now consider the pattern of flow along these nullclines. The following points
can be deduced from the equations:

1. The direction must be "vertical" on the u nullcline and "horizontal" on the v
nullcline (since ü = 0 or v = 0, respectively).

2. Whenever u is positive, v decreases.
3.	 On the v nullcline, u is zero so that G(u) is also zero. Thus by equation (15a)

ü = v, and u will increase when v is positive and decrease when v is negative.

These conclusions are depicted in Figure 8.13(a).
Now consider a trajectory emanating from some arbitrary point Po(xo, yo) in the

stippled annulus in Figure 8.13(b). The flow in proximity to the u nullcline will
carry it across and towards decreasing u values. After arriving at P1 , the flow drifts
horizontally across the v axis and over to the left branch of the cubic curve (P2).
Here a current in the positive v direction conveys the point to P 3 and then back
across the top of the hump and into the positive quadrant. From the construction in
the diagram it is further evident that the direction of flow is everywhere into or paral-
lel to the boundary of the annular region, indicating that once a trajectory has en-
tered the region, it is forever trapped. There are no steady-state points in A, and A is
bounded. By the Poincare-Bendixson theorem we can conclude that there is a limit-
cycle trajectory inside this region.

Furthermore, it is possible to shrink the thickness of A to an arbitrarily fine re-
gion and draw similar conclusions. In particular, this means that we can dismiss the
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V
v	 A

U)

u u

(a)
	

(b)

V

U U

(c)	 (d)

Figure 8.13 Flow along cubic nullclines described 	 oscillation contained in the region A; (d) more
by equations (15) and (16); (b) an annular region 	 general shapes of the function G that lead to similar
A that traps flow in the uv plane; (c) a limit cycle 	 results.

possibility that there is more than one limit cycle in the dynamical system. (See
Problem 10.)

We have chosen a particular example in which the form of the equations leads
to certain specific features: (steady state at (0, 0), flow symmetric with respect to the
origin, and one nullcline along the y axis). These features can be changed somewhat
without losing the main dynamic features of the system. More generally, a broader
class known as the Lienard equations exhibit similar behavior. Sometimes written as
the following single equation,
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d2u + g (u) 
du

 + u = 0,	 (19)

it can be shown to be equivalent to the system of (15a,b), where

G (u) =I g (s) ds.	 (20)fo"

Then the following properties of G (u) lead to a generalized cubic that results in es-
sentially identical conditions:

1. G (u) _ — G (— u) (thus G (u) is an odd function).
2. G (u)	 oc for u —* oo (the right and left branches of G extend to +oo and —00)

and for some positive ß, G (u) > 0 and dG/du > 0 whenever u > (3; (G is
eventually positive and monotonically increasing).

3. For some positive a, G (a) = 0 and G (u) <0 whenever u < a. (G is
negative for small positive u values).

Condition 1 means that all trajectories will be symmetric about the origin.
Condition 2 is necessary to cause the flow to be trapped or confined to the given an-
nulus. Condition 3 means that the steady state at (0, 0) is unstable. (Details are in-
vestigated in problem 11.) An example of a "bumpy" function satisfying these con-
ditions is shown in Figure 8.13(d). It can be rigorously established (with reasoning
similar to that used earlier) that such conditions guarantee that the system of equa-
tions (15) (or the single equation 19) admits a nontrivial periodic solution, that is, a
limit cycle. In the particular case where a = ß, as in the example we have analyzed,
there is indeed a single periodic orbit that is asymptotically stable. Rigorous proof
and further details may be found in Hale (1980), (p. 57-63).

The example used as a prototype in this section is called the Van der Pol oscil-
lator, sometimes written in the form

il —k(1 —u z)ü+u=0	 (k>0).	 (21)

(See problem 12.) Van der Pol first used it in 1927 to represent an electric circuit
containing a nonlinear element (a triode valve whose resistance depends on the ap-
plied current). Even then, van der Pol realized the parallel between this circuit and
certain biological oscillations such as the heart beat. For large values of the constant
k, the corresponding system of equations

e ü = v — G(u),	 (22a)

v = — ue,	 (22b)

contains a small parameter e = 1/k. (Recall that this can be exploited in calculating
approximate solutions using techniques of asymptotic expansions. See problem 12
for a taste of the idea.) The solutions to this small-parameter system are called relax-
ation oscillations for the following reasons: as long as v is close to G (u) (that is, in
vicinity of the cubic curve), ii and v both change rather slowly. When the trajectory
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334	 Continuous Processes and Ordinary Differential Equations

departs from this curve, ü = [v — G(u)]/e is quite large. The horizontal progres-
sion across from P, to P2 is thus rapid. A plot of u (t) reveals a succession of time
intervals in which u changes slowly followed by ones in which it changes more
rapidly.

Models related to van der Pol's oscillator have been important in many physi-
cal settings and, as we shall see, have also been valuable in describing oscillating bi-
ological systems. (A example of an application to the heart-beat cycle is discussed in
Jones and Sleeman, 1983.) More generally, the idea underlying s-shaped nullclines
has been exploited in a variety of models for excitable and oscillatory phenomena.
Figures 8.14 to 8.17 are a sampling drawn from the literature, and Section 8.5 deals
in greater detail with one particular application in the study of neural signals.

Oo tsc\ - - M 1.0

ö	 P N /

so $

(a)K•K^

Co

(b)K=K2>K^

M /=0
p

N
y=0

(C)K-K3>K2

Figure 8.14 Several regimes of behavior in a model
for substrate inhibition with S-shaped nullclines. s
and a represent substrate and cosubstrate. Their
chemical kinetics are represented by the equations

ds
dt = g (s, a),	 da = f(s, a)

where

—
	psa

g=s° —s 1+s+Ks'

_	 psa
f—a(ao—a)_ 1+s+Ks2.

K is the inhibition parameter, a, p, ao and so are
constants (see details in the original reference.) M
and N represent the maximum and minimum points
along the nullcline g = 0, and P is the steady state.
The transition a) —+ b) — c) is for decreasing K-
values. [From Murray (1981), fig. 2, p. 168.
J. Theor. Biol., 88, 161-199. Reprinted by
permission of Academic Press Inc. (London)]
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Figure 8.15 A vector field and cubic	 i

nullclines in a model for respiration in a 	 Y It o (x, Y^-o	 o
bacterial culture. The nutrient x and oxygen 
y are assumed to satisfy the equations 	 .,

29.0

1 + qxz = F(x,Y),	 I

27.0

25.0

Typical parameter values for stable oscillations are
/	 ^`IXS,Ys)

A = 11.0, B = 19.4, q = 0.5.	 23.0

[From Fairen and Velarde (1979). Fig. 3, 	 -X1IY)	 _

p. 152, J. Math. Biol., 8, 147-157, by	 21.0
permission of Springer- Verlag.]	 ` - x o IYI

19,0

FI X,r1-o

--- Xs4Y}

0
2.0	 G.0	 6.0	 8.0	 10.0

	
X

Figure 8.16 (a) Limit-cycle oscillations, and (b)
excitability on suprathreshold perturbation, in a
two-variable system derived from equations for a
cyclic-AMP signaling system devised by Goldbeter
and Segel (1977). The original equations are

da 
= v — o4	 (intracellular ATP),

dt

dt = qv't' — k,ß	 (intracellular CAMP),

dyk,ß=
h 

— 
ksy	 (extracellular CAMP),

dt 

a, ß and y represent dimensionless metabolic
concentrations and

__ a(1 + a)(1 + y) 2 	(allosteric kinetics
L + (1 + a)2(1 + y) 2 	of adenylate cyclase)

is a chemical kinetic term depicting enzyme —
receptor interactions. See Segel (1984) for a
simplified model and definitions of parameters.
[From Goldbeter and Martiel (1983). A critical
discussion of plausible models for relay and
oscillation of cyclic AMP in dictyostelium cells, in
Rhythms in Biology and other Fields of Application
Lecture Notes in Biomath, vol. 49, pp 173-178.
Reprinted with author's permission.]
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1

0.

0.

N

0.

0.

0

V ((IV)

(a)

	DAMPED OSCILLATION	
200	 400

SSO X 	 Z l00	
LIMIT CYCLE

	,'^I 	 I MAC
x	 I

I

e 	lREAL	 o

(b)

Figure 8.17 (a) S-shaped nullclines in a model for
voltage oscillations in the barnacle giant muscle
fiber. Shown is a limit cycle in a reduced V, N
system (V = voltage and N = fraction of open K +

channels); V satisfies an equation like (9), and N is
given by

d = AN (V)(N0(V) — N),

where

N. = I + tanh v 
V4

v3 )4

(b) The eigenvalues of the linearized system change
as the current is increased and cross the imaginary
axis twice. [From Morris and Lecar (1981), figs. 7
and 8. Reproduced from the Biophysical Journal
(1981) vol 35, 193 213, by copyright permission of
the Biophysical Society.]

Conclusions

A system of equations (1 a,b) in which one of the nullclines F (x, y) = 0 or G (x, y) = 0
is an S-shaped curve can give rise to oscillations provided the steady state on this curve
is unstable.

When the steady state is stable, the system may exhibit a somewhat different be-
havior called excitability. We discuss this property further in Section 8.5.D
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8.5 THE FITZHUGH-NAGUMO MODEL FOR NEURAL IMPULSES

In Section 8.2 we followed an analysis of the Hodgkin-Huxley model published by
Fitzhugh in the biophysical literature in 1960. The elegance of applying phase-plane
methods and reduced systems of equations to this rather complicated problem should
not be underestimated. (Similar ideas are used in more recent examples; see Morris
and Lecar, 1981.)

Using such analysis, Fitzhugh was able to explain the occurrence of thresholds
in the Hodgkin-Huxley model of neural excitation. The analysis was, however, less
instructive in demonstrating causes of repetitive impulses (a sequence of action po-
tentials in the neuron) because here the interactions of all four variables — V, m, h,
and n —were important [see equations (9) to (12).] A greater reliance on numerical,
rather than analytic techniques was thus necessary.

In a succeeding paper published in 1961, Fitzhugh proposed to demonstrate
that the Hodgkin-Huxley model belongs to a more general class of systems that ex-
hibit the properties of excitability and oscillations. As a fundamental prototype, the
van der Pol oscillator was an example of this class, and Fitzhugh therefore used it
(after suitable modification). A similar approach was developed independently by
Nagumo et al. (1962) so the following model has subsequently been called the
Fitzhugh-Nagumo equations.

To avoid misunderstanding, it should be emphasized that the main purpose of
the model is not to portray accurately quantitative properties of impulses in the axon.
Indeed, the variables in the equations have somewhat imprecise meanings, and their
interrelationship does not correspond to exact physiological facts or conjectures.
Rather, the system is meant as a simpler paradigm in which one can exhibit the sorts
of interactions between variables that lead to properties such as excitability and os-
cillations (repetitive impulses).

Fitzhugh proposed the following equations:

dx
dt = c[y + x — 3 + z(t)],	 (23a)

dy_ _x—a+by
(23b)

dt	 c

In these equations the variable x represents the excitability of the system and could
be identified with voltage (membrane potential in the axon); y is a recovery variable,
representing combined forces that tend to return the state of the axonal membrane to
rest. Finally, z(t) is the applied stimulus that leads to excitation (such as input cur-
rent). In typical physiological situations, such stimuli might be impulses, step func-
tions, or rectangular pulses. It is thus of interest to explore how equations (23a,b)
behave when various functions z(t) are used as inputs. Before addressing this ques-
tion we first take z = 0 and analyze the behavior of the system in the xy phase
plane.

In order to obtain suitable behavior, Fitzhugh made the following assumptions
about the constants a, b, and c:
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338	 Continuous Processes and Ordinary Differential Equations

1 - 23 <a<1,	 0<b<1,	 b<c2,	 (24)

Inspection reveals that when z = 0, nullclines of equations (23a,b) are given by the
following loci:

x3
y = 3 — x	 (x = 0, the x nullcline),	 (25)

a—x
y = b 	(y = 0, the y nullcline).	 (26)

The humps on the cubic curve are located at x = ±1.
We shall not explicitly solve for the steady state of this system, which satisfies

the cubic equation

x3	 + x(b — 1) 
a

. 	( 27)

However, the conditions given by equation (24) on the parameters guarantee that
there will be a single (real) steady-state value (x, y) located just beyond the negative
hump on the cubic x nullcline, at its intersection with the skewed y nullcline, as
shown in Figure 8.18.

Calculating the Jacobian of equations (23) leads to

(1 — x z)c	 c

J = 	1	 —b 	 (28)

c	 c

(problem g). Thus, by writing the characteristic equation in terms of x, we obtain the
quadratic equation

	

,A 2 + [b — ( 1 — x 2)c]A + [1 — (1 — x Z)b] = 0.	 (29)
c

The steady state will therefore be stable provided that

—[ — ( 1 — x 2)c] < 0,	 (30a)
c

	

1 — (1 — x 2)b > 0.	 (30b)D
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X

(a)

\	 z = step as labeled

e•o

FL

x•0
(:•0)

X

(b)

a'0.7 b•0.8
c•3	 :'-0.4

Stable limit cycle C

Y	 `^

Stoble limit cycle

Reeling pant P
la t•0

.2	 -1	 0	 2
X

(c)

Figure 8.18 Fitzhugh's model [equations 23a,b] 	 potential. (c) For a step input of stronger current,
leads to the basic phase plane behavior shown in 	 an infinite train of impulses (repetitive action
(a) for z = 0. (See text for an interpretation of x, 	 potentials) are generated. [From Fitzhugh (1961),
y, and z. The resting point corresponds to the rest 	 figs. 1, 3, and 5. Reproduced from the Biophysical
I state of the neuron. (b) In the presence of a step	 Journal, 1961, vol 1, pp 445-466, by copyright
input of weak current (z = —0.128) the system	 permission of the Biophysical Society.]
undergoes excitation analogous to a single action
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340	 Continuous Processes and Ordinary Differential Equations

Note that these conclusions are not affected if z in equation (23a) is nonzero. Since
b < 1 and b <c 2 , it may be shown (problem g) that the steady state is stable for all
values of x that are not in the range

—Y^x^Y, (31)

where y = (1 — b/c 2) 1 "2 is a positive number whose magnitude is smaller than 1.
The geometry shown in Figure 8.18 tells us that if the y nullcline were to intersect
the cubic x nullcline somewhere on the middle branch between the two humps, the
steady state would be unstable.

We next consider the behavior of the stimulated neuron, described by equa-
tions (23a,b) with a nonzero stimulating current z(t). A particularly simple set of
stimuli might consist of the following:

1. A step function z = 0 for t < 0; z = io for t ? 0).
2. A pulse (z = io for 0 <— t < to; z = 0 otherwise.
3.	 A constant current z = io .

For as long as z = io, the configuration of the x nullcline is given by the equation

x 3
y = 3 — x + io. (32)

This cubic curve has been shifted in the positive y direction if i o is positive and in the
opposite direction if io is negative. Let S * represent the intersection of (32) with the
y nullcline, S ° the intersection of (25) with the y nullcline, and S the instantaneous
state of the system. Thus S * and S ° are the steady states of the stimulated and un-
stimulated system, respectively and S = (x (t) , y (t)) .

At the instant a stimulus is applied, S = S° is no longer a rest state, since the
steady state has shifted to S*. This means that S will change, tracing out some tra-
jectory in the xy plane. The following possibilities arise:

1. If io is very small, S* will be close to S°, on the region of the cubic curve for
which steady states are stable and S = (x (t), y (t)) will be attracted to S *
without undergoing a large displacement.

2. If io is somewhat larger, S * may still be in the stable regime, but a more abrupt
dynamics could ensue: in particular, if S falls beyond the separatrix shown in
Figure 8.18(a), the state of the system will undergo a large excursion in the xy
plane before settling into the attracting steady state S.

Such cases represent a single action-potential response that occurs for superthreshold
stimuli. (See Figure 8.3.) This type of behavior, in which a steady state is attained
only after a long detour in phase space, is typical of excitable systems. As we have
seen, it is also a property intimately associated with systems in which one or both of
the nullclines have the S shape (also referred to sometimes as N shape or z shape)
similar to that of the cubic curve.

3. For yet larger io, S* will fall into the middle branch of the cubic curve so that
it is no longer stable. In this case the situation discussed in Section 8.5 occurs
and a stable, closed, periodic trajectory is created. All points, and in particular
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Limit Cycles, Oscillations, and Excitable Systems 	 341

S, will undergo cyclic dynamics, approaching ever closer to the stable limit
cycle. This behavior corresponds to repetitive firing of the axon, which results
when a step stimulus of sufficiently high intensity is applied.

In all of these cases, when the applied stimulus is removed (at z = 0), S ° be-
comes an attracting rest state once more; the repetitive firing ceases, and the excited
state eventually returns to rest.

With a few masterful strokes, Fitzhugh has painted a caricature of the behav-
ior of neural excitation. His model is not meant to accurately portray the physiologi-
cal mechanisms operating inside the axonal membrane. Rather, it is a behavioral
paradigm, phrased in terms of equations that are mathematically tractable. As such it
has played an important role in leading to an understanding of the nature of excitable
systems and in studying more complicated models of the action potential that include
the effect of spatial propagation in the native (nonclamped) axon.

8.6 THE HOPF BIFURCATION

A further diagnostic tool that can help in establishing the existence of a limit-cycle
trajectory is the Hopf bifurcation theorem. It is quoted widely, applied in numerous
contexts, and for this reason merits discussion.

Subject to certain restrictions, this theorem predicts the appearance of a limit
cycle about any steady state that undergoes a transition from a stable to an unstable
focus as some parameter is varied. The result is local in the following sense: (1) The
theorem only holds for parameter values close to the bifurcation value (the value at
which the just-mentioned transition occurs). (2) The predicted limit cycle is close to
the steady state (has a small diameter). (The Hopf bifurcation does not specify what
happens as the bifurcation parameter is further varied beyond the immediate vicinity
of its critical bifurcation value.)

In the following box the theorem is stated for the case n = 2. A key require-
ment corresponding to our informal description is that the given steady state be asso-
ciated with complex eigenvalues whose real part changes sign (from — to +). In
popular phrasing, such eigenvalues are said to "cross the real axis." To recall the
connection between complex eigenvalues and oscillatory trajectories, consider the
discussion in Section 5.7 (and in particular, Figure 5.12 of Chapter 5).

Advanced mathematical statements of this theorem and its applications can be
found in Marsden and McCracken (1976). Odell (1980) and Rapp (1979) give good
informal descriptions of this result that are suitable for nonmathematical readers.

One of the attractive features of the Hopf bifurcation theorem is that it applies
to larger systems of equations, again subject to certain restrictions. This makes it
somewhat more applicable than the Poincare-Bendixson theorem, which holds only
for the case n = 2.
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342	 Continuous Processes and Ordinary Differential Equations

The Hopf Bifurcation Theorem for the Case n = 2

Consider a system of two equations that contains a parameter y.

dx _
dt = .f (x, Y; ?'), 	 (33a)

dy
dt = g (x, y; y) •	 (33b)

The usual differentiability and continuity assumptions are made aboutf and g as func-
tions of x, y, and y (see Chapter 5). Suppose that for each value of y the equations ad-
mit a steady state whose value may depend on y, that is, (x(y), y(y)). Consider the Ja-
cobian matrix evaluated at the parameter-dependent steady state:

of of

J(y) = 
ax ay	 (34)
ag ag
ax ay tx. y>

Suppose eigenvalues of this matrix are ,1(y) = a(y) ± b(y)i. Also suppose that there
is a value y*, called the bifurcation value, such that a(y*) = 0, b(y*) # 0, and as y
is varied through y*, the real parts of the eigenvalues change signs (da/dy # 0 at
y = y*)•

Given these hypotheses, the following possibilities arise:

1. At the value y = y* a center is created at the steady state, and thus infinitely
many neturally stable concentric closed orbits surround the point (1, y ).

2. There is a range of y values such that y* < y < c for which a single closed or-
bit (a limit cycle) surrounds (x, 3). As y is varied, the diameter of the limit cycle
changes in proportion to I y — y* I'll. There are no other closed orbits near
(x, 51).  Since the limit cycle exists for y values above y*, this phenomenon is
known as a supercritical bifurcation.

3.	 There is a range of values such that d < y < y* for which a conclusion similar
to case 2 holds. (The limit cycle exists for values below y*, and this is termed a
subcritical b(urcation.)

Figure 8.19 illustrates what can happen close to a bifurcation value y* (in the
case n = 2). Here the xy phase plane has been drawn for several values of the
parameter y. In Figure 8.19(a) observe that as y increases from small values through
y* and up to y = c the steady state changes from a stable focus to an unstable fo-
cus. A stable limit cycle appears at y*, and its diameter grows as indicated by the
parabolic envelope. This succession, called a supercritical bifurcation, is often repre-
sented schematically by the bifurcation diagram of Figure 8.19(c).

In Figure 8.19(b) an unstable limit cycle accompanies the stable focus until y
increases beyond y* and disappears. This type of transition, called a subcritical bi-
furcation, is represented by Figure 8.19(d). (Recall that in bifurcation diagrams solid
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v	 Y	 Y

(a)

Y	 Y	 Y

(b)

Supercritcal
	

Subcritical
(c)
	

(d)

Figure 8.19 Limit cycles can appear close to a
bifurcation value y* of some parameter y when a
transition from stable to unstable focus occurs at a
steady state (a) A supercritical bifurcation occurs
for y > y*. (b) A subcritical bifurcation occurs for
y < y*. The Hopf bifurcation theorem gives

conditions that guarantee the existence and stability
properties of such limit-cycle solutions. It has been
assumed that the steady state is stable when y < y*
and unstable when y > y*. (c, d) The bifurcation
diagrams summarize this parameter dependence.
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The Hopf Bifurcation Theorem for the Case n > 2

Consider a system of n equations in n variables,

A = F(x, y),dt
where

x = (xi, xz, . . . , xn),

F = (fi(x; y),.f2(x; y), ... ,f,(x; y)),

with the appropriate smoothness assumptions on f, which are functions of the variables
and a parameter y. If x is a steady state of this system and linearization about this point
yields n eigenvalues

A l ,A2 ,...,A "_ 2 ,a+bi,a —bi,

where eigenvalues A, through A "_2 have negative real parts and A"_, , A. (precisely
these two) are complex conjugates that cross the imaginary axis when y varies through
some critical value, then the theorem still predicts closed (limit-cycle) trajectories. The
extension of this theorem to arbitrary dimensions depends in large part on another im-
portant theorem (called the center manifold theorem), which ensures that close to the
steady state the interesting events take place on a plane-like subset of R" (mathemati-
cally called a two-dimensional manifold).

curves represent stable steady states or periodic solutions, whereas dotted curves
represent unstable states.)

While in Figure 8.19(a,b) the limit cycle is shown originating at y*, the theo-
rem actually does not specify at what exact value the closed orbit appears. Further-
more, to determine whether or not the limit cycle is stable a rather complicated cal-
culation must be done. A simple case is given as an example in the following box.
Other examples can be found in Marsden and McCracken (1976, sections 4a,b),
Odell (1980), Guckenheimer and Holmes (1983) and Rand et al. (1981).

Calculations of Stability of the Limit Cycle in Hopf Bifurcation for the Case n = 2

For the system of equations (33a,b) it will be assumed that for y = y* the Jacobian
matrix is of the form

J = (x, y) I r=r = (—b 0) . 	(35)

In this case the eigenvalues (at the critical parameter value) are

A, = bi,	 A2 = — bi.

Marsden and McCracken (1976) derive a rather elaborate stability criterion.
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The following expression must be calculated and evaluated at the steady state
when y = y*:

Vi„ = 4b (f. +f  + g. + gryr)

31T
+ 4b z [f , (f + f») + g (gx. + grr) + .f 8 — .frr 8rr^	 (36)

Then the conclusions are as follows:

1. If V"' < 0, then the limit cycle occurs for y > y* (supercritical) and is stable.
2. If V" > 0, the limit cycle occurs for y < y* (subcritical) and is repelling

(unstable).
3.	 If V" = 0, the test is inconclusive.

Note: If the Jacobian matrix obtained by linearization of equations (33a,b) has diagonal
terms but the eigenvalues are still complex and on the imaginary axis when y = y*,
then it is necessary to transform variables so that the Jacobian appears as in (35) before
the stability receipe can be applied. (See Marsden and McCracken, 1976, for several
examples.)

Example l

Consider the system of equations

dx
	= dt = Y = .f(x, Y; y),	 (37a)

= —y 3 
dt 	 + 'YY — x = 8(x, Y; y) •	 (37b)

(This system comes from Marsden and McCracken, 1976, pp. 136, and references
therein.) We consider these equations, where y plays the role of a bifurcation parame-
ter.

The only steady state occurs when x = y = 0; at that point the Jacobian is

J(0, 0) = (
f& f )	 0 2 	= (_0 1	

(38)_

	

3	 Y ca, o)

Eigenvalues of this system are given by

h = y ± 2yß .	 (39)

In the range I yj < 2, the eigenvalues are complex A = {a ± bi}, where

_ z
a=ReA= 2 and b=ImA=( 4 2 y).

Note that as y increases from negative values through 0 to positive values, the eigen-
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346	 Continuous Processes and Ordinary Differential Equations

values cross the imaginary axis. In particular, at the bifurcation value y = 0 we have

A = ±i

(pure imaginary eigenvalues) and da/dy # 0.
The Hopf bifurcation theorem therefore applies, predicting the existence of peri-

odic orbits for equations (37a,b). We next calculate the expression V" and determine
stability. For equations (37a,b) we have

fw =0,	 f;y=0,

.frZr= 0 ,	 g=r=0,	 (40)
g = 0,	 = 0,
g» =-6,	 fiv =0.

This means that

V"= 
46

(0+0+0 - 6)+ 4b2 (0)
(41)

= 	 (-6) < 0.

This falls into case 1 (see previous box), and so the limit cycle is stable.

8.7 OSCILLATIONS IN POPULATION-BASED MODELS

A number of natural populations are known to exhibit long-term oscillations. Al-
though conjectures about the underlying mechanisms vary, it is commonly recog-
nized that the relationship between prey and predators can lead to such fluctuations
in species abundance.

One model that predicts the tendency of predator-prey systems to oscillate is
the Lotka-Volterra model, which we discussed in some detail in Chapter 6, Section
6.2. As previously remarked, however, this model is not sufficiently faithful to the
real dynamical behavior of populations. Part of the problem stems from the fact that
the Lotka-Volterra model is structurally unstable, that is, subject to drastic changes
when relatively minor changes are made in the equations. A second problem is that
the cycles in species abundance are sensitive to initial population levels. For exam-
ple, if we start with large populations, the fluctuations too will be very large (see
Figure 6.4a). (In the next section we shall discover that this property stems from the
fact that the Lotka-Volterra system is conservative.)

Since oscillations in natural populations are more regular and stable than those
of the simple Lotka-Volterra model, we explore the possibility that the underlying
dynamical behavior suitable for depicting these is the limit cycle. Our main goal in
this section is to start with a more general set of equations, retain some of the prop-
erties of the predator-prey model, and make minimal further assumptions in order to
ensure that stable limit-cycle oscillations exist. (This approach is to some extent sim-
ilar to problems discussed in Sections 3.5, 4.11, and 7.7.) With the theory of Poin-
care, Bendixson, and Hopf, we are in a position to reason geometrically and analyti-
cally about stable oscillations.
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Limit Cycles, Oscillations, and Excitable Systems 	 347

As a starting set of equations we shall consider

dx
dt = xf(x, y), 	(42a)

dy
dt = yg (x, y),	 (42b)

where x is the prey density, y is the predator density, and the functions f and g repre-
sent the species-dependent per capita growth and death rates. Furthermore, we con-
sider, as before, spatially uniform populations comprised of identical individuals.

Based on this form we may conclude that system (42) has nullclines that
satisfy

x = 0: x = 0	 or	 f(x, y) = 0,	 (43a)

y = 0: y = 0	 or	 g (x, y) = 0.	 (43b)

Thus the x and y axes are nullclines, as are the other loci described by equations
(43a,b). We shall assume that the loci corresponding to f(x, y) = 0 and g(x, y) = 0
are single curves and that these intersect once in the positive xy quadrant at (x, 5T);
that is, that there is a single, strictly positive steady state.

In connection with these assumptions, recall that in the Lotka-Volterra model,
f(x, y) = 0, g (x, y) = 0 are straight lines, parallel to the x or y axes respectively,
and that the steady state at their intersection is a neutral center for all parameter val-
ues. This presents two features to be corrected if we are to discover stable limit-
cycle solutions. First, as evident from Figure 6.4, there is the possibility of flow es-
caping to infinitely large x values, whereas, to use the Poincare-Bendixson theorem
we are required to exhibit a bounded region that traps flow. Second, if we were to
exploit the Hopf bifurcation theorem, the steady state should not be forever poised at
the brink of neutral stability; rather, it should undergo some transition (from stable to
unstable focus) as parameters are changed.

We now list four assumptions that will be made in view of the minimal infor-
mation consistent with the biological system.

1. of/ay < 0	 (Predators adversely affect the prey; that is, net growth rate of
the prey population is smaller when they are being exploited by
more predators.)

2. ag/ax > 0	 (The availability of more prey enhances the predator's growth
rate.)

3. There is a threshold level of predators, y,, that reduces the per capita prey
growth rate to zero (even when the prey population is very small); that is, y, is
defined by

.f(0, yl) = 0.

4. There is a level of prey x, that is minimally required to sustain the predator
population; x, is defined by the relationship

g(xi 3 O)=0.

Assumptions 3 and 4 simply mean that we retain the property that prey (x) and
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^x (X, Y)

x
	X^	 X2

g=0 XI	 X^X2

(c) (d)

Continuous Processes and Ordinary Dierential Equations

predator (y) nullclines intersect the predator and prey axes as in Figure 8.20(a). Fur-
ther, assumptions 1 and 2 imply that along the y and x axes the flow is respectively
toward and away from (0, 0) (see problem 17). Moreover, this also determines the
directions of flow along the nullclines f(x, y) = 0 and g (x, y) = 0 since continuity
must be preserved.

We now consider what other minimal assumptions could produce a geometrical
situation to which the Poincare-Bendixson theorem might apply, that is, a region in
the xy plane that confines flow. According to our previous remark, it is necessary to
prevent the escape of trajectories along the x axis to infinite x values. This could be

xx

(a)	 (b)

Y

....................._.y .....

f = 0	 J
Yi

Figure 8.20 The Lotka-Volterra model of Section
6.2 must be changed to ensure that a trajectory-
trapping region surrounds (x, y). (a) Far away
flow must be towards decreasing x and y values.
(b) Flow along the x direction can be reversed by
allowing for a steady state at (x2, 0), in absence of

predators. (c) Flow along the y axis can be
controlled by bending the y nullcline (g = 0). To
ensure that (x, y) is unstable, the curve f = 0 must
have positive slope at its intersection with g = 0
(hence f = 0 has a "hump"). These conditions lead
to a stable limit cycle, shown in (d).
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done by assuming that there is a second steady state somewhere along the positive x
axis, at (xi, 0). At such a point the flow will be halted and reversed. The appropriate
assumption is that

5. There is a value of x, say x2 , such that (x2 , 0) is also a steady state.

In other words, in the absence of predators, the prey population will eventually at-
tain a constant level given by its natural carrying capacity, here denoted as x2 . The
prey population does not continue to grow ad infinitum.

An easy way of achieving this predation-free steady state geometrically is to
bend the curve f(x, y) = 0 so that it intersects the x axis at x2, in other words, so that
f(x2, 0) = 0 is exactly as shown in Figure 8.20(b). This then implies that

6. The x-nullcline corresponding to f(x, y) = 0 has a negative slope for prey
levels that are sufficiently large (so that it eventually comes down and
intersects the x axis).

The condition can be made precise by implicit differentiation: Everywhere on
the curve

f(x, y) = 0
	

(44)

it is true that

of dx &fdy0	
(45)ax dx ax dx

that is,

ax + of s = 0,	 (46)
Y

where s = dy/dx is the slope of the curve. Requiring a negative slope means that

aflaxs 	
<0	 (for large x) .

By assumption I this can only be true if

ä < 0	 (for large x) .	 (47)

This means that at large population levels the prey's growth rate diminishes as den-
sity increases. The qualifier "large x" simply means that we wish the intersection x2
to occur at prey values bigger that x, (see problem 17).

The above six conditions lead to the sketch shown in Figure 8.20(b). This re-
stricts flow along the x axis but is not sufficient to rule out narrow but infinitely long
flow regimes down the y axis, around the steady state, and back up to y -. The
problem is alleviated by suitably positioning the "tail end" of the y nullcline
g (x, y) = 0. Figure 8.20(c) illustrates the way to proceed. We see that the slope of
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350	 Continuous Processes and Ordinary Differential Equations

this curve is positive for all values of x. By implicit differentiation it can be estab-
lished (as previously) that this leads to a condition on g, namely

7.	 ag/ay < 0.	 (48)

We see that the predator population also experiences density-dependent growth
regulation and cannot grow explosively, even in an abundance of prey.

Conditions 1 to 7 result in the phase-plane behavior shown in Figure 8.20(c).
To summarize, we have now obtained a subset of the xy plane, shown as a dotted
rectangle in Figure 8.20(c) from which flow cannot depart. In order to obtain a limit
cycle it is now necessary to ensure that the steady state (x, ) is unstable (repellent)
so that the conditions of the Poincare-Bendixson theorem will be met. To determine
the constraints that this requirement imposes, we define the Jacobian of equations
(42):

a(xf) a(xf )
ax	 ay	 =(a b

	

a(yg) a(Yg) 	c d/'	 (49)
ax	 ay/(3, y)

Then, since f(, y) = g (x, y) = 0, we have

a = xfX j ,	 (50a)

b = xfy Iss ,	 (50b)

c = ygX ss ,	 (50c)

d = y4 .	 (50d)

[where ss denotes that the quantities are to be evaluated at (x, y)]. Furthermore, re-
quiring (x, to be an unstable node or focus is equivalent to the conditions for two
positive eigenvalues of (49):

a+d>0,	 (51a)

ad — be > 0.	 (51 b)

Details leading to this result and further comments are given in problem 18. It tran-
spires that the appropriate instability at (x,	 can only be obtained if one assumes
that at (x,	 the slope of the nullcline f(x, y) = 0 is positive but smaller than that of
the nullcline g (x, y) = 0; that is,

0 <s1(, y) <s(, y).	 (52)
where

dy
	st(x, Y) =	 ^z y^

is the slope of the nullcline f(x, y) = 0, and similarly sg is the slope of g (x, y) = 0
at (x, y). Therefore, the curve f(x, y) = 0 must have curvature as shown in Figure
8.20(c), with (x, to the left of the hump.

With this informal reasoning we have essentially arrived at a rather famous
theorem due to Kolmogorov, summarized here:
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Kolmogorov's Theorem

For a predator-prey system given by equations (42a,b) let the functions fand g satisfy
the following conditions:

1. of/ay < 0;
2. äg/ax > 0;
3. For some y, > 0, f(0, y,) = 0.
4. For some x, > 0, g(xi, 0) = 0.
5. There exists xi > 0 such that f(x2, 0) = 0.
6. of/ax < 0 for large x (equivalently, r2 > x,), but of/ax > 0 for small x.
7. ag/ay < 0.
8. There is a positive steady state (x, y) that is unstable; that is

(x_ + ygy),, > 0	 and	 (.fxgr — .fygx)s > 0.

	9.	 Moreover, (x, y) is located on the section of the curve f(x, y) = 0 whose slope is
positive.

Then there is a (strictly positive) limit cycle, and the populations will undergo sustained
periodic oscillations.

Figure 8.20(d) depicts the nature of these oscillations in the xy plane.

A Summary of the Biological Conditions Leading to Predator-Prey Oscillations

1. An increase in the predator population causes a net decrease in the per capita
growth rate of the prey population.

2. An increase in the prey density results in an increase in the per capita growth rate
of the predator population.

3. There is a predator density y, that will prevent a small prey population from
growing.

4. There is a prey density x, that is minimally required to maintain growth in the
predator population.

	

5, 6.	 Growth rate of the prey is density-dependent, so that there is a density x2 at
which the trend reverses from net growth to net decline. At small densities an in-
crease in the population leads to increased net rate of growth (for example, by
enhancing reproduction or survivorship). The opposite is true for densities
greater than 72 . (This is the so-called Allee effect, discussed in Section 6.1.)

7. The predator population undergoes density-dependent growth. As density in-
creases, competition for food or similar effects causes a net decline in the growth
rate (for example, by decreasing the rate of reproduction).

8. The species coexistence at some constant levels (x, y) is unstable, so that small
fluctuations lead to bigger fluctuations. This is what creates the limit-cycle oscil-
lations.
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352	 Continuous Processes and Ordinary Differential Equations

These eight conditions are sufficient to guarantee stable population cycles in
any system in which one of the species exploits the other (sometimes called an ex-
ploiter-victim system; see Odell, 1980, for example). Of course it should be re-
marked that other population interactions may also lead to stable oscillations and that
we have by no means exhausted the list of reasonable interactions leading to the ap-
propriate dynamics.

For an example of oscillations in a plant-herbivore system, see problem 21.
You may wish to consult Freedman (1980) for more details and an extensive bibliog-
raphy, or Coleman (1983) for a good summary of this material.

8.8 OSCILLATIONS IN CHEMICAL SYSTEMS

The discovery of oscillations in chemical reactions dates back to 1828, when A.T.H.
Fechner first reported such behavior in an electrochemical cell. About seventy years
later, in the late 1890s, J. Liesegang also discovered periodic precipitation patterns
in space and time. The first theoretical analysis, dating back to 1910 was due to
Lotka (whose models are also used in an ecological contex; see Chapter 6). How-
ever, misconceptions and old ideas were not easily changed. The scientific commu-
nity held the unshakable notion that chemical reactions always proceed to an equi-
librium state. The arguments used to support such intuition were based on
thermodynamics of closed systems (those that do not exchange material or energy
with their environment). It was only later recognized that many biological and chem-
ical systems are open and thus not subject to the same thermodynamic principles.

Over the years other oscillating reactions have been found (see, for example,
Bray, 1921). One of the most spectacular of these was discovered in 1959 by a Rus-
sian chemist, B. P. Belousov. He noticed that a chemical mixture containing citric
acid, acid bromate, and a cerium ion catalyst (in the presence of a dye indicator)
would undergo striking periodic changes in color, right in the reaction beaker. His
results were greeted with some skepticism and disdain, although his reaction (later
studied also by A. M. Zhabotinsky) has since received widespread acclaim and de-
tailed theoretical treatment. It is now a common classroom demonstration of the ef-
fects of nonlinear interactions in chemistry. (See Winfree, 1980 for the recipe and
Tyson, 1979, for a review.)

The bona fide acceptance of chemical oscillations is quite recent, in part owing
to the discovery of oscillations in biochemical systems (for example, Ghosh and
Chance, 1964; Pye and Chance, 1966). After much renewed interest since the early
1970s, the field has blossomed with the appearance of hundreds of empirical and
theoretical publications. Good summaries and references can be found in Degn
(1972), Nicolis and Portnow (1973), Berridge and Rapp (1979), and Rapp (1979).

The first theoretical work on the subject by Lotka (discussed presently) led to a
reaction mechanism which, like the Lotka-Volterra model, suffered from the defect
of structural instability. That is, his equations predict neutral cycles that are easily
disrupted when minor changes are made in the dynamics. An important observation
is that this property is shared by all conservative systems of which the Lotka system
is an example. A simple mechanical example of a conservative system is the ideal
linear pendulum: the amplitude of oscillation depends only on its initial configura-
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tion since some quantity (namely the total energy in this mechanical system) is con-
served. Such systems cannot lead to the structurally stable limit-cycle oscillations. It
can be shown (see box) that in the Lotka system there is a quantity that remains con-
stant along solution curves. Each value of this constant corresponds to a distinct pe-
riodic solution. (Thus there are uncountably many closed orbits, each within an
infinitesimal distance of one another.) This leads to structural instability.

Lotka's Reaction

The following mechanism was studied by Lotka (1920):

A + x, ki p 2x1,

x, + X2	 2x2,	 (53)
k3

X2 --  B.

Corresponding equations are

dx, _ _fix, + 2k,Ax, — k2x 1 x2 = k,Ax, — k2x,x2 	(54a)
dt

dx2 = 
— k2x,x2 + 2k2x 1 x2 — k3x2 = k2x1x2 — k3x2	 (54b)

dt

When the substance A is maintained at a constant concentration, the above equations
(after renaming constants) are identical with the predator-prey model analyzed in
some detail in Chapter 6. The presence of a steady state with neutral cycles is thus
clear.

It can also be shown that the following expression is constant along trajectories:

	

v = x 1 + x2 — kz In x, — kA In xz.	 (55)

To see this it is necessary to rewrite the system of equations (54) as follows:

dx, 	 k,Ax, — k2x1x2
	(56)

dx2 	k2x 1 x2 — k3x2 '

or equivalently as

	(1 kk3 dx 1 + (l ki f dx2 = 0.	 (57)

Now we shall discuss the properties of this so called exact equation.

Let us inquire whether the LHS of equation (57) can be written as a total differential of
some scalar function v(x,, xz). If so then

dv = 0,	 (58)

(which means that v is a constant). This implies that
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354	 Continuous Processes and Ordinary Differential Equations

av dx, + av dx2 = 0.	 (59)ax,	 OXZ

Let us define the following, taken from expressions in equation (57):

M=1— k3 ,1	 N=1— k 'A
	(60)

	

kzx,	 k2x2

These should satisfy the relations

Mdx, + Ndx2 = 0

where

	av 	 av
M=--, 	 N=—.	 (61)	ax,	 ax2

As will be emphasized in Chapter 10 in connection with partial differentiation,
this can only be true when the following relation between M and N holds (provided v
has continuous second partial derivatives):

	aM av	 av 	ON	
(62)

0x2 = ax2ax, = ax1ax2 = ax, •

Checking equations (60) for this condition leads to

aM __ a	 k3	 ak,A = ON

	

-- =0=-1 —1	 (63)
axe	 axe	 k3x,	 ax,	 k2xz/	 ax, ,

Equations that satisfy (61), (62) are called exact equations. Once identified as
such, they can be solved in a standard way (see problem 23). Geometrically the so-
lution curves of such equations can be viewed as the level curves of a potential func-
tion (v in this case) or, in a more informal description, as the constant-altitude con-
tours on a topographical map of a mountain range. (See Figure 8.21.) Each curve
corresponds to a fixed "total energy", a fixed potential v, or a fixed height on the
mountain, depending on the way one interprets the conserved quantity. Since there
is an infinity of possible closed curves, they are neutrally but not asymptotically
stable.

Just as it was possible to modify the Lotka-Volterra model in population dy-
namics, so too we can write modified Lotka reactions in which limit-cycle trajecto-
ries exist. (See problem 22.) This has been the basis of much recent work in the
topic of oscillating reactions.

More generally, a number of guidelines and requirements for chemical oscilla-
tions has been established. A partial list follows.

Criteria for Oscillations in a Chemical System

1. The theory of Poincare and Bendixson (in two dimensions) and Hopf
bifurcations (in n dimensions) applies as before to a given system.

2. Some sort of feedback is required to obtain oscillations; following are
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Figure 8.21 A conservative system is characterized constant along solution curves. Such systems can
by the property that some quantity (for example, 	 have neutrally stable cycles but not limit-cycle
potential, total energy, or height on a hill) is 	 trajectories.

examples of activation and inhibition, which are particular types of feedback:

activation

--i a^ ^: a2 ... a,	 an -->
activation

a, ----p a2 --^ a 3 --^ ... --* an ---k

inhibition

a1 —* a2 _ ... --- a„ --

inhibition

- at r= a2 a -,	 a2 an ---p
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In these examples one of the chemicals affects the rate of a reaction step in the
network. (Activation implies enhancing a reaction rate, whereas inhibition implies
the opposite effect.) Since most biological reactions are mediated by enzymes, a
common mechanism through which such effects could occur is allosteric
modification; for example, the substrate attaches to the enzyme, thereby causing a
conformational change that reduces the activity of the enzyme. It is common to refer
to a feedback influence if the chemical has an effect on its precursors (substances re-
quired for its own formation). Similarly, feedforward refers to a chemical's
influence on its products (those chemicals for which it is a precursor).

Nicolis and Portnow (1973) comment particularly on chemical systems that can
be described by a pair of differential equations such as

dx, _
dt = v`(x ' , x2),	 (64a)

dx2dt 	uz(x,, X2),	 (64b)

The Lotka chemical system and equations (54a,b) would be an example of this type.
Equations (64a,b) indicate that to obtain limit-cycle oscillations, one of the follow-
ing two situations should hold:

2a. At least one intermediate, x, or x 2 is autocatalytic, (catalyses its own produc-
tion or activates a substance that produces it).

2b. One substance participates in cross catalysis (x, activates x2 or vice versa).

These two conditions are based on the mathematical prerequisites of the Poin-
care-Bendixson theory (see Nicolis and Portnow, 1973). For more than two vari-
ables it has been shown the inhibition without additional catalysis can lead to oscilla-
tions.)

3. Thermodynamic considerations dictate that closed chemical systems (which
receive no input and cannot exchange material or heat with their environment)
cannot undergo sustained oscillations because as reactants are used up the
system settles into a steady state.

4. Oscillations cannot occur close to a thermodynamic equilibrium (see Nicolis
and Portnow, 1973, for definition and discussion).

Schnakenberg (1979), who also considers in generality the case of chemical re-
actions involving two chemicals, concludes that when each reaction has a rate that
depends monotonically on the concentrations (meaning that increasing x, will always
increase the rate of reactions in which it participates) trajectories in the x 1 x2 phase
space are bounded. Thus, when the steady state of the network is an unstable focus,
conditions for limit-cycle oscillations are produced.

The following additional observations were made by Schnakenberg:

1.	 Chemical systems with two variables and less than three reactions cannot have
limit cycles.
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Limit Cycles, Oscillations, and Excitable Systems	 357

2. Limit cycles can only occur if one of the three reactions is autocatalytic.
3. Furthermore, in such systems limit cycles will only occur if the autocatalytic

step involves the reaction of at least three molecules. When exactly three
molecules are involved, the reaction is said to be trimolecular; for example,
the reaction (65a).

Details and further references may be found in Schnakenberg (1979).
To demonstrate oscillations in a simple chemical network, we consider a sys-

tem described by Schnakenberg (1979):

	2X + Y r—=- 3X,	 (65a)

	A --^ Y,	 (65b)
	X --^ B.	 (65c)

The network bears similarity to the Brusselator (see problem 20 of Chapter 7). It is
also related to a model for the glycolytic oscillator due to Sel'kov (1968). The reac-
tion is said to be trimolecular since there is a reaction step in which an encounter be-
tween three molecules is required. Presently we shall use this example for the pur-
poses of illustrating techniques rather than as a prototype of real chemical
oscillators, which tend to be far more complicated.

Before beginning the calculations, it is worth remarking that the network has
an autocatalytic step (X makes more X), consists of three reaction steps, and has a
trimolecular step. It is thus a prime candidate for oscillations.

Equations for the Schnakenberg system (65a,b,c) are as follows:

	dx  = xzy — x,
	 (66a)

dt

	dl = a - x 2y ,	 (66b)

where x, y, and a are the concentrations of X, Y, and A. These have a steady state at
(x, y) = (a, 1/a) and a Jacobian

J

	(2xy
 2xy 1 —x 2/s.	 \-2 — a z/ 	 (67)

since
ß=TrJ=1—az,	 (68a)

y = det J = a 2(-1 + 2) = a z ,	 (68b)

we observe that eigenvalues are

A 1 , 2
 = (1 — az) ±	 (1 — az) z — 4a

	(69)
2

If az = 1, these are pure imaginary (A = ±ai), and for a z < 1 eigenvalues
have a positive real part, so that the steady state is an unstable focus. The Hopf bi-
furcation indicates the presence of a small-amplitude limit cycle as a is decreased
from a > 1 to a < 1. However, the stability of the limit cycle is uncertain. Notice
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358	 Continuous Processes and Ordinary Differential Equations

that for a = 1 the Jacobian is not in the "normal" form necessary for direct determi-
nation of the stability expression VP" discussed in Section 8.6. While it is possible to
transform variables to get this normal form, the calculations are formidably messy
(and preferably avoided).

Looking at a phase-plane diagram of equations (66a,b) in Figure 8.22(a) re-
veals a problem: There is the possibility that close to the y axis trajectories may
sweep off to y = oc so that it is impossible to define a Poincare-Bendixson region
that traps flow.

y	 Y

Figure 8.22 (a) A simple chemical network taken
from equations (66a,b) (suggested by
Schnakenberg, 1979) has this qualitative phase
plane. (b) (By modifying the system slightly to

equations (70a,b), we can use the Poincare-
Bendixson theorem to conclude that a limit cycle
exists somewhere in the dotted box.

To circumvent this problem, Schnakenberg changed the last reaction step to a
reversible one,

x— B.	 (65c')

This changes the equations into the system

dx = 
x 2y — x + b,	 (70a)

dt

dy = —x 2y + a.	 (70b)
dt

The new steady state is (a + b, a/(a + b) 2), and the new Jacobian is
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a—b

	

a+b	
(a+b)z

	J  = —2a	
(71)

a + b —(a+b)z
Letting

ßTrJ= ä+b— (a+b)z,	 (72a)

y = det J = — (a — b)(a + b) + 2a(a + b) = (a + b) 2 , 	 (72b)

we see that y is always a positive quantity and that a bifurcation occurs when ß = 0,
that is, when

a—b=(a+b)z.	 (73)
a+b

The eigenvalues are then

	A 1 , 2 = ± 	=±(a+b)i.	 (74)

Suppose b is much smaller than a. An approximate result is that

a+b	 a 	
1,	 (a+b) 2 =a 2 , 	 (75)

so that from equation (73) we have

a z = 1.

Thus the bifurcation occurs close to a = 1. (For larger a values, the steady state is
stable; for smaller values it is an unstable focus.) Again, the Hopf bifurcation theo-
rem can be applied to conclude that closed periodic trajectories will be found.

Summary of Biological Factors Necessary for Limit-Cycle Dynamics

1. Structural stability: infinitesimal changes in parameters or terms appearing in the
model description of the system should not totally disrupt the dynamic behavior
(as in the Lotka-Volterra model).

2. Open systems: systems should be open in the thermodynamic sense. Systems that
are not open have finite, nonrenewable components that are consumed. Such
closed systems will eventually be dissipated and thus cannot undergo undamped
oscillations.

3. Feedback: some form of autocatalysis or feedback is generally required to main-
tain oscillations. For example, a species may indirectly influence its growth rate
by affecting a secondary species upon which it depends.

4. Steady state: the system must have at least one steady state. In the case of popu-
lations or chemical concentrations, this steady state must be strictly positive. For
oscillations to occur, the steady state must be unstable.
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360	 Continuous Processes and Ordinary Differential Equations

5.	 Limited growth: there should be limitations on the growth rates of all intermedi-
ates in the system to ensure that bounded oscillations can occur.

(See Murray, 1977 for detailed discussion.)

Summary of Mathematical Criteria for the Existence of Limit Cycles

1. There must exist at least one steady state that loses stability to become an un-
stable node or focus. (See Appendix I to this chapter on topological index the-
ory.)

2. At such a steady state, there must be complex eigenvalues A = a ± bi whose
real part a changes sign as some parameter in the equations is tuned (Hopf bifur-
cation) .

3. A bounded annular region in xy phase space admits flow inwards but not out-
wards (Poincare-Bendixson theory).

4. A region in the xy phase space must have the quantity aF/ax + iaG/ay change
sign (Bendixson's negative criterion). This is a necessary but not a sufficient con-
dition.

5. A region in the xy phase space must have the quantity a(BF)/ax + a(BG)/ay
change sign where B is any continuously differentiable function (Dulac's crite-
rion). This is a necessary but not a sufficient condition.

6. One or more S-shaped nullclines, suitably positioned, often lead to oscillations
or excitability. Examples are the Lienard equation or van der Pol oscillator.

(For more advanced methods see also Cronin, 1977.)

Now examining the phase-plane behavior of the modified system, we remark
that the nuliclines, given by curves

x—b	 dx
y__ x2	 dt = 0 ,

	 (76a)

y 	i	 (är — 0) ,	
(76b)

prevent flow from leaving a finite region in the first quadrant. Thus, by the Poincare-
Bendixson theory, it can be conclusively established that stable periodic behavior re-
sults whenever the steady state is unstable.

8.9 FOR FURTHER STUDY: PHYSIOLOGICAL AND CIRCADIAN RHYTHMS

One of the earliest recorded observations of biological rhythms was made by an
officer in the army of Alexander the Great who noted (in 350 Bc) that the leaves of
certain plants were open during daytime and closed at night. Until the 1700s such
rhythms were viewed as passive responses to a periodic environment, that is, to the
succession of light and dark cycles due to the natural day length (see Figure 8.23).
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Figure 8.23 In 1751 Linnaeus designed a "flower
clock" based on the times at which petals for
various plant species opened and closed. Thus, a
botanist should be able to estimate the time of day
without a watch merely by noticing which flowers

were open. [Drawing by Ursula Schleicher-Benz
from Lindauer Bilderbogen no. 5, edited by
Friedrich Boer. Copyright by Jan Thorbecke
Verlag, eds., Sigmaringen, West Germany.]

In 1729 the astronomer Jean Jacques d'Ortous De Mairan conducted experiments
with a plant and reported that its periodic behavior persisted in a total absence of
light cues. Although his results were disputed at first, further demonstrations and ex-
periments by others (such as Wilhelm Pfeffer, in 1875, 1915) gave clear evidence in
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362	 Continuous Processes and Ordinary Differential Equations

support of the observations that many physiological rhythms are endogeneous
(independent of any external environment influences).

We now know that most organisms have innate "clocks" that govern peaks of
activity, times devoted to sleep, and a variety of physiological states that fluctuate
over the course of time. Rhythms close in period to the day length have been called
circadian. Recent experimental work on a variety of organisms, including numerous
plants, the fruitfly Drosophila, a variety of fungi, bees, birds, and mammals have
been carried out (C. S. Pittendrigh, E. Bunning, J. Aschoff, R. A. Wever, A. T.
Winfree). The results are often intriguing. For example, the circadian clocks of mi-
gratory birds allow them to navigate by compensating for the constantly shifting po-
sition of the sun.

As yet, our knowledge of the basic mechanisms underlying circadian rhythm,
as well as other longer or shorter physiological cycles, remains uncertain. It appears
that there are often numerous distinct physiological or cellular oscillators that are
coupled (influence one another) but that maintain certain mutually independent char-
acteristics. A brief summary of theoretical questions related to such problems is
given by Winfree (1979). For fascinating historical summaries see Reinberg and
Smolensky (1984) and Moore-Ede et al. (1982). Other references are provided as a
starting point for further independent research on this topic. An excellent up-to-date
synopsis of the human sleep-wake cycle is given by Strogatz (1986).

PROBLEMS*

1. Discuss what is meant by the statement that a limit cycle must be a simple
closed curve. Why is Figure 8.1(b) not permissible? Why is Figure 8.1(c) not a
limit cycle?

2. Consider the following system of equations (Lefschetz, 1977):
dx
-j- 	y = f(x, Y),

cit=x(a2—x2)+by=g(x,y) 	 (a00,b00).

(a) Show that the critical points are (0, 0), (a, 0), and (—a, 0).
(b) Evaluate the expression of/ax + 8g /ay at these steady states.
(c) Use Bendixson's negative criterion to rule out the presence of limit-cycle

solutions about each one of these steady states.
(d) Sketch the phase-plane behavior.

*3. Use Bendixson's negative criterion to show that if P is an isolated saddle point
there cannot be a limit cycle in the neighborhood of P that contains only P.

4. Use Bendixson's negative criterion to indicate whether or not limit cycles can
be ruled out in the following systems of equations in the indicated regions of
the plane:

* Problems preceded by an asterisk (*) are especially challenging.

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Limit Cycles, Oscillations, and Excitable Systems
	

363

(a)	 dt = 2x — 3y, (c)	 d^ = a,x + b,y + c 1x 2 ,

dt= 10x+y, dt=dzx+bzy+czy2,

(in R 2). (x > 0, y > 0).

(b)	 dr = x + 2y(sin2 y) + y 2 , (d)	 dt = ax — bxy,

dy
dt

z
= xe" + x + y,

2
dy = —cy + dxy,
dt

(in R 2). (x > 0, y > 0).

5. Show that Dulac's criterion but not Bendixson's criterion can be used to estab-
lish the fact that no limit cycles exist in the two-species competition model
given in Section 6.3. (Hint: Let B (x, y) = 1/xy.)

6. Consider the following system of equations (Odell, 1980), which are said to
describe a predator-prey system:

dx
dt =	

—x[x(1 — x) y],

dt = k(x µ ly.

(a) Interpret the terms in these equations.
(b) Sketch the nullclines in the xy plane and determine whether the Poincare-

Bendixson theory can be applied.
(c) Show that the steady states are located at

(0, 0),	 (1, 0),	 (—A
	 1 	 /µl.

(d) Show that at the last of these steady states the linearized system is char-
acterized by the matrix

	/ ! ( _ ) 2	 1
A	 A	 µ

(i_) 	0

(e) Can the Bendixson negative criterion be used to rule out limit-cycle oscil-
lations?

(f) If your results so far are not definitive, consider applying the Hopf bifur-
cation theorem. What is the stability of the strictly positive steady state?
What is the bifurcation parameter, and at what value does the bifurcation
occur?

*(g) Show that at bifurcation the matrix in part (d) is not in the "normal" form
required for Hopf stability calculations. Also show that if you transform
the variables by defining
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364	 Continuous Processes and Ordinary Differential Equations

2
z=x,	 y=kj72y,

you obtain a new system that is in normal form.
*(h) Find the transformed system, calculate V"' and show that it is negative.
(i) What conclusions can be drawn about the system?

7. If all steady states (indicated by large dots) in Figures (a) through (d) are un-
stable, can the Poincare-Bendixson theorem be applied to prove existence of
limit cycles?

-------------

(a)	 (b)

------------

(c)	 (d)

Figures for problem 7.

8. The Hodgkin-Huxley model
(a) What might be an interpretation of equations (10) and (11)? Of (12a—c)?
(b) Sketch the functions given in equations (13a—c). You may do this by

hand or by computer.
(c) Discuss Fitzhugh's assumption that V and m change more rapidly than h

and n.
(d) Demonstrate that the nullclines of Fitzhugh's reduced system are as

shown in Figure 8.10(a).

9. The Fitzhugh model
(a) Verify the Jacobian given by (28) and the stability conditions of equa-

tions (30a,b).
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(b) Show that the steady state of Fitzhugh's model is stable if it falls in the
range

—y < X C y

provided b < 1, b < c 2 and y = (1 — b/c 2)'i2 .

(c) Show that this constraint places x on the portion of the cubic nullcline be-
tween the two humps.

10. (a) Graph the functions G,(u) = u 3 and G2(u) = u 3/3 + 1. In what way do
these differ from the function v = G(u) shown in Figure 8.13(a)?

(b) Draw nullclines and sketch the phase-plane flow behavior for the system
of equations (15) where G = G,(u) and G = G2(u) given in part (a).

11. (a) Show that the Lienard equation (19) is equivalent to the system of equa-
tions (15a,b) where G(u) is given by equation (20).

(b) Give justification for the claim that condition I of Section 8.4 guarantees
that all trajectories will be symmetric about the origin.

(c) Show that condition 3 implies that (0, 0) is an unstable steady state of
(15) where G(u) is given by equation (20).

(d) If G (u) satisfies conditions 1 to 3 and a = ß, give a reason for the asser-
tion that there can be only one limit cycle in the Lienard system.

*12. (a) The van der Pol oscillator. Show that equations (15a,b) and (16) are
equivalent to equation (21).

(b) Suppose E in equations (22a,b) is a small quantity and that the solutions
to (22) can be expressed as

u(t) = f0(t) + Ef, (t) + € 2f2(t) +	 + E nfn(t) +
v(t)= go(t)+Eg,(t)+E 2f2(t)+...+Eng,(t)+...

What equations do the functions fo, go, f,, gI, f2, and g2 satisfy?

13. (a) Suggest a possible molecular mechanism that might lead to the equations
derived by Murray (1981) and thus the nullcline formation shown in Fig-
ure 8.14. (Hint: refer to problem 22 of Chapter 7.)

(b) Of the various configurations in Figure 8.14, which would you expect to
lead to a limit-cycle oscillation?

(c) Is it possible to determine the steady state and its stability directly from
Murray's equations?

14. (a) Suggest a possible mechanism that would lead to the equations given by
Fairen and Velarde (1979) for bacterial respiration (see Figure 8.15).

(b) How does this model compare with that of Murray?

15. (a) Demonstrate that the Segel-Goldbeter model for oscillations in the cyclic
AMP signaling system leads to the phase-plane configuration shown in
Figure 8.16. What has been assumed to obtain the reduced ya system?

(b) Investigate the mechanism underlying the assumption for c that suppos-
edly depicts allosteric kinetics of adenylate cyclase. (You may wish to
consult original papers by Segel and Goldbeter or Segel, 1984.)
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366	 Continuous Processes and Ordinary Differential Equations

16. Morris and Lecar (1981) describe a semiqualitative model for voltage oscilla-
tions in the giant muscle fiber of the barnacle. In this system the important ions
are potassium and calcium (not sodium). The equations they suggest are the
following:

I = C dt + gL (v — VL) + gcaM(v — VCa) + gKN(v — VK),

dM = 
AM(v)[M.(v) — M],dt

&V = Av(v)[No(v) — N],dt

where

v = voltage,

M = fraction of open Cat channels,

N = fraction of open K+ channels.

(a) Interpret these three equations. For reasons detailed in their papers Mor-
ris and Lecar define the functions M., Am , N., and AN as follows:

M(v) = 2 (1 + tanh v
 V2

v ' ) ,	 N(v) = 2 (	 vI + tanh 
V4

v31

y — v, 	y y3
AM (v) = AM cosh‚	 AN(v) = AN cosh 2

v4

(b) Sketch or describe the voltage dependence of these functions.
e x + e—x
	 ex — e —z

Note: cosh x =	 2 	sinh x = 	2

tank x =
Binh x

cosh x*

(c) Morris and Lecar consider the reduced vN system to be an approximation
to the whole model. What assumption underlies this approximation?

(d) Show that in the reduced vN system the variables are constrained to sat-
isfy the following inequalities:

0 <N<1,

gLvL + gKyK + l < ll < g
LyL + gCayCa + I

gL + gK	 gL + gca

(You may need to use the fact that 0 <M < 1.)
(e) Give support for the configuration of nullclines shown in Figure 8.17(a).

Notice that there is an intersection within the region described by the in-
equalities in part (d) of this problem.

(f) Suppose you are told that at the steady state the linearized system has a
pair of complex eigenvalues A = a + bi such that a + bi behaves as in
Figure 8.17(b) as the current I changes. Use your results from parts (a) to
(e) to make a statement about the existence and stability of a limit-cycle
solution.
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(g) Interpret this in the biological context of electrical signal propagation in
the barnacle giant muscle fiber.

(h) Compare the assumptions and results obtained from this model to the
Hodgkin-Huxley and Fitzhugh models.

(This problem could be extended to an independent project with in-class dis-
cussion. See Morris and Lecar, 1981, for other details.)

17. Limit cycles in predator prey systems. In this problem we investigate details
that arise in Section 8.7.
(a) Justify the particular form of equations (42a,b) used in discussing a

predator-prey system.
*(b) Suppose the orientations of the nuliclines is as shown in Figure 8.20(a).

Use conditions 1 and 2 in Section 8.7, along with the fact that on these
curves f(x, y) = 0 and g (x, y) = 0 respectively, to reason that the direc-
tion of flow along nullclines must conform to that shown in Figure
8.20(a). (Hint: Use the inequalities to determine in which regions f, or g,
must be positive and in which negative.)

(c) A condition for a limit cycle is that x2 > xi. Interpret this biologically
and describe why this inequality is necessary.

(d) Verify condition 7 [equation (48)] by implicit differentiation of
g(x, Y) = 0.

(e) A steady state (x, y) is unstable if any one of the eigenvalues of the equa-
tions [linearized about (x, y)] has a positive real part. Why then is it nec-
essary to have two positive eigenvalues to ensure that a limit cycle exists?

18. In this problem we compute the stability properties of the nonzero steady state
of the predator-prey equations (42a,b).
(a) Find the Jacobian of equations (42a,b).
(b) Show that conditions for an unstable node or spiral at (x, y) are as given

in equations (51a—b).
(c) Verify the following relationship between the slope s 8 of the nullcline

g = 0 and the partial derivatives of g:

slope of g nullcline: sg = — gs .
gy

(d) Use the inequality a + d > 0 and the inequalities fy < 0, gx > 0, and
gy < 0 to establish the following result: for (x, y) to be an unstable node
or spiral, it is necessary and sufficient that

Xf=(x,Y)>YIg(,Y)

Why does this imply that

fx(xe Y) > 0?

Why does it follow that

sf(x, Y) > 0 ,

in other words, that the slope of the curve f(x, y) = 0 must be positive at
the steady state?
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368	 Continuous Processes and Ordinary Differential Equations

(e) Use the inequality ad — be > 0 to show that at the steady state

sJ
x_.frgx s —1 >0.

8

Note: all quantities are evaluated at the steady state, as in part (i). Reason
that this inequality implies that

sf(x, y) < s8 (x, y).

19. The following predator-prey system is discussed by May (1974):

dH / H\ — kPH
=dt rH 1 — K
	 H + D	

(host),

dP
dt = sPtl — H)	 (parasite).

\	 y

(a) Interpret the terms appearing in these equations and suggest what the var-
ious parameters might represent.

(b) Sketch the H and P nullclines on an HP phase plane.
(c) Apply Bendixson's criterion and Dulac's criterion (for B = 1/HP).

20. A number of modifications of the Lotka-Volterra predator-prey model that
have been suggested over the years are given in the last box in Section 6.2. By
considering several combinations of prey density-dependent growth and preda-
tor density-dependent attack rate, determine whether such modifications might
lead to limit-cycle oscillations. You may wish to do the following:
(a) Check to see whether the Kolmogorov conditions are satisfied.
(b) Plot nullclines by hand (or by writing a simple computer program and

check to see whether the Poincare-Bendixson conditions are satisfied.
(c) Determine the stability properties of steady states.

21. This problem arises in a model of a plant-herbivore system: (Edelstein-Keshet,
1986). Assume that a population of herbivores of density y causes changes in
the vegetation on which it preys. An internal variable x reflects some physical
or chemical property of the plants which undergo changes in response to her-
bivory. We refer to this attribute as the plant quality of the vegetation and as-
sume that it may in turn affect the fitness or survivorship of the herbivores. If
this happens in a graded, continuous interaction, plant quality may be modeled
by a pair of ODEs such as

dxdt = f(x, y)	 (rate of change of vegetation quality),

dt = yg (x, y)	 (herbivore density).

(a) In one case the function f(x, y) is assumed to be

f(x, y) = x(1 — x)[a(l — y) + x]	 (0 x < 1).
Sketch this as a function of x and reason that the plant quality x always
remains within the interval (0, 1) if x(0) is in this range. Show that plant
quality may either decrease or increase depending on (1) initial value of x
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Limit Cycles, Oscillations, and Excitable Systems	 369

and (2) population of herbivores. For a given herbivore population den-
sity y, what is the "breakeven" point (the level of x for which
dx/dt = 0)?

(b) It is assumed that the herbivore population undergoes logistic growth (see
Section 6.1) with a carrying capacity that is directly proportional to cur-
rent plant quality and reproductive rate P. What is the function g?

(c) With a suitable definition of constants in this problem your equations
should have the following nullclines:

	

x nullclines:	 x = 0,

x = 1,

x = a(y — 1),

	y nullclines:	 y = 0,

y = Kx.

Draw these curves in the xy plane. (There is more than one possible
configuration, depending on the parameter values.)

(d) Now find the direction of motion along all nullclines in part (c). Show
that under a particular configuration there is a set in the xy plane that
"traps" trajectories.

(e) Define y = a/(aK — 1). Interpret the meaning of this parameter. Show
that (y, Ky) is a steady state of your equations and locate it on your phase
plot. Find the other steady state.

(f) Using stability analysis, show that for y > 1, (y, Ky) is a saddle point
whereas for y < 1 it is a focus.

(g) Now show that as /3 decreases from large to small values, the steady state
(y < 1) undergoes the transition from a stable to an unstable focus.

(h) Use your results in the preceding parts to comment on the existence of
periodic solutions. What would be the biological interpretation of your
answer?

22. Lotka's chemical model given in Section 8.8 is dynamically equivalent to the
Lotka-Volterra predator-prey model. Thus modifications in the chemical kinet-
ics should result in system(s) that exhibit limit-cycle oscillations. Explore
whether the Kolmogorov conditions (see box in Section 8.8) apply to a chemi-
cal system; if so, interpret the inequalities (points 1 through 8 in the box) in the
context of chemical (rather than animal) species.

23. Exact equations and Lotka's model. Let M and N be the functions defined by
equations (60), and let V be some function satisfying

av __ 	av
= N.ax,	 '	 ax2

Define

Vi = f M dx t + h(x2),

VZ = J Ndx2 +g(x,).
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370	 Continuous Processes and Ordinary Differential Equations

The integrals are to be performed with respect to one of the variables only, the
other one being held fixed. Show that

V, = x, — k In x, + h (x2),

VZ =xz —kkA lnx2+g(x,).

If V, = V2 = V, show that V must be given by equation (55).

24. The following equations were developed by Goodwin (1963) as a model of
protein-mRNA interactions:

dM 	 1	 dE
dt 1+E	

_
a'	 dt —M—ß.

Show that this system is conservative and has oscillatory solutions.

In the remaining problems we consider systems in which it is possible to explicitly
solve for limit cycles and deduce their stability by transforming variables to polar
form.

25. Consider a system of equations such as (1a,b). Transform variables by defining
x=rcos9,	 y=rsin0.

(a) Show that

r2 = x 2 + y 2 ,	 9 = arctan y
x

(b) Show that
1 d(r 2) = dx	 dy
2 dt	 x dt + y dt

(c) Verify that
2d0_  dy _ dx
r_dt x dt y dt

26. Consider the equations
dx _	 dy
dt
- -y,
	 dt = —x.

(b) By transforming variables, obtain
dr 2	d9
dt =0'	 dr =-1.

(b) Conclude that there are circular solutions. What is the direction of rota-
tion? Are these cycles stable?

27. Show that the system
dx 	 dy
dt = —2y ,	 dt = x — 5,
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has closed elliptical orbits. (Hint: Consider first transforming x to x — 5 and y
to y/2 and then using a polar transformation.)

28. Consider the nonlinear system of equations
dx = —y+x(x z + y 2— 1 ) =f(x,y),dt

dt 
= x+y(xz +y 2 — 1) =g(x,y)•

Show that r = I is an unstable limit cycle of the equations.

29. Lefschetz (1977) discusses the following system of equations
dx
dt = —y + xf(x 2 + y 2),

dy
dt =x +.yf(x2+y2).

Show that this system is equivalent to the polar equation
dr = rf(rz)
dB

30. Find the polar form of the following equations and determine whether periodic
trajectories exist. If so, find their stability.

dx2iry 	dy	 27rx
(a)

_	 —
dt	 1 + (x 2 + y 2)' /Z' 	dt	 1 + (x2 + y 2)'/2'

(b) dt 	 y+ (x2 + y2)1/2 [I - (x z + y2 )J,

dt = 
—x+ (x2 +y2)l ,z [ 1 —(x z +y z)].

Problems 31 and 32 follow Appendix 1 for Chapter 8.
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APPENDIX 1 TO CHAPTER 8: SOME BASIC TOPOLOGICAL NOTIONS

Many of the theorems that apply to systems of two ordinary differential equations such as
(la,b) are based on what are called topological properties of curves in the plane. While the
topological theory itself is abstract and exceptionally beautiful, we shall avoid formal details,
giving instead a descriptive outline of some key concepts. (See Arnold, 1981, for an in-
troductory summary.)

Imagine a vector field in the xy plane. The vector field may have been generated by the
set of equations (la,b). Figure 8.24 serves as an example. In this vector field we place a sim-
ple oriented closed curve; (we may think of this curve as a deformed circle along which some
point moves in a particular direction). We first consider arbitrary curves as "test" objects that
are used to understand the vector field. (Only later will we turn to closed curves generated by
the vector field itself.) Tracing the path of a single point around the test curve we may follow
the rotation of a field vector attached to the point. If the curve does not go through any singu-
lar point [point at which F = G = 0 in equations (1)], the rotation will be continuous as the
curve is traversed, and the field vector will have returned to its original orientation when the
point has returned to its initial position. The number of revolutions and the direction of rota-
tion executed by the field vector depend on details of the flow patterns. (Several possibilities
are shown in Figure 8.24.) The index of a curve is the number of revolutions, and the sign of
the index reflects whether the rotation is in the same sense or in an opposite sense to that of
the curve.

A number of properties make the concept of the index important:

1. The index does not change if the curve is distorted, twisted, or enlarged, provided that
in the process of change the curve does not go through any singular points.

2. Similarly, if the vector field is warped, distorted, or rearranged, the index of the curve
will not change if no singular points cross the curve or are on the curve during the
process.

Using such properties it can be shown (see Problem 31 a) that the following fact holds
true:

3. The index of a simple closed curve is zero unless there is at least one singular point in
the region bounded by the curve.

We now define the index of a singular point P as the index of any circle of small radius
centered at P. (See Figure 8.24.) According to property 1 the radius of this circle is
immaterial as long as the curve encloses only one singular point and does not itself go
through any singular points.

4. The indices of common isolated singular points are as follows [see Figure 8.24(f—h)]:
(i) The index of a node is + 1.

(ii) The index of a focus is + 1.
(iii) The index of a center is + 1.
(iv) The index of a saddle point is —1.

(These are independent of stability in cases I and 2 and independent of direction of rotation in
cases 3 and 4. See problem 3lb.)
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\\
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\ 1 \
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(a)

\ 11

(b) (c)

(d)
	

(e)
	

(f)

(g)
	 (h)	 (i)

1 r2	r,	 t
r

(j)

Figure 8.24 (a) A vector field. (b) A test curve r;
the vector field does not complete a revolution as
curve is traversed (index = 0). (c) The field vector
rotates by one revolution in the direction opposite
to the curve (index = —1). (d) The field vector
rotates by one revolution in the same direction
(index = + 1). (e) Limit cycle or any closed

periodic trajectory (index = +1). (f) Saddle point
(index = —1). (g) Node (index = +1). (h)
Focus/center (index = + 1). (The index of a
singular point = index of a small circle encircling
the point.) (i) The index of a test curve encircling
several points equals (j) the sum of indices of the
individual points. [After Arnold (1981).]
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Now consider a curve F that surrounds a region containing several singular points.
Then the following can be proved:

The index of a curve is equal to the sum of the indices of singular points in the region D
which it surrounds.

This result can be established by considering a picture similar to Figure 8.24(i, j). Here two
artificial extensions of the original curve have been so added that their net contribution to the
total rotation "cancels." The index of IF must therefore be the same as that of I', plus I' 2 .

However, according to property 1, these can be distorted to small circles about their respec-
tive singular points without change of index. This verifies the claim. (The argument is made
more formal by giving a rigorous definition of index in terms of a line integral and demon-
strating that the sum of line integrals around F, and F 2 equals the line integral of F. Students
who have had advanced calculus may recognize Figure 8.24(i, j) as a familiar trick used in
Green's theorem.)

These notions are useful in establishing the relation between a periodic solution of
equations (la,b) and singular points (or in our popular phrasing, steady states) of the flow
(F(x, y), G (x, y)). According to previous remarks, a periodic solution corresponds to a solu-
tion curve that is itself simple and closed; the flow causes the point (x(t), y(t)) to rotate
around this curve. In particular, the field vectors are tangent to the curve itself. By referring
to Figure 8.24(e) we can clearly see that the field vector must therefore execute one complete
rotation in the positive sense as the curve is traversed. We have thus observed the following:

6. The index of a closed (periodic-orbit) solution curve is + 1.

Collecting all of our remarks and observations, we conclude the following:

7. (a) A limit cycle (or any closed periodic orbit) must contain at least one singular
point.

(b) If it contains exactly one, that singular point must be a node, a focus, or a center.
(c) If it contains more than one, the number of saddle points must be one less than

the total number of foci, nodes, and centers. (Note that only these four types of
singular points are permitted).

More discussion of these observations is given in the problems. We now consider their appli-
cability. First, an important comment is that the properties we have described derive from the
basic topology of the plane. It is possible to generalize ideas to other "locally flat" objects
called manifolds (such as the surface of a sphere, a torus, and so forth.) We shall leave the
abstract development at this point and remark merely that conclusions of this section are
specific to two-dimensional systems. In three dimensions, for example, more complicated
flow patterns may accompany closed periodic trajectories, so that the number and locations of
singular points may have no bearing on the presence of a limit cycle.

While the index properties do not predict whether limit cycles occur, they do shed light
on restrictions that apply. Using these we can rule out, for example, any closed periodic tra-
jectories about regions that contain exactly two nodes or exactly one node and one saddle
point.
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PROBLEMS FOR APPENDIX 1*

31. Index of a curve
(a) Give reasons to support the assertion that the index of a simple closed curve is

zero unless there is at least one singular point in the region bounded by the
curve.

(b) Show that the index of a singular point is independent of its stability.
(c) A rigorous definition of the index of a curve is as follows:

for the vector field V = (F (x, y), G(x, y)) the quantity

G (x, y)

F (x, y)

is the slope of a field vector in the xy plane. Define

do = d(arctan F) .

Show that

d4 GF + GaG	 (G # 0).

The rest of this problem requires familiarity with line integrals.
*(d) Now define the index of a closed curve ind y by the following line integral

ind y = 2̂ d4..
r

Show that this definition corresponds to the concept of index previously de-
scribed.

*(e) Use this definition together with Green's theorem to verify the claim that the in-
dex of a curve is equal to the sum of the indices of all singular points inside the
region bounded by the curve. [Hint: Consult figure (a) for problem 32.]

32. (a) Show or give reason for the assertion that the index of a node, a focus, or a cen-
ter is + 1 and that of a saddle point is —1.

(b) Which of the cases shown in the accompanying figures is possible?

(a)

* Problems preceded by asterisks (*) are especially challenging.
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(b)

Figure for problem 32.	 (c)

APPENDIX 2 TO CHAPTER 8: MORE ABOUT THE
POINCARE-BENDIXSON THEORY

In this appendix we collect some mathematical terminology commonly encountered in the
Poincare-Bendixson theory. Using these definitions we then give a more precise statement of
the Poincar6-Bendixson theorem. Also included is a proof of Bendixson's negative criterion.

Definitions
1. An orbit r through the point P is the curve

{Xp(t) I –°° < t < - with Xp(0) = P}.

2. A positive semiorbit I'+ through P is the curve

{Xp(t) I O <_ t < co with Xp(0) = P}.

Similarly the negative semiorbit I' - is defined for –00 < t <_ 0.
3. The w limit set of IF is the set of points in R 2 that are approached along IF with increas-

ing time. Similarly, the a limit set of IF is defined as the set of points approached with
decreasing time.

4. A limit cycle is a periodic orbit ro that is the w limit set or the a limit set for all other
orbits in some neighborhood of l'0 .

To paraphrase, we draw a distinction between solutions of equations (la,b) for all time
(which are represented by orbits IF in the plane) and those for t >_ to or t <_ to (represented by
semiorbits F and T -). We have also introduced above the important notion of limiting sets;
these come in two varieties (w and a) depending on whether the limit is taken for t -* 00 or
t — -- respectively. They are thus the point sets that are approached along a trajectory in
the forward (co) or reverse (a) time direction.
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380	 Continuous Processes and Ordinary Differential Equations

A limit cycle is a special periodic solution of the autonomous dynamic system (la,b)
that is also simultaneously a limiting set for nearby trajectories. Physically this means that for
t — oo (or t — --, depending on stability) a solution that starts out close to the periodic so-
lution will eventually be indistinguishable from it. (Of course, from the mathematical stand-
point the two will never be exactly equal during finite time.)

We now state the Poincare-Bendixson theorem, whose proof is to be found in numer-
ous advanced books on ODEs (for example, see Hale, 1980):

Theorem 1: The Poincare-Bendixson Theorem:

A bounded semiorbit that does not approach any singular point is either
a closed periodic orbit or approaches a closed periodic orbit.

Finally, we prove Bendixson's criterion (stated in Section 8.3) using Green's theorem.

A Proof of Bendirson's Criterion

Suppose C is a closed-curve trajectory in the simply connected region D. Then by
Green's theorem

aF aG\
F(x, y) dy — G(x, y) dx =	

( ax
 + ay I dx dy,	 (77)

 JJs	 /
where S is the region contained within the curve C.

For the system of equations (la,b) we have the following relations:

dx _ dx/dt — F(x, y)
	(78)

dy dy/dt G(x, y)'

so that G (x, y) dx = F (x, y) dy.
The integral of the LHS above must therefore be zero, forcing the conclusion that

J J (ax+ 
äG)dxdy=0.	 (79)

Y

The quantity aF/ax + aG/ay will not have a vanishing integral over S unless it
is (1) always zero or (2) alternately positive and negative in S. This proves the theo-
rem.
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