
7 Models
for Molecular Events

All the effects of nature are only the mathematical consequences of a small
number of immutable laws.
-P. S. Laplace (1749-1827) quoted in E. T. Bell (1937) Men of Mathematics

p. 172 Simon & Schuster, N.Y.

The realm of molecular biology lies at the outermost limits of resolution of our best
microscopes. Just beyond is a world that is both fascinating and mysterious. This is
the world of macromolecules: versatile entities that give cells their structure, store or
transmit information, recognize and respond to other macromolecules, build or syn-
thesize each other, and regulate all the other chemical events in the living cell.

It is sometimes easy to forget that our familiarity with the subcellular realm is
very recent. Until 1838, when Schleiden and Schwann proposed their cell theory,
scientists scarcely appreciated that living things were made up of smaller units called
cells. Only by the mid 1900s had the electron microscope extended our visual fron-
tier into the finer structures of the cell. Numerous contemporary techniques eventu-
ally led to the important discovery by J. Watson and F. Crick in 1953 of the struc-
ture of DNA (deoxyribonucleic acid), the fundamental genetic material. Since that
time, and especially within the last two decades, the field of molecular biology has
undergone rapid, explosive growth. It is now universally recognized as a field of
nearly unlimited promise in medicine, industry, agriculture, and many other areas of
application.

Despite this recent surge of knowledge and tervent ongoing exploration u ► u ►m
molecular world, much is still unknown about the microcosm inside the living cell.
How do all of these complicated entities work so well as a unit? How are a multitude
of simultaneous processes controlled, each with split-second accuracy? What makes
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272	 Continuous Processes and Ordinary Differential Equations

it all a cohesive living unit that can respond to its environment while maintaining an
identity despite potentially destructive influences? Answers to these questions are not
within our immediate grasp and must await further discoveries on the experimental
frontier. They are, broadly speaking, related to similar questions one could pose
about any complex system that consists of myriad interrelated units working in con-
cert.

While molecular biology owes much, in its advances, to the technological
breakthroughs that stem from the "hard" sciences, it may be considered presumptu-
ous to overplay the role of mathematics. Nevertheless, mathematics does indeed
have a contribution to make, at least in helping us understand the very basic building
blocks of behavior exhibited by the cell, the gene, and the enzyme. A traditionally
mathematical approach underlies enzymology, the study of dynamic interactions be-
tween enzymes (large protein molecules that catalyze reactions in the living cell) and
their substrates. It is not always clear whether mathematical modeling can help illu-
minate fundamental questions about "how things work." Yet, it is our gradual per-
ception that such approaches have borne fruit in disciplines of parallel complexity
such as ecology and physiology; it is to be hoped that similar combinations of theory
and experiment will lead to progress in molecular biology as well.

This chapter could be viewed as an analog of Chapter 6 dealing with the
"population dynamics" of molecules rather than whole organisms. Perhaps the key
ideas presented here are that some parallels exist between such disparate realms and
that certain dynamic properties are shared by unrelated entities. To begin this excur-
sion, we delve into a familiar macroscopic observation and study its molecular foun-
dation. Looking more closely at events on a bacterial cell's membrane, we show that
Michaelis-Menten kinetics (used in Section 4.4) correspond to saturating nutrient-
conveying carrier molecules. Mathematical methods applied to this problem are used
again for studying two related situations (Sections 7.3 and 7.4) in which sigmoidally
saturating kinetics are implicated.

As a departure from the somewhat technical enzyme kinetics, we explore how
two simple molecular events lead to an aspect of behavior that mimics certain prop-
erties of the cell. Here a somewhat abstract mathematical approach leads to insights
that, although oversimplified, are nevertheless useful.

An extension of the geometric and graphical analysis of Chapter 5 is applied to
two chemical situations (Sections 7.7 and 7.8) simply for further practice in abstract
reasoning. Finally, we conclude with a brief expose of mathematical theories that
could be applied to certain biochemical and molecular systems too complicated to be
analyzed by standard modeling techniques.

For a condensed coverage of this chapter, the following material could be cov-
ered: Section 7.1 and part of Section 7.2, Sections 7.3, 7.5, and 7.6; the material in
Sections 7.7 and 7.8 can be assigned to more advanced students or omitted.

7.1 MICHAELIS -MENTEN KINETICS

In describing bacterial growth within a chemostat (Chapter 4) we assumed an ex-
pression for the nutrient-dependent growth rate that had the property of saturation;
for low levels of the nutrient concentration c, bacterial growth rate given by equation
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Models for Molecular Events	 273

(15) in Chapter 4 is roughly proportional to c. At high c levels, though, this rate ap-
proaches a constant value, Km.. (See Figure 4.3.) Numerous biological phenomena
exhibit saturating kinetics. The expression

K(C) K + C 	 (1)

which depicts such a property, is called the Michaelis-Menten kinetics. This expres-
sion actually stems from a particular set of assumptions about what may be occur-
ring at the molecular level on the surface of the bacterial cell membrane. We explore
this mechanism in some detail in this and the following section.'

Figure 7.1 gives a schematic version of how bacteria consume organic sub-
stances such as glucose. Most water-soluble molecules are unable to pass through
the hydrophobic environment of the cell membrane directly and must be carried
across by special means. Typically, molecular receptors embedded in the bacterial
cell membrane are involved in "capturing" these polar molecules in a loose complex,
conveying them across the membrane barrier, and releasing them to the interior of
the cell. Saturation results from the limited number of receptors and the limited rate
at which their "conveyor-belt" mechanism can operate.

Figure 7.1 The passage of nutrient molecules into 	 Bacterial
a cell may be mediated by membrane-bound	 cell

receptors. This saturating mechanism for nutrient	 "N..
	 Membrane

uptake can be described by Michaelis-Menten
receptors

kinetics.	 ; ;	 ‚	 /
'^!•	 Internal	 y	 1

nutrients

•	 1
D	 Occupied

1	 ^
	! 	 \ Empty

(X0)	 I	 1
: I 1	 C

•(Nutrient
molecules)	 0

I	 • 1

Let us write the molecular scheme of this event in the form of chemical equa-
tions. We will denote an external nutrient molecule by C, an unoccupied receptor by
X0 , a nutrient-receptor complex by X,, and a nutrient molecule successfully cap-
tured by the cell by P. The constants k,, k_,, and k2 depict the various rates with
which these reactions proceed. The following equations summarize the directions
and rates of reactions:

1. The approach in this material is partly based on a lecture given by L. A. Segel at the
Weizmann Institute, where the author was a graduate student.
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274	 Continuous Processes and Ordinary Differential Equations

C+Xo k X,,	 (2a)

X l — k?-+ P + X0 .	 (2b)

That is, C and Xo can combine to form the complex X 1 , which either breaks down
into the former constituents, or else produces P and X0 . The fact that reaction (2a) is
reversible means that the carrier receptor sometimes fails to transport its nutrient
load into the cell interior, dumping it instead outside the cell.

A reaction diagram such as the one given by equations (2a,b) can be translated
into a set of differential equations that describe rates of change of concentrations of
the participating reactants. The diagram encodes both the sequence of steps and the
rates with which these steps occur. To write corresponding equations, we must use
the law of mass action (encountered previously), which states that when two or more
reactants are involved in a reaction step, the rate of reaction is proportional to the
product of their concentrations. By convention, the rate constants k ; in the reaction
diagram are the proportionality constants. We define the volumetric receptor concen-
tration by averaging over a population of bacteria, as follows:

number of receptors = average number of number of cells
per unit volume	 receptors per cell X per unit volume'

The lower-case letters c, xo, x,, and p will be used to denote concentrations of
C, Xo, X,, and P. Keeping track of each chemical participant allows us to derive the
set of equations (3). (It is a good idea to attempt to write these equations indepen-
dently before proceeding.)

dc
	(3a)dt — —k1cxo + k_ixt,

dxo = 
—k,cxo + k_,x, + k2x,,	 (3b)

dt
dx,	

(3c)dt =kicxo — k- ixe — kzx1,

dp
dt = k2x,.
	 (3d)

Adding equations (3b,c) reveals a feature common to many enzymatic reac-
eons•

dxo dx, 	(4)

dt + dt — ^'

which simply means that xo + x1, the total of occupied and unoccupied receptors, is
a constant. This is not at all surprising, since receptors are neither formed nor de-
stroyed in the process of conveying their cargo into the cell. Suppose we started out
with an initial concentration of receptors r. Then the total concentration would re-
main r:

x, + xo = r.	 (5)

It is generally true that the enzymes are conserved in the reactions in which they par-
ticipate.
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Models for Molecular Events	 275

Equation (5) permits us to simplify the system of equations (3a,b,c) by elimi-
nating either x, or xo . We arbitrarily choose to eliminate x0 . Furthermore, because
equations (3a,b,c) are not dependent on concentration p, we shall set aside (3d),
which can always be solved independently once solutions for the other variables are
known. In problem 1 you are asked to verify that these steps lead to the following:

dc =
dt	

—k,rc + (k_, + k,c)x,,	 (6a)

dx,
dt = k, rc — (k_ 1 + k2 + k, c)x, .	 (6b)

7.2 THE QUASI-STEADY-STATE ASSUMPTION

At this point we could proceed with a full analysis of equations (6a,b) using the
phase-plane methods described in Chapter 6 (see problem 7). However, in this sec-
tion we concentrate on an assumption that leads directly to the Michaelis-Menten
rate law and then examine the restrictions to which this approximation is subject.

Typically, small molecules such as glucose or other nutrients are found in con-
centrations much higher than those of the receptors (in the sense of our previous
definition of receptor concentration). We could argue, therefore, that receptors are
always working at maximal capacity, so that their occupancy rate is virtually con-
stant. This assumption, which leads us to write

dx,

	

dt — 0'	
(7a)

or equivalently,

k, rc — (k_ 1 + k2 + k, c)x, = 0	 (7b)

is called the quasi-steady-state hypothesis and permits further simplification by al-
lowing x, to be eliminated from the system of equations (6a,b).

In problem 2 you are asked to detail the algebraic steps showing that this as-
sumption results in

dc _ _ Kmaxc 	(8)
dt

where

Kmex = k2 r,	 k„ _
k_, + k2

k,

There is one serious problem with this reasoning. Setting dx,/dt = 0 in equa-
tion (6b) changes the character of the mathematical problem from a system of two
ODEs to a simple ODE coupled with the algebraic equation (7b). This change in the
problem can have drastic consequences and should not be taken lightly. In order to
more fully understand when this approximation can be used, it seems prudent to
make a more careful comparison of magnitudes of terms in these equations.

Because these magnitudes really depend on the system of units adopted to
measure concentrations and time, a prerequisite step in making such comparisons is
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276	 Continuous Processes and Ordinary Differential Equations

to reduce the equations to a dimensionless form. (Detailed steps are left as an exer-
cise in problem 3.) First we choose the following scales:

7 = Ilk, r, for units of time,	 (9a)
x, = r = initial receptor concentration, for units of x,	 (9b)

c = co = initial nutrient concentration, for units of c. 	 (9c)

The equations can then be written in the dimensionless form,

	dt*	 —c*+ 
(k,

co +c*xi,	 (10a)

dx* _ co c* — co( k_, + k2
+C 	 (lOb)

	

dt*	 r	 r	 k,co	
1

Next, drop the asterisks and define

	r 	k-, + k2 	k2
e=—, K=	 , ^t=—

	c o 	k,co	 k,co

Notice that e is the ratio of concentrations of receptors and nutrient molecules. The
equations become

dc
dt = —c + (K — A + c)x, ,	 (ha)

dx,
e dt = c — (K + c)x, . 	 (Jib)

We now realize that neglecting the LHS of equation (6b) is equivalent to as-
suming that e dx,/dt is small. This would be fine provided e is small, that is, the re-
ceptor concentration is lower than nutrient concentration. Notice that dimensional
analysis has given a much more precise meaning to the quasi-steady-state assump-
tion.

To summarize results, it has been concluded that for time scales on the order
of T = 1/(k1 r) the process of receptor-mediated nutrient uptake is, to first-order ap-
proximation, given by the equations

dc _
dt	

—c+(K—A+c)x,,

0=c—(K+c)x,.

More simply stated, this means that

dc _ —Ac
dt K + c'	

(12a)

_ c

x '	 K + c .	
(12b)

We recognize this as another version of the Michaelis-Menten rate law. From equa-
tion (12a) observe that whenever c > 0, dc/dt < 0 so that c is a decreasing func-
tion of time. [This equation can be integrated to obtain an implicit solution for c (t):
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Models for Molecular Events	 277

See problem 4a.] From (12b) we also observe that x, decreases as c decreases. [See
problem 4b.] Thus on the time scale T, the concentrations of both the nutrient and
the nutrient-receptor complex will be decreasing with time. This is one approxima-
tion of the nutrient-receptor kinetics.'

We now repeat a step in our analysis by examining the same process again but
with a different choice of time scale. Let us now choose

1
T=—,	 (13)

k,co

and retain the previous choices x, = r andc = co. In problem 5 it is shown that re-
sulting dimensionless equations are

dc * 	 (14a)
dt

dx* = c — (K + c*)x*,	 (14b)
dt

where E, K, and A have their previous meaning.
How do the two time scales T and T compare? According to our assumption, E

is small; that is, co > r. Thus

TT.

With our second choice of time scales we are studying the behavior for short times,
close to t = 0. For example, in a situation in which substrate at concentration co is
abruptly added to the solution at t = 0, this second time scale would be appropriate
for understanding the way initially free receptor sites fill up with their ligands.

Again exploiting the fact that E is small now leads to the conclusion that the
RHS of equation (14a) can be neglected to first-order approximation, so that for time
scales on the order of T we can say that

dc *
	 (15a)

dx* = 1 — (K + l)x*.	 (15b)
dt*

The equation for x* can then be integrated (this is left as an exercise), and we then
observe that the receptors that at t = 0 are unoccupied [x, (0) = 0] quickly fill up,
approaching a fixed fractional occupancy rate. By our previous analysis, x, eventu-
ally decreases as c is depleted from the environment of the cells.

2. To achieve greater accuracy, we can refine this approximation by assuming that the
functions x, and c are made up of sums of terms that are proportional to e° , e', € Z , ... , e".

These are called asymptotic expansions, and the procedure for then getting successive approxima-
tions for x, and c is called a singular perturbation method. This important method has rather
broad application to problems in applied mathematics. However, the numerous technical details
involved are beyond the scope of this book.

A thorough exposition of the method of asymptotic expansions and its application to en-
zyme kinetics is given by Murray (1977) and Lin and Segel (1974).
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278	 Continuous Processes and Ordinary Differential Equations

Summary of Steps Leading to the Michaelis-Menten Rate Equation

1. Draw the following reaction diagram:

C + Xo1 I. X,—.-.Xo +P.

2. Write equations for changes in concentrations c, xo , x i , and p using the law of
mass action.

3. Use the fact that the total number of receptor molecules x 0 + x, = r is fixed and
eliminate one variable.

4. Assume receptors are at quasi steady state so that dx,/dt = 0 to get a relation-
ship between x, and c.

5.	 Eliminate x, from the equation for dc/dt, and obtain'

	dc _	c
dt — — Kmaxk„ + c ,

where

	KmBx = k2 r,	 kR =
k_ 1 + k2

k,

We have seen previously that on two different time scales one can ascertain the
behavior by solving different approximate versions of the equations. The final step,
that of matching these short and long time solutions, is accomplished by the tech-
nique of matched asymptotic analysis and will not be discussed here. However, the
results enable us to establish a complete time sequence of events, as illustrated in
Figure 7.2.

c

Co

x1(t)

c (t)

t __ 0(T)	 t - O(r)

Figure 7.2 A reversible reaction such as equation
(2a) has distinctly different kinetics at different time
scales: On a short time scale (t = 0(i)) receptors
fill up quickly, and c = co. On longer time scales

(t = 0(r)) the receptor occupancy x, decreases as c
is progressively depleted. (Most of the nutrient has
been transported into the cell interior.)

3. dc/dt is negative since the concentration of substance outside of the cell is decreasing.
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Models for Molecular Events 	 279

In problem 7 it is shown that these results are consistent with a phase-plane
analysis of equations (6a,b) in which no quasi-steady-state approximation is made.

7.3 A QUICK, EASY DERIVATION OF SIGMOIDAL KINETICS

One of the features of Michaelis-Menten kinetics not shared by more complex
molecular pathways is that for low precursor concentrations it yields an approxi-
mately linear rate of reaction. (The graph of —dc/dt versus c is almost a straight line
close to c = 0.) Stated another way, for moderately low precursor levels (those that
do not oversaturate the receptors), increasing the precursor concentration by 50%
tends to increase the reaction rate by 50% simply because the chances of encounter
between receptors and precursors increase proportionately.

We shall see that this simple proportionality changes when more than one pre-
cursor molecule is implicated in forming a complex. Instead we typically observe a
sigmoidally saturating graph of the rate kinetics. A simple but naive way of demon-
strating this is to consider the following double-substrate complexing reaction:

2C + Xo k Xz k- Xo + 2P.	 (16)

Here two molecules of the substance C are required for forming the complex X 2 ,
which then yields products Xo and P. With the preparation given in Sections 7.1 and
7.2, it is a straightforward matter to draw the necessary conclusions. Indeed, we
need only insert a single change in the previous steps to see the result. According to
the law of mass action the reaction that feeds on two molecules of C and one of X 0

proceeds at a rate k,c zxo • Thus the first two equations describing the reaction are

dc
dt  (17a)

dxo = — k,c zxo + k-,xz + k2x2, (17b)
dt

Others in the series are equally easy to write down. We recognize (17) as a thinly
disguised version of the previous rate laws but with the following changes:

c is replaced by c 2 ,
x, is replaced by xz .

For practice, you may want to reconstruct the steps (identical to those of the previ-
ous sections) that lead to the rate equation for c given a quasi-steady-state assump-
tion for xz . Because the only substantive change is replacing c with c 2 , it should
come as no surprise that the result is

dc _	 K,„ax c z_ 	
(18)

dt	 k„ + cz'

where Kmax = k2 r and k„ = (k_, + k2)/k 1 as before. The graph of this function,
shown in Figure 7.3, is sigmoidal, where \/j, the concentration required for half-
maximal response. c = \[k„ gives dc/dt = K,,, /2. For small c the graph is approx-
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280	 Continuous Processes and Ordinary Differential Equations

imately quadratic; that is,

dc 	 c2

dt	
Kma" k ,

n

where c 2 << kn .

Figure 7.3 A sigmoidal reaction rate for a reaction
involving two molecules of precursor.

\! kn

7.4 COOPERATIVE REACTIONS AND THE SIGMOIDAL RESPONSE

In most biochemical systems, trimolecular reactions are considered unlikely, as they
involve a collision between three molecules. For this reason, simultaneous complex-
ing of two molecules with a receptor is generally unrealistic. In this section we ex-
amine a more plausible version that involves only sequential bimolecular steps. The
connection between these distinct mechanisms will then be established by comparing
results.

Let us suppose that a double complex forms in the following way. First a sin-
gle molecule attaches to the receptor, then a second. Products might be formed at an
intermediate stage (with rate ►(,) or at the end (rate K2). A diagram typical for this
reaction would be as follows:

C + Xo —n-	- '  X 1 —p Xo + P,	 (19a)

C + X 1 - X2 	X, + P.	 (19b)

Corresponding equations for c and x, must now include all reactions in which these
appear as products or reactants, as follows:
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Models for Molecular Events 	 281

dc _
dt	

—k,cxo + x,(k-, — k2c) + k_2x2,	 (20a)

dxo =
dt	 —k,cxo + x,(K, + k_,), 	 (20b)

dx, = k,cxo + X2(K2 + k-z) — xl(K, + k_1 + k2c),	 (20c)

dx2
dt = kzcx, — x2(k-2 + K2),	 (20d)

dp = K,x, + K2X2.	 (20e)

The conservation of receptors in the reaction now implies that

x0 +x 1 +x2 =r	 (20f)

where r is a fixed constant. This equation can be used to eliminate any x from equa-
tions (20a—e) for example, x o .

We now make a quasi-steady-state assumption for each receptor occupancy
state and set dx,/dt = dx2/dt = 0 after eliminating xo). The resulting relations in-
volve certain ratios of rate constants that we shall define, following Rubinow (1975),
as follows:

K, + k-,
	(21a)K. =	 ,k^ 

Km = K2 + k-2
	(21b)

kZ

In problem 9 you are asked to demonstrate that the quasi-steady-state assumptions
lead to the relations

Kmx, = cxo ,	 (22a)
Km K;„xz = C 2xo .	 (22b)

Consequently, using equation (20f), it is possible to express x o in terms of c; when
this is done, the following relation is obtained:

xo rK 	(K,„Km + K;„c + c 2).	 (23)

As a last step, we rewrite the equation for dc/dt using equations (21) to (23). The
result is

dc _ —rc(K,KM + K2c)

dt K,„Km + K;,c + c 2 *	
(24)

This equation bears an apparent connection with the simpler sigmoidal kinetics in
equation (18), but it contains several terms that were absent before. It is somewhat
revealing to examine when these terms can be ignored so as to establish a connection
between the two mechanisms shown in equations (16) and (19).

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



282	 Continuous Processes and Ordinary Differential Equations

We notice in the numerator that the term linear in c vanishes if ►c, = 0, that is,
if products are not formed in the intermediate steps of the reaction. When is the term
Kc in the denominator of equation (24) small enough to neglect? This term is small
relative to c 2 and to KmK7 provided

KmK„,>K„,c	 and	 c Z >K;„c.

Combining inequalities leads to

Km>c>Km,	 (25)

which indicates that the constant K m must be larger than K. Furthermore, the term
Kmc can only be neglected at intermediate levels of concentrations c; that is, at lower
or higher levels the presence of this term tends to distort somewhat the graph of the
function shown in Figure 7.3 (see problem 11).

Rewriting the above inequalities in terms of original parameters leads to the
following:

	1 	 1
	m 	 m

k2
	 >	 k, 	(26)

	K2 + k_2	 Ki + k_,

This indicates that the tendency of the first reaction step in (19b) to proceed in the
forward direction is greater than that of the first step in (19a). Stated another way,
once a single molecule of C has complexed with a receptor, a second molecule com-
plexes more readily. Thus the intermediate complex X, is short-lived and can almost
be neglected, as it has been in the simplified scheme of the trimolecular mechanism,
equation (16).

Many biologically important reactions have the characteristic that once a first
step is complete, others follow rapidly. A notable example is that of hemoglobin (a
macromolecule in red blood cells which conveys oxygen). Hemoglobin has four
polypeptide (protein) components, each of which contains a heme group that can
bind with an oxygen molecule. After a single oxygen molecule is attached, the bind-
ing of others is enhanced. This reaction and others like it are termed positively coop-
erative. Mechanisms for cooperativity may include conformational changes
(changes in shape) of the macromolecule that enhance exposure of active sites. Fur-
ther details about these fascinating topics can be obtained from any current text on
biochemistry or molecular biology.

Based on the investigation in this section we conclude that for highly coopera-
tive bimolecular reactions involving a complex between one macromolecule and two
substrate molecules, equation (18) is a reasonable approximation for the reaction rate
(subject to all the appropriate conditions outlined earlier). A generalization of this
rate law to n-substrate complexes is

dc _ —Kmaxc'

dt (2 ^)(k„ + c ") ' 

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Models for Molecular Events 	 283

7.5 A MOLECULAR MODEL FOR THRESHOLD-GOVERNED
CELLULAR DEVELOPMENT

Over the years our understanding of molecular processes within the cell has in-
creased. This knowledge has led to much greater insight into the way cells acquire a
commitment to specific developmental pathways. The quest to probe these complex
processes further is at the forefront of science, technology, and perhaps even our
philosophical view of living things.

All cells in our body have one ancestral cell: the fertilized egg created at con-
ception. Since the advent of molecular biology of the gene we know that all these
progeny cells, no matter how diverse their functions, have identical "blueprints" en-
coded in genetic material in the nucleus. Somehow during the life history of the cell
these blueprints are selectively transcribed and used in building the unique character
of the cell, be it neuron, epithelial cell, hepatic cell, or one of thousands of other cell
types in our bodies. How this developmental process occurs is still largely a mys-
tery.

Mathematics has played an admittedly modest role in solving the mysteries of
molecular biology. Nevertheless, mathematical reasoning can illuminate specific
questions that may then be clues to a tremendously complex puzzle. We shall see
two examples in this and the following sections.

We first discuss a model by Lewis et al. (1977) that illustrates the idea that
chemical reactions can act as logical elements, helping to make decisions about the
developmental processes that occur in a cell. To discover how this works, a rather
simple idealized example serves as the focal point of our discussion.

Consider a row of cells connected to each other in a one-dimensional filament.
Originally the cells are identical; after a process of differentiation the row consists of
two distinct cell types (say, pigmented and unpigmented cells). A well-defined bor-
der between these types appears in a predictable and controlled position. How is this
achieved?

One theory, by no means the only one, is that cells have positional informa-
tion, cues by which they assess their locations relative to particular points of demar-
cation. (The ends of a filament and the boundary of a two-dimensional tissue are ex-
amples of such demarcation points.) These cues, which may be carried by chemical
messages, then have to be interpreted by the cell to arrive at a set of instructions that
determine the course of differentiation.

We can imagine how positional information might be created and maintained.
For example, in our example of filament of cells, a chemical source at one end (say
the "head") and a sink at the other (the "tail" end) could result in a permanent and
continuous gradient of a chemical signal S across the tissue. Cells closest to the head
would be exposed to high levels of S; those closest to the tail would sense low S
concentrations; and those at intermediate positions would detect moderate levels [see
Figure 7.4(b)]. Each cell could then "feel its position" by assessing the concentra-
tions of S about it. S could be called a morphogenetic substance since it controls the
differentiation and development of form in the tissue.

It still remains to determine how a continuous spatially varying signal is inter-
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Gene

Signal S

(a)

-2

Morphogenetic
gradient

o, -3
0

-4
I.0

Yz - -- ----- -

Allosteric
response

L :nthrri

(b)

Figure 7.4 (a) In this model, S is the signal for
gene activation and G is the product synthesized by
the gene that contributes to further activation. (b) A
continuous morphogenetic gradient of S thus results
in a response that undergoes a rapid transition
from 0 to 1. [ y represents the magnitude of the
sigmoidal term in equation (28).] This means that

sharp transitions in developmental processes can
occur in a row of cells that experience a continuous
signal gradient. (Reprinted with permission of the
authors and publisher from Lewis, J., Slack,
J.M.W., and Wolpert, L. (1977). Thresholds in
development. J. Theor. Biol., 65, 579-590.)D
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Models for Molecular Events 285

preted in a discontinuous developmental response. Clearly what is needed is a cellu-
lar on-off switch, a mechanism that governs whether pigment is synthesized or not,
depending on the concentration of S. It happens that simple biochemical processes
can provide such decision elements.

While many possible hypothetical molecular systems could work in principle,
we examine now a simple example due to Lewis et al. (1977). What is attractive
about this example is that it is relatively elementary, uses chemical kinetics dis-
cussed in a previous section, and has rather interesting dynamical behavior that we
will ascertain by methods given in Section 5.1.

It is an acceptable assumption that production of a pigment (or, for that matter,
any other protein product of the cell) requires activation of a gene that may normally
be quiescent. Suppose gene G produces its product (whose concentration is g) at a
rate that depends linearly on the level s of signal S. Furthermore, suppose G exerts a
sigmoidal positive feedback effect on its formation and is degraded at a rate propor-
tional to its concentration [see Figure 7.4(a)]. The level of the product of G within
the cell could then be governed by the equation

2dg= k,s—kz g + kn Kg g2. (28)

To understand the implications of (28), we study a graph of dg/dt versus g. A sim-
ple way of arriving at such a graph is to superimpose graphs of the two functions
k,s — ke g and Kg 2/(kn + g 2) and add these. The first is a straight line of slope —k2

that intercepts the g axis at k i s. The second is a sigmoidal function like the one in
Figure 7.3. The sum of the two leads to one of the graphs shown in Figure 7,5 de-
pending on the size of k,s.

This model consists of a single nonlinear differential equation (28), whose
form is dg/dt = f(g). (s is assumed to be a known parameter, so g is the only vari-
able.) We have encountered such equations in Section 5.1. Figure 7.5 identifies the
steady states of (28) as points of intersection of y = f(g) with the g axis. It can be
seen that the number of such intersections can vary from one to three, depending on
the height of the dip in the curve. Moreover, the stability properties of these states
can also change in the transition from Figure 7.5(a) to (c). Recall that stability of the
steady states can be inferred from the direction in which changes take place close to
these points. This in turn depends only on the sign of dg/dt, which can be read di-
rectly from the graphs.

For example, in Figures 7.5(a,b), dg/dt is positive for all g values to the left
of g i . In Figure 7.5(c) the fact that the valley in the graph dips below the g axis
means that dg/dt is negative for g3 < g < 92 . As shown in the graphs, these obser-
vations lead us to deduce a "flow" along the g axis. In cases (a) and (b) this flow is
towards g, (which is then a globally stable steady state). In case (c) both g, and g i

are stable; if g is initially smaller than gz it will approach g, with time, whereas if g
is initially higher than g2 , it will be attracted to g,. Using the methods given in
Chapter 5 we have determined qualitative properties of the chemical kinetics de-
picted by equation (28) without explicitly calculating anything.
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286	 Continuous Processes and Ordinary Differential Equations

Figure 7.5 Equation (28) describes two possible
qualitative behaviors depending on the size of k, s
(on the level of signal). In (a) there is a single
steady state g,. In (c) there are three steady states,
two of which are stable. (b) marks the transition
between these two regimes. 

dg

dt 

k1s

g

(a)

dg

dt

k 1 s

g

(b)

dg
dt

k o s

(c)

Now we consider what this model implies about cellular differentiation. Sup-
pose that initially all cells have no gene product, so g = 0. As the chemical gradient
of S is established in the row of cells, there will be a continuous spatial transition
from cases (a) to (b) to (c) (and all intermediate cases) across the length of the tis-
sue. Close to the tail end of the row of cells, where s is very low, the kinetics of the
gene product is given by Figure 7.5(c): the intercept k1  is close to zero. Thus, since
initially g < g2 , the cell is led into steady state g3; that is, very low levels of gene
product are formed. Somewhere along the row of cells a threshold level of s is
present; there Figure 7.5(b) applies. The steady state g 3 has disappeared. g2 and g,
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Models for Molecular Events 287

are the only remaining steady states; the former is an ephemeral one, vanishing
when s increases by the slightest amount. Thenceforth, in all cells beyond the transi-
tion point, gene product is synthesized up to a concentration g = g, , which is the
unique steady state.

We see that the mechanism indeed captures the essence of a threshold switch.
Another interesting feature noted by Lewis et al. (1977) is the memory built into the
scheme: Once s is raised above threshold, the state of the cell changes permanently
to g, . Even if s subsequently decreases, so that Figure 7.5(c) is obtained, the cell is
"trapped" in g, and will not return to its former state. The authors point out that a
transient signal can thus be used to control discontinuous transitions in this develop-
mental model as well as in other cellular processes.

7.6 SPECIES COMPETITION IN A CHEMICAL SETTING

A second example of biochemical control is discussed in this section. The model is
presented here more to provoke your imagination and amuse you than to make a se-
rious claim about cellular development. Perhaps as important as the message is the
approach that differs from previous modeling in that a mechanism is inferred from
an abstract set of equations.

Consider the following hypothetical situation. A cell can produce two types of
chemical products X and Y. Under some circumstances it is advantageous to produce
only one of the two products, while under other circumstances it is requisite to form
both in a predetermined ratio. How is this to be achieved?

Suppose X and Y are components of some structural macromolecules. Figure
7.6 illustrates an artist's conception of how the axis of polarity of a two-dimensional
cell could be determined by combining monomers of two types into longer struc-
tures. The scheme only works if the cell is "glued" into position with a permanently
affixed immobile cornerstone on which macromolecular structures are built like scaf-
folds. The idea is then to combine appropriate ratios of X-type and Y-type bricks,
thereby obtaining a structure whose orientation is given approximately by the vector
(percent X type, percent Y type). Thus a way of controlling the polarity of the cell
(whether it elongates horizontally, vertically, or in some other direction) is by con-
trolling the relative percentages of X- and Y-type monomers that are synthesized in-
side the cell.

How cellular polarity is actually controlled is still an unsolved problem. Beau-
tiful and exciting examples of the effects of polarity differentiation are often demon-
strated in plant cells (which, incidentally are largely immobile, unlike the fluid-like
cells of animals). A particularly striking pattern of horizontal-versus-vertical cellular
orientation is exhibited in tree trunks and other woody parts of plants in the tissue
called the xylem (which consists of cells that have died after differentiating). There
one sees "islands" of horizontal radially directed cells (called ray cells) embedded in
a sea of vertical cells (tracheids). (See Figure 7.7.) The remarkable point is that both
cell types arise from rather similar precursors in the actively growing tissue called
the cambium. There are virtually no cells that do not fall into this dichotomy, indi-
cating that the control mechanism governing polarity commitment is rather strict.
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(a)

Y(1 11__
X

---	 Y	 X	 Y

/x/x/

(b)	 (c)

(1)

Figure 7.6 The polarity of structures within the cell
and hence the orientation of the cell could perhaps
be governed by the relative proportions of
monomers X and Y that are made. The cell must
have (a) a fixed "cornerstone" and (b) synthesize X
and Y, which can form complexes such as (c)

dimers or larger polymers. (d) If only Y is made or
(e) only X, the cell will have a horizontal or
vertical polarity. (f) Intermediate orientations occur
if both products are made in some relative
proportion.
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Models for Molecular Events	 289

Looking at examples like that of rays and tracheids in the xylem of plants
leads us to feel that some sort of competition takes place within the precursor cell
between the tendencies to promote horizontal and vertical characteristics. This intu-
ition leads to the model that follows, though clearly many other approaches to the
problem are possible.'

Figure 7.7 Cells that are oriented precisely in the
horizontal or vertical directions can be observed in
the woody parts of higher plants. The question of
how such polarity is determined led to the model
given by equations (29a,b). This diagram shows

the xylem of white cedar with its ray cells and
tracheids. [From Esau, K. (1965). Plant Anatomy,
Wiley, New York. Copyright © 1965 by K. Esau.
Reprinted by permission of John Wiley & Sons,
Inc.]

4. The models of plant cell polarity were inspired through conversations with Tsvi Sachs
of the Hebrew University, Israel.
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290	 Continuous Processes and Ordinary Differential Equations

At this point we pause for a pitch on the advantages of modeling. We are about
to witness the fact that a mathematical abstraction permits us to make a connection
between two seemingly unrelated phenomena that share similar dynamical proper-
ties. In this case the suspicion that competition between two forces or two chemical
species might be involved leads us to recollect that a competition model in another
context is already known to us. From Section 6.3 we borrow equations (9a,b):

dN, 	a, — N, — /3 12Nz
= r,N,	 (9a, Chap. 6)dt	 rc,

dN2 	K2 — N2 — 1321 N,
= r2Nz	 (9b, Chap. 6)dt	 Kz

These equations describe the populations of two animal species. One wonders to
what extent they could pertain to chemical species, where reproduction, survivor-
ship, or mortality have vague meanings if any. If we are to proceed with a reinter-
pretation, we must use a more general restatement of the equations. Accordingly, we
replace variable names by x and y (concentrations of the two molecular species X
and Y), use new parameters µ, a, y and multiply the RHS expressions to get the fol-
lowing rejuvenated model:

dx

	

=
dt = µ

1x — a,x z — yuxy,	 (29a)

	

dt — µ2y — a2y 2 — y21xy.	 (29b)

Note that the new parameters are related to the old as follows: K; = µ;/a; and
= µ;/y;;. The behavior of solutions to these equations falls into one of the

four categories shown in Figure 6.6:

1. species Y always predominates.
2. species X always predominates.
3. X or Y predominates depending on initial conditions.
4. Stable coexistence of both species at some ratio.

Which case is obtained depends on the relative magnitudes of certain combinations
of the parameters:

1. µ2/µi > y2 /a, and	 µ2//-L1 > a2!)'12.
2. A21 A , < 721/al and	 A21 A , < a2/712.
3. A2//LI < 721/a, and	 µ2lµ1 > a2/y12.

4. A21AI > yzi/a, and	 µ2/12I < a2/y12•

On the face of it, the equations can potentially describe the very phenomenon that
we are attempting to understand in this section, namely a mechanism of controlling
synthesis of species at some relative proportions. However, in order to reap some
benefit from this conclusion we might wish for some kind of molecular interpretation
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Models for Molecular Events 291

for terms in equations (29a,b). Since the control of synthesis of large molecules ulti-
mately resides within the genome, a suitable interpretation would be to view these
terms as effects on the genetic material that codes for species X and Y.

A positive feature of equations (29a,b) that was not readily apparent in their
previous form is that the quadratic terms they contain are rather familiar mass-action
terms for interactions of pairs of molecules (X with X, Y with Y, or X with Y). This
suggests the following intriguing hypothesis.

Suppose the X and Y molecules can form dimers such as X—X, X —Y, and
Y—Y in some rapidly equilibrating reversible reaction. In this case, the cellular
concentration of such dimers would be approximately proportional to the products of
concentrations of the participating monomers (see problem 12). Precisely such terms
appear in equations (29a,b) accompanied by minus signs. This suggests that these
dimers tend to inhibit the production of the substances X and/or Y (or possibly acti-
vate enzymes that degrade these chemicals).

We can go further in putting together the puzzle by interpreting a complete
molecular mechanism as follows:

1. Each monomer activates its own gene. (Witness the positive contributions of
terms µ,x and µ2y in the equations.)

2. Dimers made up of identical monomers (X—X and Y—Y) repress only the
gene that codes for that particular molecule.

3. Mixed dimers (X—Y) repress both the X gene and the Y gene.

See Figure 7.8(a) for a schematic view of these events.
We have seen earlier that with the appropriate relations between the various

rate constants this regulatory mechanism would select for the synthesis of a single
product or some proportion of both products. What do such rate constants represent?
Previous analysis in this chapter demonstrates that rate constants are often ratios or
more complicated combinations of parameters that depict forward or reverse reaction
rates. Loosely speaking, the constants appearing in equations (29a,b) may depict
affinities of molecules for each other (as for dimers) or for regions of the genome
that control synthesis of the products X and Y.

Since it is known that slight changes in molecular conformations can alter such
affinities, it is reasonable to think of cells as having a whole range of permissible
values of (pa, a; , y;;). Some values would lead to all-or-none behavior, while others
would govern the relative frequency of X and Y synthesis. What makes this fact in-
triguing is that we can envision a developmental pathway, in which a cell changes its
character throughout various stages of its cycle to meet various needs. This could be
accomplished by a gradual variation of one or several rate constants. (See problem
13.)

For example, if µ2/µ, < y21/a, and g2/µ, > a2/y12 (case 3) the cell would
have the dynamical behavior shown in Figure 7.8(b): given any initial concentrations
(xo, yo) the final outcome would be synthesis of only X or only Y depending on
which gene gets more strongly repressed. This in turn depends on whether (xo, yo)
falls above or below a separatrix in the xy plane, a curve that subdivides the positive
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Repressors	 Repressors
X gene	 Y gene

Inducer +	 -	 I	 Inducer +

/\	 ^^	 I
(X) X-X	 X-Y

Ix
 (Y J Y-Y	 X-Y	

^ Y

Dimerr	 Dimer•	 I synthesis	 Dimer	 i syn thesis

O	 X	 Y__H
	Monomer	 Monomer

(a)

Y

	

(0,	 i)
Only Y K y nullcline

ISeparatrjx

`\ /(X3 , Y3)

x nullcline

(0, 0) 
(x2, 0)
Only X

(b)

Figure 7.8 (a) The model given by equations
(29a,b) could be interpreted in terms of a molecular
mechanism for genetic control. Shown are the two
genes coding for X and Y molecules. Repressors on
these genes are sensitive to concentrations of the
dimers X—X, Y—Y, and X—Y. Inducers are
sensitive to monomer concentrations of X or Y. (b)
Provided condition (3) is satisfied by the parameters
(see text), the dynamic behavior of equations

(29a,b) resembles that of a switch. There are two
possible outcomes (only X or only Y synthesized),
depending on the initial concentrations (x, y). Note
that the phase plane is divided into two domains by
a curve called a separatrix. Points in a given
domain are attracted to one of the two steady states
on the axes. The steady state in the positive xy
quadrant is a saddle point.
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Models for Molecular Events 293

xy quadrant into two separate basins of attraction [see Figure 7.8(b)]. Should the
parameters change so that one or both of the above inequalities is reversed, the out-
come would be independent of the initial concentrations.

Within the context of cellular polarity, we see that depending on molecular
affinities and initial conditions, the (percent X type, percent Y type) structural mole-
cules in the cell could so evolve that the cell is eventually polarized entirely in the x
or in the y direction. (Alternately, in case 4 the cell could attain some intermediate
orientation governed by the coordinates (z3 , y3) of the steady state in the positive
quadrant.)

The problem of control of relative proportions of biosynthesis is clearly of
much wider applicability. To give but one other related example, consider the events
underlying synthesis of an enzyme, lactate dehydrogenase (LDH). It is known that a
single enzyme molecule is comprised of four subunits. Subunits come in two vari-
eties, A and B, and any of the following five combinations can occur:

LDH-1: BBBB, LDH-4: AAAB,
LDH-2: ABBB, LDH-5: AAAA.
LDH-3: AABB,

It is interesting to learn that in certain cells in the body (for example, mouse
kidney cells) there is a progressive shift from production of LDH-5 to LDH-1 from
birth to adulthood. This may imply that biosynthesis gradually changes from produc-
tion of all B subunits to certain proportions of B to A and finally to all A subunits.
There is no indication that the genetic mechanism is related to the simple scheme
discussed in this section. However, we nevertheless observe that such developmental
transitions could stem from gradual parameter changes in some underlying system of
molecular interactions.

What do we gain from this modeling exercise? First and foremost is an appre-
ciation of the fact that mathematical equations are abstract statements that may have
applications to more than one area. But can we really believe that the simple mecha-
nism proposed on the basis of the species-competition equations could be at work in-
side a cell? Here we must take some care, for even appealing analogies such as the
one used here may be false or inaccurate. Ultimately the test lies in empirical evi-
dence for or against a given hypothesis. You may wish to consult Edelstein (1982)
for indications of possible empirical tests of the model just discussed.

The two models examined in these sections were obtained in a way different
from previous examples; here a dynamical behavior was known a priori. The behav-
ior was reminiscent of solutions to previous equations that derived from quite differ-
ent contexts. These equations were then rewritten and reinterpreted, leading to new
suggestions for underlying mechanisms. This approach cannot be expected to work
in every case, but it is of surprising value when it does. One is led to feel that some
control mechanisms are universal, reappearing in the contexts of ecology, engineer-
ing, molecular biology, and other systems. This observation underscores the power
and generality of mathematical modeling that directly illuminates the connection be-
tween such diverse problems.
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294	 Continuous Processes and Ordinary Differential Equations

In the next section we regard one of the four cases discussed here somewhat
more abstractly and identify the particular attributes that generate switch-like behav-
ior. For further examples of this abstract modeling approach, a good source is Rosen
(1970, 1972). For more about the versatility of biochemical control, consult Sav-
ageau (1976).

7.7 A BIMOLECULAR SWITCH

In this section we examine case 3 of equations (29a,b) and explore what general as-
sumptions suffice to produce similar dynamic behavior in other systems. Recall in
case 3 that whether x or y predominates depends only on initial concentrations of X
and Y. In the xy-plane shown in Figure 7.8(b), the first quadrant is divided into two
regimes of influence; in one, all starting points head towards (0, y,), whereas in the
other the attractor is (x2 , 0). (xz and y, stand for the steady state values on the two
axes). A system that behaves in this way can be described as a switch, a means for
sorting an initial situation into one of two possible outcomes.

Since such mechanisms can have potential aplications to other physical phe-
nomena, we shall extract the features of equations (29a,b) that lead to this behavior.

From Figure 7.8(b) it is evident that a rather general property of the switch is
that the positions of steady states meet the following conditions:

1. There are four steady states: one at (0, 0), two on the axes, and one in the first
quadrant at (x3, y3).

2. (0, 0) is an unstable node.
3.	 (x3, y3) is a saddle point.

Below we restrict attention to equations of the form

I = xf(x, y)	 (30a)
y = yg(x, y).	 (30b)

These will satisfy condition 1 provided there are values x3, and y3 such that

f(x3, y3) = g(x3, y3) = 0	 (x * , y * > 0).	 (31)

The proof of this assertion is left as a problem. We note that the fact that (x3, 3)3) is
in the first quadrant is equivalent to assuming that the nullclines f = 0 and g = 0 in-
tersect in this quadrant.

To satisfy condition 2 we need to assume that f(0, 0) and g(0, 0) are both pos-
itive. (See problem 14.)

To satisfy condition 3 it is necessary that (fx/f,)I ss < (g/g,)I,, where fx, f, gx,
and g,, are partial derivatives of f and g evaluated at (x3 , y3). This condition is rather
interesting. It can be obtained by either one of two reasoning processes. A straight-
forward calculation of the Jacobian of (30) at (x3, y3) reveals that

det J = xy(f g — f gx).	 (32)

(See problem 14.) Requiring that det J < 0 leads to the above inequality.
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Models for Molecular 	 Events	 295

A more novel approach is to use geometric reasoning. To obtain case 3 the
nullclines have to be so situated that the y nullcline g (x, y) = 0 is more steeply in-
clined than the x nullcline f(x, y) = 0 at their intersection (x3, y3) such that both
have negative slopes.

Using implicit differentiation below, we arrive at the following results:

x nullcline:	 f(x, y) = 0,	 (33a)

	f X + fl dz = 0,	 (33b)

slope of x nullcline:	 dz = - L. < 0,	 (33c)
v

y nullcline:	 g (x, y) = 0,	 (34a)

d

	

gx +gy dx =0,	 (34b)

slope of y nullcline:	 dy = - g` < 0.	 (34c)
dx	 gy

The slopes must satisfy the relation fr/fy < gx/gy , establishing the result. In the al-
ternate form (f gy < fygX), we can interpret this result as follows. The product of the
effect of each species on its own growth rate should be smaller than the product of
the cross effects of species i on species j.

We see now that more general kinetic expressions can also be used to construct
a switching mechanism. [See problem 14(d).] Another rather nice example of a
switching mechanism is given by Thornley (1976) for the biochemistry of flower ini-
tiation.

The abstract way in which we studied properties of the nullclines of equations
(30) can be used for other general questions. In the next section a similar approach
will be used to derive geometric conditions for stability of interacting chemical spe-
cies.

7.8 STABILITY IN ACTIVATOR-INHIBITOR AND POSITIVE FEEDBACK SYSTEMS

Systems in which only qualitative properties of the interactions are known were dis-
cussed in Section 6.5. We now investigate a pair of chemical systems that have par-
ticular qualitative sign patterns (and associated graphs shown in Figure 7.9). The
analysis is of interest for two reasons. First, it illustrates a method for understanding
stability in a geometric way. Second, the results will be of relevance to material dis-
cussed in Chapter 11, where activator-inhibitor and positive-feedback systems are of
special importance.

The systems considered here each consist of two chemicals, with mutual ef-
fects depicted by the following sign patterns:

1. Activator-inhibitor system:	 Q, = [+ -],	 (35a)

2. Positive feedback system: 	 Q2 = [+ +]•	 (35b)
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296	 Continuous Processes and Ordinary Differential Equations

Figure 7.9 Signed directed graphs for (a) the
activator-inhibitor and (b) positive feedback systems
discussed in Section 7.8.

I	 2

(a)

2

(b)

To be more explicit, Q, and Q 2 are sign patterns of elements in the Jacobian of each
system, evaluated at some steady state. In equation (35a) the distribution of signs
implies that chemical 1 has a positive effect on its own synthesis and on the synthe-
sis of chemical 2, whereas chemical 2 inhibits the formation of both substances. For
this reason, chemical 1 is termed the activator and chemical 2 the inhibitor. (Notice
that this is a molecular analog of an ecological predator-prey pair.) In equation (35b)
either participant promotes increase in the second chemical and decrease in the first.
The term positive feedback system has a historical source and should not be taken too
literally since, in fact, both (35a) and (35b) have positive as well as negative feed-
back loops.

Indeed from Figure 7.9 it is evident that neither system is qualitatively stable
in the sense discussed in Section 6.5 because of the positive feedback loops on one
of the participating species. Stability thus depends on other constraints, to be re-
viewed presently. Rather than merely restating these in terms of the coefficients in
the Jacobian, we will derive analogous conditions on the intersection properties of
the nullclines. Thus, let us momentarily suppose that we have functional expressions
for the kinetic terms and work backwards. We deal first with (35a) and then with
(35b).

The Activator-Inhibitor System

Suppose the kinetics of chemical interactions are governed by the rate laws

d_x_
dt = f' (x, y)'	

(36a)

dy = f2(x, y),	 (36b)
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and that (x, y) is a nontrivial steady state of this system. In the xy phase plane, null-
clines for x and y would then be those curves for which

f, (x, y) = 0	 (x nullcline),	 (37a)

f2 (x, y) = 0	 (y nullcline),	 (37b)

and (x, y) would be a point of intersection of these curves. We now resort to implicit
differentiation to draw conclusions about the slope of the nullclines at (x, y).

First note that, after differentiating both sides of the equations with respect to
x, we arrive at

af, 	af' ^dyl  __
J	

'	
(38a)

ax	 ay dx, 

ax + ay \dx/2 = 0.
	 (38b)

Here (dy/dx), means "slope of the nullcline f, = 0 at some point P. " Similarly
(dy/dx)2 is the slope of f2 = 0 at some point P.

We must now use information specified in the problem, namely that the sign
pattern in equation (35a) determines the signs of elements of the Jacobian. Since
these elements are precisely partial derivatives evaluated at (x, y), we use this fact in
deducing that

af' I =a
'	

= C.af'  = —b,	 aft 	 aft  = —d	 (39)
ax gg	 ay 9g	 ax 9g	 ayy SS

where a, b, c, and d are some positive constants.
Define the quantities

dSi =	 (40a)y	 ,
dx

S2	

, cxv)

ldy 	(40b)
dx/ z (2)

Then, as mentioned above, Si and S2 are slopes of the two nullclines at their intersec-
tion, (x, y). Equations (38a,b) can now be written in terms of the new quantities as
follows:

a — bs, = 0	 (41a)

c—ds2=0	 (41b)

This implies that a = bs, and c = ds2. Thus the Jacobian of equations (36a,b) can
be written in two ways:

__ a —b __ bs, —b
c —d	 (dS2 —d	

(42)

Now we may determine when (x, y) is stable. The conditions are that

	

ß = TrJ = bs, — d <0	 z> s, < d/b,	 (43a)

and	 y = det J = —dbs, + dbS2 > 0	 S2 > .1.	 (43b)
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298	 Continuous Processes and Ordinary Differential Equations

We note from equations (41a,b) that s i and s2 must both be positive since a, b, c,
and d are assumed to be positive. Thus stability implies that at (x, y) the y nullcine
will be more steeply sloped than the x nullcline. Figure 7.10 illustrates how these
conclusions affect the local geometry of the phase plane. Further discussion of this
case is suggested in problem 15.

Figure 7.10 (a) In an activator-inhibitor system, a 	 y
steady state (x, y) is stable only if the inhibitor
nullcline (9 = 0) is steeper than the activator
nullcline (i = 0) with both curves having positive
slopes. It is further necessary that the slope of
k = 0 at the steady state be not too steep, that is,
less than d/b; see equation (43a). (b) In a
positive feedback system the two nullclines must
have negative slopes such that 9 = 0 is steeper
than i = 0 for stability of (x, y).

;'=f2=0 

=fi=0

Activator

(a)

Y

y=f2=0

N

cd

E

U = fl =0

Chemical 1

(b)

Positive Feedback

We proceed in a similar way in dealing with the second case, which is left largely as
an exercise. Now, however, we define

af` I = — a,	 af' _ — b,	 aft  = c,	 aft  = d,	 (44)
ax 55	 ay gg	 ax Sg	 ay SS

r

x
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Models for Molecular Events 299

where a, b, c and d are again positive constants. In problem 16 you are asked to ver-
ify that this method, with s 1 , and s2 defined as before, leads to the conclusion that
both Si and sz are negative, such that

—d
s2 <s,< b. ( 45)

That is, sz is "more negative" than Si, so that the y nullcline is again steeper than the
x nullcline, but now both have negative slopes. Figure 7.10(b) shows what this im-
plies about the local geometry of the nullclines in the positive feedback case.

Based on these properties, it was proved by Kadas (1982) that a two-species
reaction mechanism with a monotonic nullcline cannot have steady states of both
types (35a) and (35b). This allows one to classify the mechanisms as activator-in-
hibitor or positive-feedback in a broader sense, even though their properties are only
known locally (close to their steady-state levels).

7.9 SOME EXTENSIONS AND SUGGESTIONS FOR FURTHER STUDY

In this section we outline several alternate approaches to molecular systems, some of
which are longstanding and others more recent. References for independent explo-
ration are suggested.

1. Summaries of enzyme action and of the pertinent mathematical methods
appear in the encyclopedic book by Dixon and Webb (1979). Reiner (1969),
and Boyer (1970) are much shorter. Numerous special cases, such as
multivalent enzymes, product inhibition, allosteric effects, and endogenous
activators are discussed and accompanied by standard kinetic analysis. The
chief visual device used in studying such systems is graphs of the reaction rate
v plotted against concentration c of one of the chemical participants. (The
reaction rate is a measure of the disappearance of substrate or appearance of
product; for example, v = dc/dt; see Figure 7.3 for example.) Alternative
graphical constructions include the Lineweaver-Burk plot, which is simply a
graph of 1/v versus 1/c. Such graphs have conventionally been used to
identify rate constants in chemical kinetic studies and as a convenient way of
summarizing and comparing enzyme systems.

2. Understanding large chemical systems from network structure. Most
biochemical pathways contain a large number of intermediates that react and
affect each other in complex chemical networks. Mathematical analysis of
such chemical systems by standard methods is impractical, yet one is often
interested in addressing fairly general and important questions, such as:
(a) Does the system admit steady-state solutions? (Are there multiple steady

states?)
(b) Are such steady states stable?
(c) Can such systems admit temporal oscillations of chemical concentra-

tions?
In a series of papers, Feinberg (1977, 1980, in press) has addressed such
questions by methods that utilize the structure of the chemical network rather
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300	 Continuous Processes and Ordinary Differential Equations

than the differential equations that correspond to the chemical kinetics. The
approach consists of defining three integers, n, 1, and s, which represent
respectively the number of entities appearing in the network, the extent of
linkage of the network, and the span of a vectorspace defined by assigning a
vector to each of the reactions. The integer S = n — f — s, called the
deficiency of the network, is then indicative of the expected dynamics. For
example, in a network in which all reactions are reversible, if S = 0, then
there is always a single (strictly positive) steady state that is stable and no
oscillatory solutions exist. (See references for details of the definitions and
stronger statements of these results.) The Feinberg network method is
unfortunately not yet general enough to lead to strong conclusions in every
case. However, where applicable it is a valuable and computationally inexpen-
sive technique.

Papers given in the references are expository and would be accessible to
students who have a minimal background in linear algebra. (It is, for example,
necessary to be able to find the rank of a matrix in computing the integer s.)

3. A brief but thorough summary of enzyme kinetics that gives most of the
technical highlights is to be found in Rubinow (1975). This source
demonstrates a somewhat different application of graph theory (based on
Volkenshtein, 1969); here the goal is to derive expressions for the reaction
velocity of a chemical system. Using the quasi-steady-state assumption, this
problem is essentially one of solving a system of linear algebraic equations.
When the network is large, the corresponding system of algebraic equations
can be rather cumbersome. However, by invoking certain rules, it is possible
to simplify the network (for example, by adding parallel branches and merging
nodes in a particular way) and so deduce a relation between the reaction
velocity v and the concentrations and kinetic rate constants in the pathway
without solving a complicated system of algebraic equations. You should
recognize that this method does not address questions regarding the dynamic
behavior of a chemical reaction scheme under general conditions since the
quasi-steady-state assumption underlies the method. Rubinow (1975) gives
details and several worked-out examples.

4. A contemporary approach to the analysis of biochemical systems has been
described by Rosen (1970, 1972) and Savageau (1976) and comes under the
general heading "biochemical systems analysis." An important point their
work addresses is that enzymes are not only catalysts of reactions but also the
control elements that can be modulated by a variety of influences. It is
commonplace in biochemical pathways to encounter examples of feedback
control. End products of the reaction may directly affect the catalysis of a key
enzyme by attaching to it and changing its physical conformation. This leads to
changes in the biological function of the enzyme and may result in total
inhibition of further product synthesis.

Savageau (1976) compares the design of a number of biochemical and
genetic control pathways, summarized by reaction diagrams that convey the
sequence of products and their feedback control. (This systems approach
appears in Rosen, 1970, 1972.) An interesting feature Savageau then explores
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Models for Molecular Events 	 301

is comparison of alternative control patterns, in which control is exerted at a
variety of nodes and by a variety of intermediates. In the cases where the
number of intermediates is small (for example, n = 3), explicit stability
analysis is carried out. Certain networks lead to more stable interactions than
others. (For example, a simple end-product inhibition in which the last product
inhibits the first reaction step has a steady state that can more readily be
destabilized by parameter variations than can a system of the same size with
another pattern of feedback interactions.) Using such analysis, Savageau
addresses the question of optimality of design in assessing whether real
biochemical networks have advantages over other possible networks less
commonly encountered. Detailed discussions of stability, Routh-Hurwitz tests,
and many interesting examples make Savageau's book a good source for
further study.

Rapp (1979) gives a control-theory approach to metabolic regulation. His
paper, suitable for advanced students, contains numerous interesting examples,
a clear discussion of techniques, and a thorough bibliography.

PROBLEMS*

The following questions pertain to Michaelis-Menten kinetics.

1. Verify that equations (6a,b) are obtained by eliminating x o from equations
(3a,c).

2. Show that when the quasi-steady-state assumption is made for x, in equations
(6a,b) one can algebraically simplify the model with the following procedure:
(a) First write x, in terms of an expression involving only c.
(b) Substitute this expression into equation (6a) and simplify to obtain equa-

tion (8).

3. Show that equations (6a,b) can be reduced to the dimensionless equations
(10a,b) by the choice of reference scales given by equations (9a—c). Interpret
the meanings of r, e, K, and A. Verify that the equations can be written in the
form (lla,b).

4. (a) Integrate equation (12a) to obtain an implicit solution (an expression
linking the variables c and t.) Use the fact that at t = 0, c = co to elimi-
nate the constant of integration.

(b) Use equation (12b) and the fact that [by (12a)] c(t) — 0 to reason that
x(t) --* 0. (Hint: Consider lim c/[k + c].)

c—.o

5. Show that equations (6a,b) can be reduced to the second dimensionless equa-
tions (14a,b) by choosing the reference time scale of equation (13).

*Problems preceded by an asterisk are especially challenging.
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302	 Continuous Processes and Ordinary Differential Equations

6. Integrate equation (15b). Is x, (t) an increasing or a decreasing function of time
on this time scale? (Note: You should use the initial conditions described in the
text to get a meaningful solution.)

*7. Equations (6a,b) can be studied by phase-plane methods.
(a) Show that c and x, nullclines have the form

c = 0	 when	 x, a Kc c

Kcx 1 =0	 when	 x,b+c

Identify K, a, and b in terms of the original parameters, ro, k 1 , k_ 3 , and k2 .
Which is larger, a or b?
(b) Sketch the nullclines in an x, c phase plane. One point of intersection is

x, = c = 0. Is there another? Determine directions of flow along these
curves and along the c and x, axes.

(c) Draw a trajectory beginning at the state in which all receptors are unoc-
cupied and the initial nutrient concentration is co. What is the eventual
outcome? Explain your result in terms of the original cellular process.

(d) Which portions of your trajectory correspond to the initial fast transition
and which to the gradual slow decline shown in Figure 7.2?

In problems 8– 11  we discuss details of the derivation and implications of sigmoidal
kinetics.

8. Write down a complete set of equations for the reaction diagram (16). [The
first two equations are given in (17a,b).] Show that equation (18) is obtained
by making a quasi-steady-state assumption.

9. (a) Verify that the relations (22a,b) are obtained when we assume that
dx2/dt = 0 and dxo/dt = 0.

(b) Demonstrate that equation (23) is obtained by eliminating all variables
except c and xo in equation (20f).

(c) Show that this leads to equation (24) for c.

10. Find examples of other positively cooperative biochemical reactions and de-
scribe their kinetics.

11. Determine how a graph of the kinetics given by equation (24) compares with
that for equation (18).

12. Suppose A and B are monomers that undergo dimerization in a rapidly equili-
brating reaction:

A + B	 [A—B]
Show that the concentration of dimers is proportional to the product of the
monomer concentrations.

13. Discuss what gradual changes in the rate constants appearing in equations
(29a,b) would lead to the following developmental process:
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(a) A cell that initially produces only product x will eventually produce only
Y.

(b) A cell that initially produces some fixed ratio of product x to product y
eventually produces either x or y but not both.

14. (a) Suggest why it is reasonable to assume equations of the form (30) in Sec-
tion 7.7.

(b) Show that to satisfy condition 2 we must assume that f(0, 0) and g (0, 0)
are both positive.

(c) Show that the determinant of the Jacobian of equations (30a,b) at the
steady state (x, y) is given by equation (32).

(d) Suggest other reaction mechanisms that would give dynamic behavior
like that of the biochemical switch discussed in Section 7.6. Interpret
your model(s) biochemically.

*15. Stability in an activator-inhibitor system. From the information given in Sec-
tion 7.8 can one deduce the directions of arrows on the nullclines shown in
Figure (10a,b)? Is the result unique, or are there several possibilities?

16. Stability in a positive feedback system
(a) With the definitions given in equation (44), use implicit differentiation

along the nullclines to show that

a = —bs,	 and	 c = —ds 2 .

(b) What is the Jacobian matrix in terms of b, d, s 1 , and s2?
(c) Use stability conditions to verify equation (45).

17. The following chemical reaction mechanism was studied by Lotka in 1920 and
later in 1956:

A+X--*2X

X+Y--*2Y
Y - B

Assume that A and B are kept at a constant concentration.
(a) Write a set of equations for the concentrations of X and Y using the law

of mass action. Suggest a dimensionless form of the equations.
(b) Show that there are two steady states, and use the methods of Chapter 5

to demonstrate that Lotka's system has oscillatory solutions. Compare
with the Lotka-Volterra predator-prey system.

18. A system of three chemical species has a steady state x, y, z. The Jacobian of
the system at steady state is

all	 a12 a13
J= a21 0 0

a31 0 	a33

Magnitudes of a,; are not known. It is known that a 11 , a33 , a21, and a13 are neg-
ative, while a12, and a31 are positive. Is the steady state stable or unstable?
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304	 Continuous Processes and Ordinary Differential Equations

19. The glycolytic oscillator. A biochemical reaction that is ubiquitous in
metabolic systems contains the following sequence of steps:

glucose — GGP — FGP -p 	
PFK
 FDP —p products,

ATP ADP

where
GGP = glucose-6-phosphate,

FGP = fructose-6-phosphate,

FDP = fructose-1, 6-diphosphate,

ATP = adenosine triphosphate,

ADP = adenosine diphosphate,

PFK = phosphofructokinase.

An assumption generally made is that the enzyme phosphofructokinase has two
states, one of which has a higher activity. ADP stimulates this allosteric regu-
latory enzyme and produces the more active form. Thus a product of the reac-
tion step mediated by PFK enhances the rate of reaction. A schematic version
of the kinetics is +_

 S.

substrates — FGP —	 ADP —> products

Equations for this system, where x stands for FGP and y for ADP, are as fol-
lows:

dz
dt = — kx — xy ^,

dt
=kx+xy 2 —y.

These equations, derived in many sources (see references), are known to have
stable oscillations as well as other interesting properties.
(a) Show that the steady state of these equations is

(x, Y) _ ( (k s s2) , S) .

(b) Find the Jacobian of the glycolytic oscillator equations at the above
steady state.

(c) Find conditions on the parameters so that the system is a positive-feed-
back system as described in Section 7.8.

20. The Brusselator. This hypothetical system was first proposed by a group work-
ing in Brussels [see Prigogine and Lefever (1968)] in connection with spatially
nonuniform chemical patterns. Because certain steps involve trimolecular reac-
tions, it is not a model of any real chemical system but rather a prototype that
has been studied extensively. The reaction steps are
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A—*X,
B+X--*Y+D,

2X+Y -3X,
X—* E.

It is assumed that concentrations of A, B, D, and E are kept artificially con-
stant so that only X and Y vary with time.
(a) Show that if all rate constants are chosen appropriately, the equations de-

scribing a Brusselator are:
dx

_A—(B+1)x+x 2y,
dt

dt = Bx — x 2y.

(b) Find the steady state.
(c) Calculate the Jacobian and show that if B > 1, the Brusselator is a posi-

tive-feedback system as described in Section 7.8.

21. An activator-inhibitor system (Gierer-Meinhardt). A system also studied in
connection with spatial patterns (see Chapter 10) consists of two substances.
The activator enhances its own synthesis as well as that of the inhibitor. The
inhibitor causes the formation of both substances to decline. Several versions
have been studied, among them is the following system:

dxx 2_
dt —P+ y —x,

dy 	 2

dr —x —vy.
(a) Find the steady state for this system.
(b) Show that if the input of activator is sufficiently small compared to the-

decay rate of inhibitor, the system is an activator-inhibitor system as de-
scribed in Section 7.8.

(c) In a modified version of these equations the term x 2/y is replaced by
x 2/y(1 + kx 2). Suggest what sort of chemical interactions may be occur-
ring in this and in the original system.

(d) Why is it not possible to solve for the steady state of the modified Gierer-
Meinhardt equations?

(e) Find the Jacobian of the modified system. When does the Jacobian have
the sign pattern of an activator-inhibitor system?

22. Consider the following hypothetical chemical system:
Mo(a catalyst) + X k M,	 (active complex),

M, + X k M2	 (inactive complex),

M, + Y 	 P + Q + Mo (products plus catalyst).
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306	 Continuous Processes and Ordinary Differential Equations

This system is called a substrate-inhibited reaction since the chemical X can
deactivate the complex M, which is required in forming the products.
(a) Write equations for the chemical components.
(b) Assume Mo + M, + M2 = C (where mo, m 1 , and m 2 are concentrations

of Mo, M,, and M2 , and C is a constant). Make a quasi-steady-state as-
sumption for Mo, M 1 , and M2 and show that

k _ 1
	m2=kzxm^

k,x	 k- 2

(c) Use these results to show that

Ck, x
m, = 

k-, + k3y + k,x[l + (k2/k- 2)x]

(d) Now show that x will satisfy an equation whose dimensionless form is

ßxy
dt – y – x 	1+x+y+(a/6)x 2

Identify the various combinations of parameters. When can the term y in
the denominator be neglected?

23. The following model was proposed by Othmer and Aldridge (1978): A cell can
produce two chemical species x and y from a substrate according to the reac-
tion

substrate – x — y –+ products.

Species x can diffuse across the cell membrane at a rate that depends linearly
on its concentration gradient. The ratio of the volume of cells to the volume of
external medium is given by a parameter E; x and y are intracellular concentra-
tions of X and Y and x ° is the extracellular concentration of X. The equations
they studied were

dx
=S–F(x,y)+P(x ° –x)m,

dt

dt = " [F (x, y) — G(y)],

dx °
= EP(x – A.

dt

(a) Explain the equations. Determine the values of x, F(x, y) and G(y) at
the steady state (z, y, x °).

(b) The matrix of linearization of these equations about this steady state is

k„–P k 12 P
J = I	 k21	 k22	 0

EP	 0 - €P

What are the constants kt,?
(c) For the characteristic equation

A3+a1A2+a2A+a3=0,
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find a,, a 2 , and a 3 in terms of k ;; and in terms of partial derivatives of F
and G.

24. A model for control of synthesis of a gene product that activates mitosis was
suggested by Tyson and Sachsenmaier (1979), based on repression and
derepression (the reversal of repression) of a genetic operon (a sequence of
genes that are controlled as a unit by a single gene called the operator.) They
assumed that the gene consists of two portions, one replicating earlier than the
second, with the following control system.

Protein R (coded by 1) binds to the operator region 0 of gene 2, repress-
ing transcription of genes Gp and G A . Protein P (product of G P) inactivates the
repressor and thus has a positive influence on its own synthesis, as well as on
synthesis of A (see figure).

Early-replicating DNA (gene I)

GR

Late-replicating DNA (gene 2)

Operator. 0	 Gp 	 GA

GT l	 l

—^ P A

Figure for problem 24. [After Tyson and
Sachsenmaier (1979).]

Assume that R, P, and A have removal rates C, , f 2 , and f3. Let GR, GP,
and GA be the number of genes coding for R, P, and A, at rates K,, K2, and K3

(when actively transcribing). Let f be the fraction of operons of the late-repli-
cating DNA that are active at a given time.
(a) Give equations governing the concentrations of R, P, and A in terms of

R ; s, Gs, and f.
(b) Following are the operator and repressor binding reactions:

P+R k X

R+0	 OR

where X is an inducer-repressor complex and OR is a repressed operator.
Write down equations for P, R, and 0 based on these kinetics.

(c) Now assume that these reactions are always in equilibrium and that the
total number of operator molecules is Or, a constant. Let
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308	 Continuous Processes and Ordinary Differential Equations

	

K2 = k2 	and K, = k'

Find an expression relating the fraction f of repressed operators
(f = O/OT) (1) to these rate constants and to the concentration of R.

(d) For the specific situation in which- more than one repressor molecule can
bind the operator,

nR+O;:±OR,

(again where K2 = k2 /k_ 2 is the equilibrium constant), Tyson and Sach-
senmaier showed that

f:= (e + x)"[l + (e + x)"] - ',	 for	 x = K2X

e = (K2RT) -

'

provided (OT < X).
Sketch f as a function of x for n = 2.

25. Positive feedback to one gene. The following model and analysis appears in
Griffith (1971, pp 118— 122). Parts d—f of this problem depend on the solution
to problem 22 in Chapter 5. Consider a gene that is directly induced by m
copies of the protein E for which it codes. Suppose

G+mE-^X

where G is the gene and X is a complex composed of m molecules of E and
one molecule of G. Let M be the concentration of messenger RNA (mRNA)
that conveys the code for synthesis of the protein to the ribosomes (where the
protein is assembled from amino acids).
(a) Griffith assumes that the fraction of time p for which the gene G is active

given by

_ KE''
	P 	+ KE'

where E is the concentration of E and m the number of E molecules that
participate in forming a complex X. Explain this assumption.

(b) Explain the following equations:
_ aKEt

1+KEtm
—bM

E=cM — dE.

(e) What are the meanings of the constants K, b, c, and d?
(d) In problem 22 of Chapter 5 it was shown that the behavior of this system

depends on m and on a dimensionless multiple where

a = b7r,	 ß = dr,	
,r K=m

c

Interpret the meanings of each of these quantities.
(e) Use the results of phase-plane analysis in each of the cases given in prob-

lem 22 of Chapter 5 to draw biological conclusions about this system.

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Models for Molecular Events	 309

(f) Suggest situations in which the dynamic behavior may be of biological
relevance.
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