
6 Applications of Continuous
Models to Population Dynamics

Each organic being is striving to increase in a geometrical ratio ... each at
some period of its life, during some season of the year, during each genera-
tion or at intervals has to struggle for life and to suffer great destruction.
... The vigorous, the healthy, and the happy survive and multiply.

Charles R. Darwin. (1860). On the Origin of Species by Means of Natural
Selection, D. Appleton and Company, New York, chap. 3.

The growth and decline of populations in nature and the struggle of species to pre-
dominate over one another has been a subject of interest dating back through the
ages. Applications of simple mathematical concepts to such phenomena were noted
centuries ago. Among the founders of mathematical population models were
Malthus (1798), Verhulst (1838), Pearl and Reed (1908), and then Lotka and
Volterra, whose works were published primarily in the 1920s and 1930s.

The work of Lotka and Volterra, who arrived independently at several models
including those for predator-prey interactions and two-species competition, had a
profound effect on the field now known as population biology. They were among the
first to study the phenomena of interacting species by making a number of simplify-
ing assumptions that led to nontrivial but tractable mathematical problems. Since
their pioneering work, many other notable contributions were made. Among these is
the work of Kermack and McKendrick (1927), who addressed the problem of out-
breaks of epidemics in a population.

Today, students of ecology and population biology are commonly taught such
classical models as part of their regular biology curriculum. Critics of these histori-
cal models often argue that certain biological features, such as environmental ef-
fects, chance random events, and spatial heterogeneity to mention a few, were ig-
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Applications of Continuous Models to Population Dynamics 	 211

nored. However, the importance of these models stems not from realism or the
accuracy of their predictions but rather from the simple and fundamental principles
that they set forth; the propensity of predator-prey systems to oscillate, the tendency
of competing species to exclude one another, the threshold dependence of epidemics
on population size are examples.

While appreciation of the Lotka-Volterra models in the biological community
is mixed, it is nevertheless interesting to note that in subtle yet important ways they
have helped to shape certain research directions in current biology. As demonstrated
by the Nicholson-Bailey model of Chapter 3, a model does not have to be accurate
to serve as a helpful diagnostic tool. We shall later discuss more specific ways in
which the unrealistic predictions of simple models have led to new empirical as well
as theoretical progress.

The classic population biology models serve several purposes in this text.
Aside from being interesting in their own right, models of two interacting species or
of epidemics in a fixed population are ideal illustrations of the techniques and con-
cepts outlined in Chapters 4 and 5. The models also demonstrate how the predictions
of a model change when slight alterations are made in the equations or in values of
the critical quantities that appear in them. Finally, the fact that these models are
fairly simple allows us to assess critically the various assumptions and their conse-
quences.

As in previous discussions, we set the stage by a brief discussion of models for
single-species populations. (Section 4.1 introduced this topic; here we somewhat
broaden the context.) In Sections 6.2 and 6.3 the Lotka-Volterra predator-prey and
species competition models are described and then analyzed. The story of Volterra's
initiation to this biological area is well known. This Italian mathematician became
interested in the area of population biology through conversations with a colleague,
U. d'Ancona, who had observed a puzzling biological trend. During World War I,
commercial fishing in the Adriatic Sea fell to rather low levels. It was anticipated
that this would cause a rise in the availability of fish for harvest. Instead, the popula-
tion of commercially valuable fish declined on average while the number of sharks,
which are their predators, increased. The two populations were also perceived to
fluctuate.

Volterra suggested a somewhat naive model to describe the predator-prey inter-
actions in the fish populations and was thereby able to explain the trends d'Ancona
had observed. As we shall see, the model's basic prediction is that predators tend to
overrespond to increases in the population of their prey. This can give rise to oscilla-
tions in the populations of both species.

Because natural communities are composed of numerous interacting species no
two of which can be entirely isolated from the rest, theoretical tools for dealing with
larger systems are often required. The Routh-Hurwitz criteria and the methods of
qualitative stability are thus briefly outlined in Sections 6.4 and 6.6. For rapid cover-
age of this chapter, these sections may be omitted without loss of continuity. In Sec-
tions 6.6 and 6.7 we study models for the spread of an epidemic in a population and
then explore certain consequences of the policy of vaccinating against disease-caus-
ing agents.

Since the scope of this material is vast, a thorough documentation of sources is
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212	 Continuous Processes and Ordinary Differential Equations

impossible. There are numerous recent reviews (for example, May, 1973). An ex-
cellent companion to this chapter is Van der Vaart (1983), which contains historical,
biological, and mathematical details on certain topics and which uses an instructive
and guided approach. [See also Braun (1979, 1983).] All of these sources have been
used repeatedly in putting together the material for this chapter.

6.1 MODELS FOR SINGLE-SPECIES POPULATIONS

Two examples of ODEs modeling continuous single-species populations have al-
ready been encountered and analyzed in Section 4.1. To summarize, these are

1. Exponential growth (Malthus, 1798):

dN
dt — rN, 	(Ja)

Solution:	 N(t) = Noe".	 (1 b)

2. Logistic growth (Verhulst, 1838):

	d — r(1 K)N,	 (2a)

No K
Solution:	 N(t) =.	 (2b)

No + (K — No)e-
rt

No = N(0) = the initial population. (See Figure 6.1.)

To place both of the above into a somewhat broader context we proceed from a
more general assumption, namely that for an isolated population (no migration) the
rate of growth depends on population density. Therefore

dN
=f(N)dt	 (3)

This approach is based on an instructive summary by Lamberson and Biles (1981),
which should be consulted for further details.

Observe that for equations (1 a) and (2a) the function f is the polynomial

f(N)=ao+a,N+a2N 2

where ao = 0; for equation (la) a t = r and a2 = 0; for equation (2a) a, = r and
a2 = — r/K. More generally, it is possible to write an infinite power (Taylor) series
for f if it is sufficiently smooth:

f(N)=Zan Nn=ao +a,N+a2N 2 +a3N 3 +
n =0

Thus any growth function may be written as a (possibly infinite) polynomial (see
Lamberson and Biles, 1981).
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Applications of Continuous Models to Population Dynamics 	 213

N(t) = Noe", (r>0)

No

(a)

N(t) = NOe rt, (r <0)

No

(b)

No K
N(t)= 	K 	(r>0)

No +(K—Nod -n

K

N(

(c)

Figure 6.1 Changes in population size N(t) 	 Exponential growth with (a) r > 0, (b) r < 0, and
predicted by two models for single-species growth: 	 (c) logistic growth. See equations  (Ja) and (2a).
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214	 Continuous Processes and Ordinary Differential Equations

About (3) we require that f(0) = 0 to dismiss the possibility of spontaneous
generation, the production of living organisms from inanimate matter. (See also
Hutchinson, 1978 for this Axiom of Parenthood: every organism must have parents.)
In any growth law this is equivalent to

dN
ät N_ o = f(o) = 0,

so that we may assume that

ao = 0,

dN _
dt =a

' N+a 2 N 2 +a3 N'+ • • •

= N(a, + a2 N + a 3 N 2 + • • ),

= Ng (N).	 (4)

The polynomial g (N) is called the intrinsic growth rate of the population.
Now we examine more closely several specific growth models, including those

given in equations (la) and (2a).

Malthus Model

This can be viewed as the simplest form of equation (4) in which the coefficients of
g (N) are a, = r and a2 = a 3 = • • • = 0. As noted before, this model predicts ex-
ponential growth if r > 0 and exponential decline if r < 0.

Logistic Growth

To correct the prediction that a population can grow indefinitely at an exponential
rate, consider a nonconstant intrinsic growth rate g (N). The logistic growth model is
perhaps the simplest extension of equation (1a). It can be explained by any of the
following comments.

Formal mathematical justification
Equation (2a) makes use of more terms in the (possibly infinite) series for f(N) and
is thus more faithful to the true population growth rate.

Density-dependent growth rate
Equation (2a) takes the form of equation (4), where

g(N) =r( 1 K)•

It is essentially the simplest rule in which the intrinsic growth rate g depends on the
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Applications of Continuous Models to Population Dynamics 	 215

population density (in a linear decreasing relationship). It thus accounts for a de-
creasing per capita growth rate as population size increases.

Carrying capacity
From equation (2a) we observe that

dt
	 (N=K).

Thus N = K is a steady state of the logistic equation. It is easy to establish that this
steady state is stable; note in particular that

d > 0 (N < K),

dN <0 (N>K).

The constant K can represent the carrying capacity of the environment for the spe-
cies. See also Section 4.1 for a derivation of (2a) based on nutrient consumption.

Intraspecific competition
The fact that individuals compete for food, habitat, and other limited resources
means that such an increase in the net population mortality may be observed under
crowded conditions. Such effects are most pronounced when there are frequent en-
counters between individuals. Equation (2a) can be written in the form

d =rN—KN 2 .

The second term thus depicts a mortality proportional to the rate of paired en-
counters.

The solution of equation (2a) given by (2b) can be obtained in a relatively
straightforward calculation (see problem 5 of Chapter 4). Aside from Gause's work
on yeast cultures (Section 4.1), such models have been applied to a variety of popu-
lations including humans (Pearl and Reed, 1920), microorganisms (Slobodkin,
1954), and other species. See Lamberson and Biles (1981) for examples and ref-
erences.

Allee Effect

A further direct extension of equations (1) and (2) is an assumption of the form

g(N) = a, + a2N + a 3 N 2 .

Provided a 2 > 0, and a3 < 0, one obtains the Allee effect, which represents a popu-
lation that has a maximal intrinsic growth rate at intermediate density. This effect
may stem from the difficulty of finding mates at very low densities.

Figure 6.2 is an example of a density-dependent form of g(N) that depicts the
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216	 Continuous Processes and Ordinary Differential Equations

Allee effect. Its general character can be summarized by the inequalities

g'(N) > 0	 (N < 71),

g'(N) < 0	 (N > j),

where q is the density for optimal reproduction.

g(N)

N

(a)

g(N)

ru

a 1

N

(b) 
g(N) 

Figure 6.2 A comparison between three types of
density-dependent intrinsic growth rates g(N). (a)
Logistic growth decreases linearly with density (or
population size). (b) In the Allee effect the rate of
reproduction is maximal at intermediate densities.
(c) The Gompertz law shows a negative logarithmic
dependence of growth rate on population size. See
text for details.

N

(c) 
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The simplest example of an Allee effect would be

Notice that this inverted parabola, shown in Figure 6.2(b), intersects the
axis at ro — an t , has a maximum of ro when N = 77, and drops below 0
when

N>No=77+ rä.

Thus for densities above No, the population begins to decline. From the
curve in Figure 6.2(a) we can deduce that N = N o is a stable equilibrium
for the population. (No is an equilibrium point because g (No) = 0; it is
stable because g'(No) < 0.)

In equation (5) we assumed that a, = ro — a^ 2 , a2 = 2ai, and a 3 = —a.

Other Assumptions; Gompertz Growth in Tumors

Yet a fourth growth law that frequently appears in models of single-species growth is
the Gompertz law (introduced in Chapter 4), which is used mainly for depicting the
growth of solid tumors. The problems of dealing with a complicated geometry and
with the fact that cells in the interior of a tumor may not have ready access to nutri-
ents and oxygen are simplified by assuming that the growth rate declines as the cell
mass grows. Three equivalent versions of this growth rate are as follows:

dN
dt

=Ae^'N,

dN	
y=	 (6b)

dt = yN,	dt
	 —cry,

dN
dt  — K N In N.	 (6c)

See Figure 6.2(c). In (6c) we can identify the intrinsic growth rate as

g(N) = —K In N.

Since In N is undefined at N = 0, this relation is not valid for very small populations
and cannot be considered a direct extension of any of the previous growth laws. It is,
however, a popular model in clinical oncology. (See Braun, 1979, sec. 1.8; New-
ton, 1980; Aroesty et al., 1973.) Biological interpretations for these equations are
discussed in problem 7. Considering their relatively simple form, the predictions of
any of the Gompertz equations agree remarkably well with the data for tumor
growth. (See Aroesty et al., 1973, or Newton, 1980, for examples.)

A valid remark about most of the models for population growth is that they are
at best gross simplifications of true events and often are used simply as an expedient
fit to the data. To be more realistic one needs a greater mathematical sophistication.
For example, in Chapter 13 we will see that partial differential equations provide a

(5)

(6a)
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218	 Continuous Processes and Ordinary Differential Equations

more powerful way to deal with age-dependent growth, fecundity, or mortality rates.
Equations such as (3) or (6) are frequently used by modelers as a convenient first ap-
proach to complicated situations and thus are quite useful provided their limitations
are not ignored.

6.2 PREDATOR-PREY SYSTEMS AND THE LOTKA- VOLTERRA EQUATIONS

The fact that predator-prey systems have a tendency to oscillate has been observed
for well over a century. The Hudson Bay Company, which traded in animal furs in
Canada, kept records dating back to 1840. In these records, oscillations in the popu-
lations of lynx and its prey the snowshoe hare are remarkably regular (see Fig-
ure 6.3).

WI
0
2

WI

0
I
I-

2

it
W
0z

160

140	 —HARE
LYNX

120

100

e0 I

60	 % ;	 1 II 	\ 	 ^	 '

40 /
i \I 	1	 I	 1\	 1 i	 \\	 % ;	 \

20\	 /	 \

iss	 1855	 IBgs	 1S75	 IBBS	 1895	 1005	 1915	 1925	 1935
TIME IN YEARS

Figure 6.3 Records dating back to the 1840s kept
by the Hudson Bay Company. Their trade in pelts
of the snowshoe hare and its predator the lynx
reveals that the relative abundance of the two

species undergoes dramatic cycles. The period of
these cycles is roughly 10 years.
(From E. P. Odum (1953), fig. 39.]

In this section we explore a model for predator-prey interactions that Volterra
proposed to explain oscillations in fish populations in the Mediterranean. To recon-
struct his line of reasoning and arrive at the equations independently, let us list some
of the simplifying assumptions he made:

1. Prey grow in an unlimited way when predators do not keep them under
control.

2. Predators depend on the presence of their prey to survive.
3. The rate of predation depends on the likelihood that a victim is encountered by

a predator.
4. The growth rate of the predator population is proportional to food intake (rate

of predation).
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Applications of Continuous Models to Population Dynamics 	 219

Taking the simplest set of equations consistent with these assumptions, Volterra
wrote down the following model:

dx
dt = ax — bxy,	 (7a)

dt = —cy + dxy,	 (7b)

where x and y represent prey and predator populations respectively; the variables can
represent, for example, biomass or population densities of the species. To acquaint
ourselves with this model we proceed by answering several questions. First let us
consider the meaning of parameters a, b, c, and d and of each of the four terms on
the RHS of the equations.

The net growth rate a of the prey population when predators are absent is a
positive quantity (with dimensions of 1/time) in accordance with assumption 1. The
net death rate c of the predators in the absence of prey follows from assumption 2.
The term xy approximates the likelihood that an encounter will take place between
predators and prey given that both species move about randomly and are uniformly
distributed over their habitat.

The form of this encounter rate is derived from the law of mass action that, in
its original context, states that the rate of molecular collisions of two chemical spe-
cies in a dilute gas or solution is proportional to the product of the two concentra-
tions (see Chapter 7). We should bear in mind that this simple relationship may be
inaccurate in describing the subtle interactions and motion of organisms. An encoun-
ter is assumed to decrease the prey population and increase the predator population
by contributing to their growth. The ratio b/d is analogous to the efficiency of preda-
tion, that is, the efficiency of converting a unit of prey into a unit of predator mass.

Further practice in linear stability techniques given in Chapter 5 can be re-
vealing:

It is clear that two possible steady states of equation (7) exist:

(x^, 71) = (0, 0)	 and	 (i, Y2) = 
(d' b)

Their stability properties are determined by the methods given in
Chapter 5.

The Jacobian of this system is

(a—by —bx)
dy	 dx — c) (1 , y)

for steady state 1

J = (ö —c),

for steady state 2
0 —bc

d
J	 da 	0 '

b
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220	 Continuous Processes and Ordinary Differential Equations

eigenvalues are

A,=a,	 A2 =— c	 A,.2

Thus (z,, y,) is a saddle.	 Thus (x2 , Y2) is a center'.

From the analysis of this model we arrive at a number of somewhat counterin-
tuitive results. First, notice that the steady-state level of prey is independent of its
own growth rate or mortality; rather, it depends on parameters associated with the
predator (x2 = c/d ). A similar result holds for steady-state levels of the predator
(yz = a/b). It is the particular coupling of the variables that leads to this effect. To
paraphrase, the presence of predator (y 0) means that the available prey has to
just suffice to make growth rate due to predation, dx, equal predator mortality c for a
steady predator population to persist. Similarly, when prey are present (x 0),
predators can only keep them under control when prey growth rate a and mortality
due to predation, by, are equal. This helps us to understand the steady-state equa-
tions.

A second result (see problem 10) is that the steady state (2, y2) is neutrally sta-
ble (a center). The eigenvalues of J(x2, y2) are pure imaginary and the steady state is
not a spiral point. See problem 10. Note that the off-diagonal terms, —bc/d and
da/b, are of opposite sign (since the influence of each species on the other is oppo-
site) and that the diagonal terms evaluated at (x2 , y2) are zero. Stability analysis pre-
dicts oscillations about the steady state (2, yz). The factor \/(ca) governs the fre-
quency of these oscillations, so that larger prey reproduction or predator mortality
(which means a greater turnover rate) result in more rapid cycles. A complete phase-
plane diagram of the predator-prey system (7) can be arrived at with minimal further
work. See Figure 6.4(a).

To gain deeper understanding of the neutral stability of system (7) we will ex-
amine a slight variant in which prey populations have the property of self-regulation.
Assuming logistic prey growth, equations (7a, b) become

dx ax (K—x)

dt	 K	
— bxy,	 (8a)

dt = —cy + dxy.	 (8b)

This leads to steady-state values

c a 	cal
(X2 , Y2) =	

_

d ' b dbKl '

1. To be more accurate we must include the possibility that this steady state could be a spi-
ral point since the system is nonlinear. (See Section 5.10 for comments.) In problem 10 we will
demonstrate that this option can be dismissed for the predator-prey equations.
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y=0

b
—----=0

-------- ----•.-----_.•..__-- x
c
d

(a) 

Y 

b

a 	 ca

b	 dbK

x 
c	 K
d

(b)

Figure 6.4 (a) The Lotka-Volterra equations (7a,b) equation (8a)], the steady state becomes a stable
predict neutral stability at the steady state (c/d, 	 spiral with somewhat depressed predator population
b/a). (b) When the prey grow logistically [as in 	 levels.
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222	 Continuous Processes and Ordinary Differential Equations

and the Jacobian is then

—ac	 —bc
J= 	dK	 d

d \b dw

(The condition 1 > c/dK must be satisfied so that the steady-state predator level y is
positive.) Now Tr J = —ac/dK is always negative, and det J = bcy2 is positive, so
that the steady state is always stable. In other words, its neutral stability has been
lost. In problem 14 you are asked to investigate whether oscillations accompany the
return to steady state after a perturbation.

The lesson to be learned from this example is that a relatively minor change in
equations (7a, b) has a major influence on the predictions. In particular, this means
that neutral stability, and thus also the oscillations that accompany a neutrally stable
steady state, tend to be somewhat ephemeral. This is a serious criticism of the real-
ism of the Lotka-Volterra model.

Taking a somewhat more philosophical approach, we could argue that the
Lotka-Volterra model serves a useful purpose precisely because it is so delicately
balanced between stability and instability. We could use this model together with
minor variants to test out a set of assumptions and so identify stabilizing and destabi-
lizing influences. Following are some of the frequently suggested alterations. It is a
relatively easy task to understand what effects such changes have on the stability of
the equilibrium. More theoretical results on stable cycles due to Kolmogorov (1936)
and others (briefly mentioned below) are recommended for further independent ex-
ploration and will be discussed in detail in Chapter 8.

For Further Study

Stable cycles in predator prey systems
The main objection to the Lotka-Volterra model is that its cycles are only neutrally sta-
ble. What additional features are necessary to yield stable oscillations? As we shall see
in Chapter 8, stable oscillations (usually called limit cycles) are closed trajectories that
attract nearby flow in the phase plane. Kolmogorov (1936) investigated conditions on
the general predator-prey system

dx
=

dt = xf (x, Y),

dy = Yg (x, y),

that would lead to such solutions. The functions f and g are assumed to satisfy several
relations consistent with the nature of predator-prey systems:

of/ax < 0 (for large x),	 3g/3x > 0,

of/ay < 0,	 ag/ay < 0.
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Applications of Continuous Models to Population Dynamics 	 223

An interpretation of these is left as an exercise. Additional conditions (for example,
Coleman, 1978; May 1973) are equivalent to the nullcline geometry shown in Figure
6.5 (Rosenzweig, 1969). It can be proved that when the steady state S is unstable, any
trajectory winding out of its vicinity approaches a stable limit cycle that is trapped
somewhere inside the rectangular region. See Chapter 8 for further details.

Figure 6.5 With a set of conditions given by 	 Y
Kolmogorov (1936), the phase plane for a
predator-prey system has a nullcline geometry
that gives rise to stable (limit cycle)
oscillations. See Chapter 8.

Predator
nullcline

S

y i 	Prey '
nullcline

x
x I 	x,

Prey

Other modifications of Volterra's equations
Other assumptions which have been made over the years to modify Volterra's equa-
tions are listed below. Details about their effect can be found in May (1973) and in the
references as follows.

1. Density dependence: More realistic prey growth-rate assumptions in which a is
replaced by a density-dependent function f:

f(x) = r(1 — K)	 Pielou (1969, pp. 19-21),

f(x) = r[() — 1]	 (1 ? g > 0)	 Rosenzweig (1971),
x

K
f(x) = r( — 	 Schoener(1973).

2. Attack rate: More realistic rates of predation where the term bxy is replaced by a
term in which the attack capacity of predators is a limited one. Terms replacing
bxy in equation (7a) are:

ky(1 — e -``)	 Ivlev (1961),

kxy
	Holling (1965),

x +D

kyx 	 (1 ? g > 0)	 Rosenzweig (1971),

kyx 2

xz + DZ	
Takahashi (1964).D
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224	 Continuous Processes and Ordinary Differential Equations

6.3 POPULATIONS IN COMPETITION

When two or more species live in proximity and share the same basic requirements,
they usually compete for resources, habitat, or territory. Sometimes only the
strongest prevails, driving the weaker competitor to extinction. (This is the principle
of competitive exclusion, a longstanding concept in population biology.) One species
wins because its members are more efficient at finding or exploiting resources,
which leads to an increase in population. Indirectly this means that a population of
competitors finds less of the same resources and cannot grow at its maximal ca-
pacity.

In the following model, proposed by Lotka and Volterra and later studied em-
pirically by Gause (1934), the competition between two species is depicted without
direct reference to the resources they share. Rather, it is assumed that the presence
of each population leads to a depression of its competitor's growth rate. We first
give the equations and then examine their meanings and predictions systematically.
See also Braun (1979, sec. 4.10) and Pielou (1969, sec. 5.2) for further discussion
of this model.

The Lotka-Volterra model for species competition is given by the equations

dN1  r, N1 K
^ — N 1 — ß12N2 
	 (9a)dt	 K,

dN2 = r
2 NZ K2 — N2 — ß21 N1

	(9b)dt	 KZ

where N, and N2 are the population densities of species 1 and 2. Again we proceed
to understand the equations by addressing several questions:

1. Suppose only species 1 is present. What has been assumed about its growth?
What are the meanings of the parameters r,, K,, r2 , and K2 ?

2. What kind of assumption has been made about the effect of competition on the
growth rate of each species? What are the parameters ß12 and ß 2 ,?

To answer these questions observe the following:

1. In the absence of a competitor (N 2 = 0) the first equation reduces to the
logistic equation (2a). This means that the population of species 1 will stabilize
at the value N, = K, (its carrying capacity), as we have already seen in
Section 6.1.

2. The term f32, N2 in equation (9a) can be thought of as the contribution made by
species 2 to a decline in the growth rate of species 1. ß, Z is the per capita
decline (caused by individuals of species 2 on the population of species 1).

The next step will be to study the behavior of the system of equations. The task
will again be divided into a number of steps, including (1) identifying steady states,
(2) drawing nullclines, and (3) determining stability properties as necessary in
putting together a complete phase-plane representation of equation (9) using the
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Applications of Continuous Models to Population Dynamics 	 225

Nullclines are just all point sets that satisfy one of the following equations:

ddt—̂=0 or 
dd = 0.t2 

1. From equation (9a) we arrive at the N, nullclines:

N, = 0	 and	 rc, – N, – ß 12 N2 = 0,

2. Whereas equation (9b) leads to the N2 nullclines:

N2=0	 and	 K2 –N2 – ß21 N,=0.

To simplify the notation slightly, we shall refer to these lines as L ia , Lib, Lz„ and L2b
respectively. Notice that L, 8 and Lea are just the N2 and N, axes respectively, whereas
Lib and L2b intersect the axes as follows:

L,b goes through (0, a, /ß, Z) and (K,, 0).
L2b goes through (0, K2) and (KZ /ßz ,, 0).

methods given in Chapter 5. (For practice, it is advisable to attempt this indepen-
dently before continuing to the procedure in the box.)

It follows that the points (0, 0), (K,, 0), and (0, K2) are always steady states.
These correspond to three distinct situations:

(0, 0) = both species absent,
(Ks, 0) = species 2 absent and species 1 at its carrying capacity K,,
(0, K2) = species 1 absent and species 2 at its carrying capacity.

There is a fourth possible steady-state value that corresponds to coexistence of the
two species. (We leave the computation of this steady state as an exercise.)

Proceeding to the second stage, we sketch the nullcline curves on a phase
plane. If you have already attempted this independently, you may have hesitated
slightly because numerous situations are possible. Figure 6.6 illustrates four distinct
possibilities, all of them correct. In order to choose any one of the four cases we
must make some assumptions about the relative magnitudes of Kz and ►c, /ß,z, and of
K, and' 2/ßz,. The cases shown in Figure 6.6 correspond to the following situations:

	case 1: — >> K,	 and	 K2 > K' ,
ßz1	 ßt2

	case 2: K, > KZ 	and	 K' > K2 ,
	ßz1	 ß1z

	case 3: K, > KZ	and	 K2 > K' ,
	ß2l 	 ß1z

	case 4: KZ > K,	 and	 K' > KZ.
ßz1	 ß,z
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N2

K2

K

13 12

Continuous Processes and Ordinary Differential Equations

N2

K p

132

N1

K2

N,

N2

K2

KI

ß_

N2

K

13 12

KZ

0	 KI	 K2
	

0	 K'-	 K I
ßiß	 132

(a)	 (b)

	

N	 1 	% __ 	a NO 	K2	 KI	 I	 0	 KI	 K2

Pei	 132

(c)	 (d)

Figure 6.6 Four possible cases corresponding to 	 (b) K, > K2/132 , and K,/13I2 > K2; (c) K, > K2/1321

four choices in the relative positions of nullclines of and K2 > K1/1312; (d) KI /13 12 > K2 and K2/1321 > K.

equations (9): (a) K2/,-+2I > KI and K2 > 1(1/ 1312 ;

In problem 15 the reader is asked to interpret these inequalities within the biological
context of the problem.

Our next step will be to identify the steady states of equations (9a,b) in Figure
6.6(a—d). By drawing arrows on the nullclines we will also indicate the directions
of flow in the N, N2 plane for each of the four cases shown. To do this, one can com-
bine geometric reasoning with results of analysis. We recall that steady states are lo-
cated at the intersections of two nullclines (which must be of opposite types). It
helps to remember that Lib (the line N, = 0) is an N, nullcline; it is simply the N2

axis. Thus the point at which any N2 nullcline meets the N2 axis will be a steady
state. It is evident that this happens at (0, 0) as well as at (0, K2). By similar reason-
ing we find that (K,, 0) is at the intersection of two (opposite type) nullclines. A
fourth steady state occurs only when L, b and Leb intersect, as is true in (c) and (d) of
Figure 6.6.

To sketch arrows on the N, and N2 nullclines, recall that the directions of flow
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N1

N,

K,

(b)

K,

N2 N2

K2

KZ

N
K I

(a)

N2 N2 

K2

K2

N,
K1

(c) (d)
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on these are parallel to the N2 and N, axes respectively. Arrows have been put in for
cases 1 and 4 in Figure 6.7, with case 2 and 3 left as an exercise. Notice that once
the flow along the N, and N2 axes is drawn the rest of the picture can be completed
by preserving the continuity of flow. (See remarks in Section 5.5.) For a more
pedestrian approach, we can use equations (9a,b) to tabulate the directions associ-
ated with several points in the plane.

At this stage the problem is practically solved; with the directions of flow de-
termined on the nullclines, we can draw sensible phase-plane pictures in only one
distinct way for each case. For example, it should be evident in case 1 that for any
starting value of (N 1 , N2) provided N2 * 0, the populations eventually converge to
the steady state on the N2 axis. (To see this, notice that there is no other exit from
the region bounded by the two slanted lines Lib and L2b in case 1; moreover, all flows
pass through this region.) In case 4, any point within the two triangular regions must
eventually converge to the steady state at the intersection of L ib and L2b. (What can
be said about other regions of the plane in case 4?)

Figure 6.7 Steady states of equation (9) shown as	 (a — d) correspond to cases 1-4 shown in Figure
heavy dots at the intersections of the N, nullclines 	 6.6 and described in text.
(dashed lines) and the N 2 nullclines (solid lines).
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(d)

228	 Continuous Processes and Ordinary Differential Equations

As a somewhat optional final step, we can confirm the conjectured flow by de-
termining what happens close to steady-state values, using the linearization proce-
dures outlined in Chapter 5 [see problem 15(c)]. By carrying out this analysis it can
be shown that the outcome of competition is as follows:

case 1: only (0, 1(2) is stable,
case 2: only (K,, 0) is stable,
case 3: both (0, K,) and (0, K2) are stable,
case 4: only the steady state given by the expression in problem 15(b) is stable.

With the combined information above, the qualitative pictures in Figure 6.8
can be confirmed, and the mathematical steps in understanding the model are com-
plete. It is now necessary to make a biological interpretation of the result. Part of
this is left as a problem for the reader. A rather clear prediction is that in three out of
the four cases, competition will lead to extinction of one species. Only in case 4
does the interaction result in coexistence, and then at population levels below the
normal carrying capacities.

N2
	 N2

K2

K2

N i
K^	 K^

(a)
	

(b)

N2 	N,

K2

K2

N i
K,

(c)

Figure 6.8 The final phase plane behavior of	 cases 1-4 in Figure 6.6. See text for details.
solutions to equations (9a, b). (a — d) correspond to

Ni

N i
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A small change in the format of the inequalities for cases 1 through 4 will re-
veal how the intensity of competition, which is represented by the ß parameters,
influences the outcome. To make things more transparent, suppose the carrying ca-
pacities are equal (K, = K2). Conditions 1 to 4 can be written as follows:

1. ßz, < l and ß, Z > 1.
2. ßz, > I and 8 12 < 1.
3. /321 > 1 and ß, z > 1.
4. ß32, < 1 and /31 2 < 1.

From this, observe that in cases 1, 2, and 3, one or both species are aggressive in
competing with their adversary (that is, at least one ß is large). In case 4, for which
coexistence is obtained, (32, and /31 2 are both small, indicating that competition is
less intense.

An accepted biological fact is that species very similar in habits, size, and/or
feeding preferences tend to compete more strongly for resources when confined to
the same habitat (Roughgarden, 1979). For example, species of fish that have simi-
lar mouth parts and thus seek the same type of food would overlap in their resource
utilization and, thus be more aggressive competitors than those that feed differently.
With this observation, a prediction of the model is that similar species in the same
habitat will not coexist. (This is a popular version of the principle of competitive
exclusion.)

Recent research directions in population biology have focused on questions
raised by this principle. Because ecosystems frequently consist of many competitors
that appear to vie for common resources, the predictions of this simple model have
reshaped some preconceptions about coexistence and species interactions. It has be-
come more challenging to discover the numerous ways competitive exclusion can be
foiled.

The model ignores spatial distributions of species and variations in both space
and time of the significant quantities as well as many other subtle influences (such as
the effects of predation on one of the species). This points to numerous possible ef-
fects that could come into play in permitting species to live and share a common
habitat. In fact, it is now recognized that species are distributed in a patchy way,
rather than uniformly partitioning their habitat so that competition tends to diminish
somewhat. A time-sharing arrangement with succession of species or seasonal vari-
ability can effect a similar result. Other factors include gradual evolution of differing
traits (character displacement) to minimize competition, and more complex multi-
species interactions in which predation mediates competition. Observations of such
special cases are abundant in the current biological literature. Sources for additional
readings are Whitaker and Levin (1975) and a forthcoming monograph on theoretical
ecology by Simon Levin (Cornell University). Chapter 21 of Roughgarden (1979)
also makes for good reading on the competition model and its implications.

There are recent extensions of the competition model to handle n species. Lu-
enberger (1979, sec. 9.5) gives an excellent presentation. A good discussion of the
principle of competitive exclusion is given in Armstrong and McGehee (1980). A
number of other contributors have included T. G. Hallam, T. C. Gard, R. M. May,
H. I. Freedman, P. Waltman, and J. Hofbauer.
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Figure 6.9 Growth of (a) Saccharomyces	 containing both (open rectangles). From
cervisiae and (b) Schizosaccharomyces kephir 	 Gause, G. F. (1932), Experimental studies on
in original experiments by Gause (1932). The	 the struggle for existence. 1. Mixed
organisms were grown separately (open	 population of two species of yeast. J. Exp.
circles) as well as in a mixed culture	 Biol., 9, Figures 2 and 3.

Gause: Empirical Tests of the Species-Competition Model

In his book, The Struggle for Existence, Gause (1934) describes a series of laboratory
experiments in which two yeast species, Saccharomyces cerevisiae and Schizosaccha-
romyces kephir were grown separately and then paired in a mixed population (Figure
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6.9). Using results shown in Figure 6.9 (a and b), he was able to estimate the following
values for parameters in equation (9):

r, = 0.21827,	 K, = 13.0,	 /312 = 3.15,
r2 = 0.06069,	 K2 = 5.8,	 92, = 0.439.

See problems 33 and 34 for some details and analysis, and Gause for a very readable
summary of these and other experiments.

6.4 MULTIPLE-SPECIES COMMUNITIES AND THE ROUTH-HURWITZ CRITERIA

Now that we have spent some time mastering the techniques of linear stability the-
ory, it seems discouraging to realize that the elegance and simplicity of phase-plane
methods apply only to two-species systems. In this section we briefly touch on meth-
ods for gaining insight into models for k species interacting in a community, where
k>2.

The models we have seen thus far take the form

dN,
	 (lOa)

dt
dNz _
dt = 8(N1, Nz).	 (10b)

More generally a system comprised of k species with populations N 1 , N2 , ... , Nk

would be governed by k equations:

dN, =

dNz _
dt — fz(N1, N2, ... , Nk),	

(11)

dNk _
fk(N^ , Nz , ... , Nk).

dt = 

Since it is cumbersome to carry this longhand version, one often sees the shorthand
notation

dN; _
dt = f ,(N1, Nz, ... ‚Nk)

or, better still, the vector notation

dN = F(N),
dt

(i = 1, 2, ... , k),	 (12)

(13)

for N = (N 1 , N2, ... , Nk), F = (f l , fz, ... , fk), where each of the functions f, ,
f2 , ... , fk may depend on all or some of the species populations N 1 , N2 , ... , Nk.
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232	 Continuous Processes and Ordinary Differential Equations

We shall now suppose that it is possible to solve the equation (or set of
equations)

F(N) = 0,	 (14)

so as to identify one (or possibly several) steady-state points, N = (N I , N2 , ...

Nk), satisfying F(N) = 0. The next step, as a diligent reader might have guessed,
would be to determine stability properties of this steady solution. While the idea is
essentially identical to previous linear stability analysis, a slightly greater sophistica-
tion may be necessary to extract an answer. Let us see why this is true.

In linearizing equation (13) we find, as before, the Jacobian of F(N). This is
often symbolized

	

J	 aN (N)•	 (15)

Recall that this really means

	afl afz 	äfk\

	

 ON2 	aNk

	J= 1	 (16)

	afk afk 	Ofk J

	

 ON2 	aNk N

so that J is now a k x k matrix. Population biologists frequently refer to J as the
community matrix (see Levins, 1968). Eigenvalues A of this matrix now satisfy

det (J — Al) = 0. (17)

Thinking of what this means, you should arrive at the conclusion that A must satisfy
a characteristic equation of the form

,k k + a,Ak-1 + a2Ak-2 + . . . + ak = 0.	 (18)

If you find this baffling, you may wish to verify this with a 3 X 3 matrix, that is, by
evaluating

	a—A	 b	 c
det	 d	 e—A	 f

g	 h	 i —A

(The result is a cubic polynomial.) In general, the characteristic equation is a poly-
nomial whose degree k is equal to the number of species interacting. Although for
k = 2 the quadratic characteristic equation is easily solved, for k > 2 this is no
longer true.

While we are unable in principle to find all eigenvalues, we can still obtain in-
formation about their magnitudes. Suppose A,, A2 , ... , Ak are all (known) eigen-
values of the linearized system

dN
dt - J N'	 (19)

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Applications of Continuous Models to Population Dynamics 	 233

What must be true about these eigenvalues so that the steady state N would be sta-
ble? Recall that they must all have negative real parts since close to the steady states
each of the species populations can be represented by a sum of exponentials in d ; t as
follows:

N; = N; + a l e s '` + a 2e"I' + • • • + a k e Ak`.	 (20)

(This is a direct generalization of Section 5.6.) If one or more eigenvalues have pos-
itive real parts, N, — N; will be an increasing function of t, meaning that Ni will not
return to its equilibrium value N i . Thus the question of stability of a steady state can
be settled if it can be determined whether or not all eigenvalues A 1 , ... , A k have
negative real parts. (Contrast this with stability conditions for difference equations.)
This can be done without actually solving for these eigenvalues by checking certain
criteria. Recall that in the two-species case we derived conditions on quantities ß
and y (which were, respectively, the trace and the determinant of the Jacobian) that
ensured eigenvalues with negative real parts. For k > 2 these conditions are known
as the Routh-Hurwitz criteria and are summarized in the box.

The Routh-Hurwitz Criteria

Given the characteristic equation (18), define k matrices as follows:

a 1 	1	 0

	

H = (a1),	 H2 = ^al 1 )'	 H3 = a3 a2 a

a3 a2 	a5 a4 a3

	a l 	1	 0	 0 •••0	 al	 1	 0 ...0
	a3 	a2	 al	 1	 . . .0 	a3 a2

	Hj = a5	 a4	 a3	 a2 . . . p	 Hk = ( '
 :

	\ a21-1 a2j-2 a2j-3 a2j-4 . . aj	 0	 0 . : .	 ak

where the (1, m) term in the matrix Hj is

a2,-m 	for 0 < 21 — m < k,

1	 for2l=m,

0	 for2l<m or 21>k+m.

Then all eigenvalues have negative real parts; that is, the steady-state N is stable if and
only if the determinants of all Hurwitz matrices are positive:

	

detHj >0	 (j= 1,2,... ,k).

See Pielou (1969, chap. 6) for a treatment of the above and further references.

May (1973) summarizes these stability conditions in the cases k = 2, ... , 5.
Some of these are given in the small box.

Example 1 illustrates how the Routh-Hurwitz criteria might be applied in a sit-
uation in which three species interact.
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234	 Continuous Processes and Ordinary Differential Equations

Routh-Hurwitz Criteria for k = 2, 3, 4

k=2:	 a1>0,	 a2>0.
k = 3:	 a,>0,	 a3 > 0;	 a,a2 >a 3 .

k = 4:	 a > >0,	 a3>0;	 as >0;	 a1a2a3>a 2 +aia4 .

Example 1
Suppose x is a predator and y and z are both its prey. z grows logistically in the absence
of its predator. x dies out in the absence of prey, and y grows at an exponential rate in
the absence of predator. We shall use the Routh-Hurwitz techniques to discover
whether these species can coexist in a stable equilibrium.

Step I
Writing equations for this system we get

dx
= a (xz) + ß (xy) — yx,	 (21a)

tgrow hfrom eatingfrom	 y	 m ortality
eating z

— E(xy^,	 (21b)
dt ^y

growth when no predation
predator present mortality

dz 
= µz(v — z) — x(xz).	 (21c)dt T
logistic predation
growth mortality

Step 2
Solving for steady state values we get

axz + ßxy — yx=0 az+ßy= y, or Y = 0,	 (22a)

S
Sy—E(xy)=0Z>x= ,ory=0,	 (22b)

µz(v—z)—Xxz=O#>µv—µz—yx=0.	 (22c)

From the above we arrive at the nontrivial steady state

S
x=—,	 y=y—az,	 z=v—Xx.

E	 ^lA

This equilibrium makes sense biologically whenever y > az and v > X/µ x.

Step 3
Calculating the Jacobian of the system, we get
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Applications of Continuous Models to Population Dynamics 	 235

	( ali + ßy — y ßz	 ax
J =I	 —Ey	 S — EX	 0	 J.	 (23)

—Xz	 0	 µv — 2µz Xz

Using the conclusions of step 2, we notice that terms on the diagonal of J evaluated at
steady state lead to particularly simple forms, so that J is

0	 az
J = —Ey 0	 0 J 	(24)

—Xz 0 —µz

Step 4
To find eigenvalues we must set

det (J — Al) = 0.

Thus we must evaluate

	

0—A ßx	 az
det —Ey 0—A	 0	 J, 	(25)

—Xz	 0 —µz—At

and set the result equal to zero to get the characteristic equation. Expanding, we get

—A	
— z— ,t/ — (—

Ey) det (01
 µz — A/ + ( —xi) det \ 0, o)µ	 —

= (—A)(—A)(—µz — A) — ( — EY)(ßx)( — µi — A) + (—Xi)(— ax)( —A)

= —A 3 — A 2p + A( —Eyßi — zax) + (— pieyßx) = 0.

Cancelling a factor of —1 we obtain

	

A3+a,A2+a2A+a3=0,	 (26a)

where

a, = 1i,	 (26b)

aZ = Eßiy + Xc Z,	 (26c)
a3 = µEßx y z.	 (26d)

Step 5
Now we check the three conditions using the Routh-Hurwitz criteria for the case k = 3
(three species): The three conditions are

1. a,>0,
2. a3 >0,
3.	 a,a2 > a3.

Condition 1 is true since a, = µi is a positive quantity. Condition 2 is true for the
same reason. Looking at condition 3, we note that

a 1 a2 = µz(Eßxy + xaxz).

This is clearly bigger than a 3 = p.eßx y z since the quantity Xaµx z 2 is positive. Thus
condition 3 is also satisfied.

We conclude that the steady state is a stable one.
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236	 Continuous Processes and Ordinary Differential Equations

Remark 1
Because calculations of 3 X 3 (and higher-order) determinants can be particularly
cumbersome, it is advisable to express the Jacobian in the simplest possible nota-
tion. We do this by leaving entries in terms of x, y, and z except where further sim-
plification can be made (such as along the diagonal of J). In step 5 we then use the
fact that the quantities z, y, and z are positive.

Remark 2
In some situations the magnitudes of the steady-state values also enter into the sta-
bility conditions. We will see in a later section why this is not the case here in
example 1.

6.5 QUALITATIVE STABILITY

The Routh-Hurwitz criteria outlined in Section 6.4 are an exact but cumbersome
method for determining stability of a large system. For communities of five or more
species, the technique proves so computationally involved that it is of diminishing
practical value. Shortcuts, when available, can be quite useful.

In this section we explore a shortcut method for investigating large systems
that needs little if any computation. Because this method is not universally applica-
ble, its importance is viewed as secondary. Furthermore, to understand exactly why
the method works requires knowledge of matrices beyond elementary linear algebra.
Nevertheless, what makes the technique of qualitative stability appealing is that it is
easy to explain, easy to test, and thus a refreshing change from intensive compu-
tations.

The technique of qualitative stability analysis applies ideally to large compli-
cated systems in which there is no quantitative information about the interrelation-
ship of species or subsystems. Motivation for this method actually came from eco-
nomics. A paper by the economists Quirk and Ruppert (1965) was followed later by
further work and application to ecology by May (1973), Levins (1974), and Jeffries
(1974).

In a complex community composed of many species, numerous interactions
take place. The magnitudes of the mutual effects of species on each other are seldom
accurately known, but one can establish with greater certainty whether predation,
competition, or other influences are present. This means that technically the func-
tions appearing in equations that describe the system [such as equation (11)] are not
known. What is known instead is the pattern of signs of partial derivatives of these
functions [contained, for example, in the Jacobian of equation (16)]. We encoun-
tered a similar problem in the context of a plant-herbivore system (Chapter 3) and of
a glucose-insulin model (Chapter 4). Here the problem consists of larger systems in
a continuous setting, and even the magnitudes of partial derivatives may not be
known.

There are two equivalent ways of representing qualitative information. A more
obvious one is to assign the symbols +, 0, and — to the (i, j)th entry of a matrix if
the species j has respectively a positive influence, no influence, or a negative
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influence on species i. An alternate, visual representation captures the same ideas in
a directed graph (also called digraph) in which nodes represent species and arrows
between them represent the mutual interactions, as shown in Figures 6.10 and 6.11.
The question is then whether it can be concluded, from this graph or sign pattern
only, that the system is stable. If so, the system is called qualitatively stable.

(a)

(b)

1	 2	 3	 4	 5

(c)

Figure 6.10 Signed directed graphs (digraphs) can 	 equivalent to the matrix representation of sign
be used to represent species interactions in a 	 patterns given in the text (a) example 2, (b)
complex ecosystem. The graphs shown here are 	 example 3, and (c) example 4.
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238	 Continuous Processes and Ordinary Differential Equations

(a)

+	 +	 +	 +
1	 2	 4 5

3	 _

(b)

(c)

Figure 6.11 Properties of signed directed graphs
can be used to deduce whether the system is
qualitatively stable (stable regardless of the
magnitudes of mutual effects). The Jeffries color
test and the Quirk-Ruppert conditions are applied to

these graphs to conclude that (a), which
corresponds to example 2, and (c) are stable
communities, whereas (b), which corresponds to
example 4, is not.

Systems that are qualitatively stable are also stable in the ordinary sense. (The
converse is not true.) Systems that are not qualitatively stable can still be stable un-
der certain conditions (for example, if the magnitudes of interactions are appropri-
ately balanced.)

Following Quirk and Ruppert (1965), May (1973) outlined five conditions for
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Example 2
Here we study the sign pattern of the community described in equations (21a, b, c) of
Section 6.4. From Jacobian (24) of the system we obtain the qualitative matrix

0 + +
Q = sign J = — 0 0

— 0 —

This means that close to equilibrium, the community can also be represented by the
graph in Figure 6.10. Reading entries in Q from left to right, top to bottom:

Species 1 gets positive feedback from species 2 and 3.
Species 2 gets negative feedback from species 1.
Species 3 gets negative feedback from species 1 and from itself.

Example 3 (Levins, 1977)
In a closed community, three predators or parasitoides, labeled P 1 , P2, and P3, attack
three different stages in the life cycle of a host, H 1 , H2 , and H. The presence of hosts
is a positive influence for their predators but predators have a negative influence on
their prey. Figure 6.10(b) and the following matrix summarize the interactions:

P, P2 P3 H, H2 H3
P, 0 0 0 + 0 0
P2 0 0 0 0 + 0
P3 0 0 0 0 0 +
H, — 0 0 — 0 +
Hz 0 — 0 + — 0
H3 0 0 — 0 + —

Note that H 1 , H2, and H3 each exert negative feedback on themselves.

Example 4 (Jeffries, 1974)
In a five-species ecosystem, species 2 preys on species 1, species 3 on species 2, and
so on in a food chain up to species 5. Species 3 is also self-regulating. A qualitative
matrix for this community is

0 — 0 0 0
+ 0 — 0 0

Q= 0 + — — 0
0 0 + 0 —
0 0 0 + 0

See Figure 6.10(c).D
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240	 Continuous Processes and Ordinary Differential Equations

qualitative stability. Suppose a ;; is the ijth element of the matrix of signs Q. Then it
is necessary for all of the following conditions to hold:

1. a;; ^ 0 for all i.
2. a,1 < 0 for at least one i.
3. aa1, ^ 0 for all i : j.
4. a,Jajk - .. agrar; = 0 for any sequences of three or more distinct indices i, j, k,

....q,r.
5. detQ*0.

These conditions can be interpreted in the following way:

1. No species exerts positive feedback on itself.
2. At least one species is self-regulating.
3. The members of any given pair of interacting species must have opposite

effects on each other.
4. There are no closed chains of interactions among three or more species.
5.	 There is no species that is unaffected by interactions with itself or with other

species.

For mathematical proof of these five necessary conditions, consult Quirk and Rup-
pert (1965). May (1973) and Pielou (1969) comment on the biological significance,
particularly of conditions 3 and 4. The conditions can be tested by looking at graphs
representing the communities. One must check that these graphs have all the follow-
ing properties:

1. No + loops on any single species (that is, no positive feedback).
2. At least one — loop on some species in the graph.
3. No pair of like arrows connecting a pair of species.
4. No cycles connecting three or more species.
5. No node devoid of input arrows.

These five conditions are equivalent to the original algebraic statement.

Example 5
For examples 2 to 4 we check off the five conditions given earlier:

Condition
Number Example 2 Example 3 Example 4

1 ✓ ✓ ✓

2 ✓ ✓ ✓

3 ✓ ✓ ✓
4 NoNo
5 ✓ ✓ ✓
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It was shown by Jeffries (1974) that these five conditions alone cannot distin-
guish between neutral stability (as in the Lotka-Volterra cycles) and asymptotic sta-
bility, wherein the steady state is a stable node or spiral. (In other words, the condi-
tions are necessary but not sufficient to guarantee that the species will coexist in a
constant steady state). In example 4 Jeffries notes that pure imaginary eigenvalues
can occur, so that even though the five conditions are met, the system will oscillate.
To weed out such marginal cases, Jeffries devised an auxiliary set of conditions,
which he called the "color test," that replaces condition 2. Before describing the
color test, it is necessary to define the following:

A predation link is a pair of species connected by one + line and one — line.
A predation community is a subgraph consisting of all interconnected predation

links.

If one defines a species not connected to any other by a predation link as a trivial
predation community, then it is possible to decompose any graph into a set of dis-
tinct predation communities. The systems shown in Figure 6.10 have predation com-
munities as follows: (a) {2, 1, 3}; (b) {H,, P1 }, {H2 , P2}, {H3, P3}; and (c) {1, 2, 3,
4, 5}. In Figure 6.11(c) there are three predation communities: {l, 2, 3}, {4, 5}, and
{6,7,8}.

The following color scheme constitutes the test to be made. A predation com-
munity is said to fail the color test if it is not possible to color each node in the sub-
graph black or white in such a way that

1. Each self-regulating node is black.
2. There is at least one white point.
3. Each white point is connected by a predation link to at least one other white

point.
4. Each black point connected by a predation link to one white node is also

connected by a predation link to one other white node.

Jeffries (1974) proved that for asymptotic stability, a community must satisfy the
original Quirk-Ruppert conditions 1, 3, 4, and 5, and in addition must have only
predation communities that fail the color test.

Example S (continued)
Examples 2 and 4 satisfy the original conditions. In Figure 6.11 the color test is applied
to their communities. We see that example 2 consists of a single predation community
that fails part 4 of the color test. Example 4 satisfies the test. A final example shown in
Figure 6.11(c) has three predation communities, and each one fails the test. We con-
clude that Figure 6.11(a) and (c) represent systems that have the property of asymptotic
stability; that is, these ecosystems consist of species that coexist at a stable fixed steady
state without sustained oscillations.

A proof and discussion of the revised conditions is to be found in Jeffries
(1974). For other applications and properties of graphs, you are encouraged to pe-
ruse Roberts (1976).
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242	 Continuous Processes and Ordinary Differential Equations

6.6 THE POPULATION BIOLOGY OF INFECTIOUS DISEASES

Infectious diseases can be classified into two broad categories: those caused by
viruses and bacteria are microparasitic diseases, and those due to worms (more com-
monly found in third-world countries) are macroparasitic. Other than the relative
sizes of the infecting agents, the main distinction is that microparasites reproduce
within their host and are transmitted directly from one host to another. Most
macroparasites, on the other hand, have somewhat more complicated life cycles, of-
ten with a secondary host or carrier implicated. (Examples of these include malaria
and schistosomiasis; see Anderson, 1982 for a review.)

This section briefly summarizes some of the classical models for microparasitic
infections. The mathematical techniques required for analyzing the models parallel
the techniques applied in Sections 6.2 and 6.3. However, as a general remark, it
should be said that the flavor of the models differs somewhat from the species-inter-
actions models introduced in this chapter.

With no a priori knowledge, suppose we are asked to model the process of in-
fection of a viral disease such as measles or smallpox. In keeping with the style of
population models for predation or competition, it would be tempting to start by
defining variables for population densities of the host x and infecting agent y. Here is
how such a model might proceed:

Primitive Model for a Viral Infection

This model is for illustrative purposes only. Let

x = population of human hosts,

y = viral population.

The assumptions are that

1. There is a constant human birth rate a.
2. Viral infection causes an increased mortality due to disease, so g (y) > 0.
3. Reproduction of viral particles depends on human presence.
4. In the absence of human hosts, virus particles "die" or become nonviable at

rate y.

The equations then read:

dx
= [a — g(y)]x,

dt

dy
dt = ßxY — yy.
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The approach leads us to a modified Lotka-Volterra predation model. This
view, to put it simply, is that viruses y are predatory organisms searching for human
prey x to consume. The conclusions given in Section 6.2 follow with minor
modification.

The philosophical view of disease as a process of predation is an unfortunate
and somewhat misleading analogy on several counts. First, no one can reasonably
suppose it possible to measure or even estimate total viral population, which may
range over several orders of magnitude in individual hosts. Second, a knowledge of
this number is at best uninteresting and trivial since it is the distribution of viruses
over hosts that determines what percentage of people will actually suffer from the
disease. To put it another way, some hosts will harbor the infecting agent while oth-
ers will not. Finally, in the "primitive" model an underlying hidden assumption is
that viruses roam freely in the environment, randomly encountering new hosts.This
is rarely true of microparasitic diseases. Rather, diseases are spread by contact or
close proximity between infected and healthy individuals. How the disease is spread
in the population is an interesting question. This crucial point is omitted and is thus a
serious criticism of the model.

A new approach is necessary. At the very least it seems sensible to make a dis-
tinction between sick individuals who harbor the disease and those who are as yet
healthy. This forms the basis of all microparasitic epidemiological models, which,
as we see presently, virtually omit the population of parasites from direct consider-
ation.

Instead, the host population is subdivided into distinct classes according to the
health of its members. A typical subdivision consists of susceptibles S, infectives 1,
and a third, removed class R of individuals who can no longer contract the disease
because they have recovered with immunity, have been placed in isolation, or have
died. If the disease confers a temporary immunity on its victims, individuals can also
move from the third class to the first.

Time scales of epidemics can vary greatly from weeks to years. Vital dynamics
of a population (the normal rates of birth and mortalities in the absence of disease)
can have a large influence on the course of an outbreak. Whether or not immunity is
conferred on individuals can also have an important impact. Many models using the
general approach with variations on the assumptions have been studied. An excellent
summary of several is given by Hethcote (1976) and Anderson and May (1979), al-
though different terminology is unfortunately used in each source.

Some of the earliest classic work on the theory of epidemics is due to Kermack
and McKendrick (1927). One of the special cases they studied is shown in Figure
6.12(a). The diagram summarizes transition rates between the three classes with the
parameter ß, the rate of transmission of the disease, and the rate of removal v. It is
assumed that each compartment consists of identically healthy or sick individuals
and that no births or deaths occur in the population. (In more current terminology,
the situation shown in Figure 6.12(a) would be called an SIR model without vital dy-
namics because the transitions are from class S to I and then to R; see for example,
Hethcote, 1976.)D
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244	 Continuous Processes and Ordinary Differential Equations

Figure 6.12 A number of epidemic models
that have been studied. The total population 	 I	 s 	 /	 0	 R

N is subdivided into susceptible (S), infective
(I) and removed (R) classes. Transitions
between compartments depict the course of 	 (a)
transmission, recovery, and loss of immunity
with rate constants ß, v, and y. A population

Y
with vital dynamics is assumed to be
producing new susceptibles at rate S which is
identical to the mortality rate. (a) SIR model;
(b, c) SIRS models; and (d) SIS model.	 s	 o 	/	 0	 R

(b)

SN	 S	 R	 /	 "	 R

s	 S	 S

(c)

&N-0 	 S 	 I

s	 s

(d)

Figure 6.12(a) and those following it are somewhat reminiscent of models we
have already studied for the physical flows between well-mixed compartments (for
example, the chemostat). A subtle distinction must be made though, since the pas-
sage of individuals from the susceptible to the infective class generally occurs as a
result of close proximity or contact between healthy and infective individuals. Thus
the rate of exchange between S and I has a special character summarized by the fol-
lowing assumption:

Assumption
The rate of transmission of a microparasitic disease is proportional to the
rate of encounter of susceptible and infective individuals modelled by the
product (ßSI).
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The equations due to Kermack and MacKendrick for the disease shown in Fig-
ure 6.12(a) are thus

dS
dt = —ß1S,
	 (27a)

dl _
dt = ß1S — vi,	 (27b)

dRdt = vl.	 (27c)

It is easily verified that the total population N = S + I + R does not change.
Though these equations are nonlinear, Kermack and MacKendrick derived an ap-
proximate expression for the rate of removal dR/dt (in their paper called dz/dt) as a
function of time. The result is a rather messy expression involving hyperbolic se-
cants; when plotted with the appropriate values given to the parameters it compares
rather well with data for death by plague in Bombay during an epidemic in 1906 (see
Figure 6.13).

A more instructive approach is to treat the problem by qualitative methods.
Now we shall carry out this procedure on a slightly more general case, allowing for
a loss of immunity that causes recovered individuals to become susceptible again
[Figured 6.12(b)]. It will be assumed that this takes place at a rate proportional to
the population in class R, with proportionality constant y. Thus the equations be-
come

dS =	 y	 (28a)— 1+ R,
dt

dl =	 (28b)
dt

I — vl,

dR vi — yR.	 (28c)
dt

This model is called an SIRS model since removed individuals can return to class
S(y = 0 is the special case studied by Kermack and McKendrick). It is readily
shown that these equations have two steady states:

S l = N,	 1, = 0,	 R, = 0;	 (29a)

S2 = R ,	 Iz = y 
N + y2 	R2 = y .	 (29b)

 —

In (29a) the whole population is healthy (but susceptible) and disease is eradicated.
In (29b) the community consists of some constant proportions of each type provided
(S2 ,12i R2) are all positive quantities. For 1 2 to be positive, N must be larger than S2 .

Since S2 = v//3, this leads to the following conclusion:
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246	 Continuous Processes and Ordinary Differential Equations

The disease will be established in the population provided the total
population N exceeds the level v//3, that is,

NR > 1.
v

This important threshold effect was discovered by Kermack and McKendrick; the
population must be "large enough" for a disease to become endemic.

Also for the rate at which cease are removed by death or recovery which in the
form in which many etatietice are given

dG 2z0	
eecht( j iU — ).	 (thirty-one)

900

800

700

600

500

400

300

200

100

5	 10	 15	 20	 25	 30
weeks

The accompanying chart is based upon figures of deaths from plague in the Island of
Bombay over the period December 17, 1806, to July 21, 1808. The ordinate represents
the number of deaths per week, and the absolem denotes the time in week.. Si at least
80 to 90 per cent, of the eases reported terminate fatally, the ordinate may be taken ae
approximately repreeentiog dz/d4 as a function of I. The calculated curve is drawn from
the formula

e 890 eeoh' (0.24-3.4).

Figure 6.13 On a page from their original article, 	 equivalent to dR/dt in equations (27).[Kermack,
Kermack and McKendrick compare predictions of	 W. 0., and McKendrick, A. G. (1927). A
the model given by equations (27a,b,c) with data 	 contribution to mathematical theory of epidemics.
for the rate of removal by death. Note: dz/dt is	 Roy Stat. Soc. J., 115, 714.1
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The ratio of parameters ß/ v has a rather meaningful interpretation. Since re-
moval rate from the infective class is v (in units of 1 /time), the average period of
infectivity is 1 / v. Thus ß/ v is the fraction of the population that comes into contact
with an infective individual during the period of infectiousness. The quantity
Ro = Nß/ v has been called the infectious contact number, Q (Hethcote, 1976) and
the intrinsic reproductive rate of the disease (May, 1983). Ro represents the average
number of secondary infections caused by introducing a single infected individual
into a host population of N susceptibles. (In papers by May and Anderson, the
threshold result is usually written Ro > 1.)

In further analyzing the model we can take into account the particularly conve-
nient fact that the total population

N=S+I+R

does not change (see problem 25 for verification). This means that one variable, say
R, can always be eliminated so that the model can be given in terms of two equa-
tions in two unknowns. In the following analysis this fact is exploited in applying
phase-plane methods to the problem.

Qualitative Analysis of a SIRS Model: Epidemic with Temporary Immunity and No Vital
Dynamics

Since the total population is constant, we eliminate R from equations (28) by substitut-
ing

R=N—S-1.	 (30)

The equations for S and I are then

dS	 def
dt = —ßS1+ y(N—S-1)=F(S,1), 	 (31a)

dldt = ß51 — v1	 = G (S, 1).	 (31b)

Nullclines

1' = 0	 for	 I = 0	 and	 S = v/ß,

S' = 0	 for	 ßSI = y(N — S — 1).

After rearranging,

1=y(N—S)
(/35+ Y)

This curve intersects the axes at (N, 0) and (0, N).
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Steady states

(i, 1^) = (N, 0); (S2, 12) = (
v N —(v/ß))

 v + y

Jacobian

J= (Fs F`( — (ßl+y) — (ß+y)l
.

Gs G,/ ,5 	\ 131	 ßS — v

Stability
For (S2 , 12),

Tr J = —(1312 + y) is always negative,
det J = ßl2(v + y) is always positive.

Thus this steady state is always stable when it exists, namely when the threshold condi-
tion is satisfied. It is evident from Figures 6.14 and 6.15(b) and from further analysis
that the approach to this steady state can be oscillatory.

I

R11

Figure 6.14 Nullclines, steady states, and several 	 (31a,b), which are equivalent to (28a,b,c).
trajectories for the SIRS model given by equations
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I.0

.8

o ^
U
O

Li..

d

4

.2

00	 .24	 .6	 8	 1.0

Susceptible Fraction

(a)

C
G

C

U-
a)

d

C

v0	 .2	 4	 .6	 .8	 1.0

Susceptible Fraction

(b)

Figure 6.15 Epidemic models are characterized by
the magnitude of an infectious contact number o.
(a) When or < 1, the infective class will disappear.
(b) When o> 1, there is some stable steady state
in which both susceptibles and infectives are
present. Shown here is an SIRS model with vital

dynamics.) [Reprinted by permission of the
publisher from Hethcote, H. W. (1976). Qualitative
analyses of communicable disease models. Math.
Biosci., 28, 344 and 345. Copyright 1976 by
Elsevier Science Publishing Co., Inc.]

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



250	 Continuous Processes and Ordinary Differential Equations

Mortality from a variety of afflictions, only some of
which were caused by disease, were systematically
recorded as early as the 1600s in the Bills of
Mortality published in London. Reproduced here is
the title page of the London Bills of Mortality for
1665, the year of the great plague. The people of
the city followed with anxiety the rise and fall in
the number of deaths from the plague, hoping
always to see the sharp decline which they knew
from past experience indicated that the epidemic
was nearing its end. When the decline came the
refugees, mostly from the nobility and wealthy
merchants, returned to the city, and then for a time

the mortality rose again as the disease attacked
these new arrivals. The plague of 1665 started in
June; its peak came in September and its decline in
October. The secondary rise occurred in November
and cases of the disease were reported as late as
March of the following year. [From H. W. Haggard
(1957), Devils, Drugs, Doctors, Harper & Row,
New York.]

The World of Mathematics, Vol. 3. Copyright
©1956 by James R. Newman; renewed ©1984 by
Ruth G. Newman. Reprinted by permission of
Simon & Schuster, Inc.
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The Diseases, and Casualties this year being 1632.

A Bortive, and Stilborn .. 445 Grief .................... 11
Affrighted .......... 1 Jaundies ................. 43

Aged.................... 628 Jawfaln ................. 8
Ague.................... 43 Impoetume ............... 74
Apoplex, and Meagrom .... 17 gild by several accidents.. 46
Bit with a mad dog....... 1 King's Evil ...............3838
Bleeding .................	 3	 Lethargie ................	 2
Bloody flux, scowring, and	 Livergrown .............. 87

	

flux ................... 348	 Lunatique ...............	 5
Brused, Issues, sores, and 	 Made away themselves..... 15

	

ulcers. .................	 28	 Measles .................. 	 80
Burnt, and Scalded........	 6 Murthered ............... 	 7
Burst, and Rupture........ 	 9 Over-laid, and starved at
Cancer, and Wolf..........	 10	 nurse ..................	 7
Canker ..................	 1	 Palsia ...................	 25
Childbed ................. 	 171	 Piles..................... 	 1
Chrisomes, and Infants..... 2268	 Plague ...................	 8
Cold, and Cough.......... 55 Planet ................... 13
Colick, Stone, and Strangury 56 Pleurisie, and Spleen...... 36
Consumption ............. 1797 Purples, and spotted Feaver 38
Convulsion ............... 241	 Quinsie ..................	 7
Cut of the Stone.......... 	 5 Rising of the Lights...... 	 98
Dead in the street, and	 Sciatica .................	 1

	

starved ................	 6	 Scurvey, and Itch......... 	 9
Dropsie, and Swelling...... 267 Suddenly ................ 	 62
Drowned ................. 	 34	 Surfet ...................	 86
Executed, and prest to death 18 Swine Pox ............... 	 6
Falling Sickness...........	 7	 Teeth ................... 470
Fever ....................1108	 Thrush, and Sore mouth... 	 40
Fistula..................	 13	 Tympany ................	 13
Flocks, and small Pox..... 531	 Tissick ..................	 34
French Pox ............... 	 12	 Vomiting ................I
Gangrene................	 6	 Worms ..................	 27
Gout....................	 4

	

Males.. .4994	 Males ....4932 Whereof,
Christened Females. .4590 Buried Females ..4603 of the

In all... .9584J	 In all... .9535J Plague.8

Increased in the Burials in the 122 Parishes, and at the Pest-
housethis year ......................................... 993

Decreased of the Plague in the 122 Parishes, and at the Pest-
housethis year .................................. 	 266 [30]
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252	 Continuous Processes and Ordinary Differential Equations

Numerous other cases have been analyzed in detail. Perhaps the best summary
is given by Hethcote (1976), in which theoretical results are followed by biocorol-
laries that spell out the biological predictions. His paper was used in drawing up
Table 6.1, a composite that describes a number of cases.

One point worth mentioning is the essential difference between models in
which the susceptible class is renewed (by recovery or loss of immunity) and those
in which it is not. [The SIRS and SIS examples shown in Figure 6.12(b—d) belong
to the former category.] These distinct types behave differently when the normal
turnover of births and deaths is superimposed on the dynamics of the disease. In the
SIR type without births, the continual decrease of the susceptible class results in a
decline in the effective reproductive rate of the disease. The epidemic stops for want
of infectives, not, as it might seem, for want of susceptibles (Hethcote, 1976). On
the other hand, if the susceptible class is replenished by births or recoveries, the sub-
population that participates in the disease is maintained, and the disease can persist.

From Table 6.1 we see that SIR models are subdivided into those with and
without births and deaths. In other models the chief effect of normal birth and mor-
tality at rates S is to decrease the infectious contact number o-. This means that a
smaller population can sustain an endemic disease. Note that the total population N
is taken to be constant in all of these models since the number of deaths from all
classes is assumed to exactly balance the births of new susceptibles. Among other
things, this permits all such models to be analyzed by methods similar to the method
used here since one variable can always be eliminated.

A somewhat different philosophical approach was taken by Anderson and May
(1979), who were less interested in the dynamics of the disease itself. By analyzing
a model in which a disease-free population grows exponentially, rather than being
maintained at a constant level, they demonstrated that epidemics increasing host
mortality have the potential to regulate population levels (see problem 30). This adds
yet another interesting possiblity to the list of causes of decelerating growth rates in
natural populations. Aside from inter- and intraspecies competition and predation,
disease-causing agents (much like parasites) can control the population dynamics of
their hosts.

The theory of epidemics has numerous ramifications, some of which are math-
ematical and some practical. In recent years more advanced mathematical models
have been studied to determine the effects of delay factors (such as a waiting time in
the infectious class), age structure, migration, and spatial distributions. Many of
these models require sophisticated mathematical methods of analysis (see, for exam-
ple, Busenberg and Cooke, 1978). An excellent survey with detailed references is
given by Hethcote et al. (1981).

One theoretical question such papers often address is whether models with par-
ticular structures lead to stable (limit-cycle) oscillations. This question is of interest
since some diseases are associated with periodic outbreaks with very low endemic
periods followed by peak epidemic cycles. In some cases the forces driving such
cyclic behavior are related to seasonality and to changes in contact rates. (A good
example is childhood diseases, which invariably peak during the school year when
contact between their potential hosts is greatest.) However, even in the absence of
externally imposed periodicity, models similar to SIRS can have an inherent ten-
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254	 Continuous Processes and Ordinary Differential Equations

dency to give rise to oscillations. This is particularly true of models with long peri-
ods of immunity or some other delaying factor. Hethcote notes that a sequence of at
least three removed classes will also achieve the result (for example, SIR, R2 R3 S) .

The implications of many aspects of applying mathematical theory to natural
populations are eloquently described in numerous papers by May and Anderson.
Some questions are of a basic scientific nature. For example, the extent to which dis-
eases and hosts have coevolved is a fascinating topic; a second controversial ques-
tion is whether or not diseases are in fact a predominant factor in controlling natural
populations. Other questions have more immediate medical ramifications. Anderson
and May suggest that theory has an important place in illuminating the impact of dis-
ease on human populations and the ability to eradicate or control disease. Two appli-
cations of the theory to vaccination programs are briefly highlighted in the following
section.

6.7 FOR FURTHER STUDY: VACCINATION POLICIES

Models for infectious diseases lead to a better understanding of how vaccination pro-
grams affect the control or eradication of the disease. Several popular articles by An-
derson and May (1982) and a more detailed mathematical version (1983) are
thought-provoking and informative. The full theory that takes into account age struc-
ture of the population uses a partial differential equation model (which would be un-
derstood more fully after covering Chapter 11). However, a number of rather inter-
esting consequences of the theory can be understood with no further preparation.

Eradicating a Disease

Immunization can reduce or eliminate the incidence of infection, even when only
part of the population receives the treatment. Those individuals who have been vac-
cinated will be protected from acquiring infection (this is the obvious direct effect).
A secondary effect is that since vaccinated individuals are essentially removed from
participating in transmission of the disease, there will be fewer infectious individuals
and thus a decreased likelihood that an unvaccinated susceptible will come in contact
with the disease. This indirect effect is known as herd immunity.

Administering vaccinations to an entire population can be costly. Some vac-
cines (for example, some measles and whooping cough vaccines) also carry the risk,
though rare, of causing various reactions or neurological damage. Thus, if disease
eradication can be achieved by partially vaccinating some fraction p of the popula-
tion, an advantage is gained.

The fraction to be immunized must be such that the remaining population,
(1 — p)N, will no longer exceed the threshold level necessary to perpetuate the dis-
ease. In the terminology of Anderson and May, the reproductive factor Ro of the in-
fection is to be reduced below 1. Since Ro = Nß/ v, for a given disease this factor
can be estimated from epidemiological and population records. Table 6.2 lists sev-
eral common diseases with their corresponding Ro factors.
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Table 6.2	 Estimates of the intrinsic reproductive rate R o for human diseases and the corresponding
percentage of the population p that must be protected by immunization to achieve
eradication. [Reprinted by permission, American Scientist, journal of Sigma Xi,
"Parasitic Infections as Regulator of Animal Populations," by Robert M. May, 71:36-45
(1983).]

Approximate
Value of

Infection Location and Time Ro p (%)

Smallpox Developing countries, 3-5 70-80
before global campaign

Measles England and Wales, 13 92
1956-68;

U.S., various places, 12-13 92
1910-30

Whooping cough England and Wales, 17 94
1942— 50;

Maryland, U.S., 1908 —17 13 92

German measles England and Wales, 1979; 6 83
West Germany, 1972 7 86

Chicken pox U.S., various places, 9-10 90
1913-21 and 1943

Diphtheria U.S., various places, 4-6 —80
1910-47

Scarlet fever U S., various places, 5-7 —80
1910-20

Mumps U.S., various places, 4-7 --80
1912-16 and 1943

Poliomyelitis Holland, 1960: U.S., 1955 6 83

The fraction p to be immunized is then deduced from the following simple
calculation:

Intrinsic reproductive rate of disease = Ro , Fraction immunized = p, Fraction not im-
munized = I — p, Population participating in disease = N(1 — p), Effective intrinsic
reproduction rate of disease (after immunization) = Ro = (1 — p)R o .

Thus

1
R0< 1 (l —p)Ro < 1 p > 1 --

Ro
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256	 Continuous Processes and Ordinary Differential Equations

The percentage of the population to be vaccinated thus depends strongly on the in-
fectiousness of the disease. It is noteworthy that smallpox, a disease essentially erad-
icated by vaccination, has one of the lowest Ro values and a correspondingly low re-
quired vaccination fraction. By contrast, measles and whooping cough require a
much higher percentage of immunization and would be harder to eradicate.

Average Age of Acquiring a Disease

Is it always wise to vaccinate at least some people, even if the disease will not be
eradicated? When a disease has different impacts on individuals of different ages,
vaccination at a young age can have a somewhat surprising deleterious effect. A
case in point is German measles (Rubella). Normally a mild short-lasting infection,
Rubella can be particularly devastating when contracted by a pregnant woman, as it
results in birth defects to the fetus during the first trimester of pregnancy. Vaccinat-
ing against Rubella raises the average age at which the disease is first acquired (see
box). Thus, rather than incurring the disease on average at age 12, it may be more
prevalent at ages 20 to 30, precisely the most dangerous period for women of child-
bearing ages.

How Vaccinations Raise the Age of First Acquiring a Disease

Define A = ßI. Called the per capita force of infection, A has units of 1 /time and is the
rate of acquiring the disease given a population containing I infectives and a
transmission constant ß.

Let A = 1/A. A is the average age of first infection, or average waiting time in
the susceptible compartment before acquiring the disease. A has units of time.

Now note that a vaccination program tends to reduce the number of infectives I,
thus reducing A and raising A.

For other aspects of the topic of vaccinations, epidemiology, and population
dynamics, the many excellent sources quoted in the references are highly recom-
mended.
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PROBLEMS*'

1. (a) Assuming that N (0) = No , integrate equation (2a) and show that its solu-
tion is given by equation (2b). (See problem 5 of Chapter 4 or Braun,
1979; sec. 1.5.)

(b) Show that the solution given by (2b) has the following properties:
(1) N-->Kast —>x.
(2) The graph is concave up for No <N <K/2.
(3) The graph is concave down for K/2 <N < K.
(4) If No > K, the graph is concave up.

2. Consider the model

ç
=rN(K_N)(N_M)  where r>O and0 <M< K

(a) Express the intrinsic growth rate g (N) as a polynomial in N and find the
coefficients a 1 , a2 , a3 .

(b) Show that N = 0, N = K, and N = M are steady states and determine
their stability.

(c) Solve the equation and graph the solution.

3. Models that are commonly used in fisheries are

dN
=dt = Ng (N),

where g (N) is given by

Ricker model:	 g (N) = re ß".

r
Beverton-Holt:	 g (N) =

a + N
Analyze the behavior of the solutions to these questions. (Assume a, ß,
r > 0).

4. For single-species populations, which of the following density-dependent
growth rates would lead to a decelerating rate of growth as the population in-
creases? Which would result in a stable population size?

(a) g(N)= 1 0 N ,ß>0.	 (c) g(N)=N — e,a>0.

(b) g (N) = (3 — N, (3 > 0. 	 (d) g (N) = log N.

5. List the assumptions that underlie the logistic equation (2a). You may wish to
think about such factors as environmental or individual variability, reproduc-
tive ages, and the effects of the spatial distribution of the population. Which
assumptions are not generally valid?

*Problems preceded by an asterisk are especially challenging.
1. Several problems were kindly suggested by C. Biles.
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258	 Continuous Processes and Ordinary Differential Equations

6. The factor g (N) = r (1 — N/K) in equation (2a) is a per capita growth rate.
Smith (1963) observed that in cultures of the unicellular alga Daphnia magna g
decreases at a nonlinear rate as N increases. To account for this fact, Smith
suggested that the growth rate depends on the rate at which food is utilized:

—

g(N)=r T T F

where F is the rate of utilization when the population size is N, and T is the
maximal rate, when the population has reached a saturated level. He further as-
sumed that

F=c1N+c2 d,	 (c1,c2>0)

as long as dN/dt > 0.
(a) Explain this assumption for F.
(b) Show that the modified logistic equation is then

dN	 K — N
dt =rN K+(yN)

where y = rc2/c, and K = Tic,.
(c) Sketch the expression in square brackets as a function of N.
(d) What would be the qualitative behavior of this population growth? (For a

deeper analysis of this problem see Pielou, 1977.)

7. (a) Show that equations (6a,b,c) for the Gompertz growth law are equiva-
lent. Find K in terms of a.

(b) In a tumor the cells without access to nutrients and oxygen stop reproduc-
ing and generally die, leaving a necrotic center. The Gompertz growth
law can be interpreted as a description of this necrosis. Discuss this point
and give alternative interpretations of equations (6a,b).

8. Suppose that prey have a refuge from predators into which they can retreat.
Assume the refuge can hold a fixed number of prey. How would you model
this situation, and what predictions can you make?

9. (a) Suppose a one-time fishing expedition reduced the prey population by
10% of its current level. What does the Lotka-Volterra model predict
about the subsequent behavior of the system? (Note: this prediction is one
of the most objectionable features of the model and will be dealt with in a
later chapter.)

(b) Now consider the situation in which there is a constant level of fishing in
which both prey and predatory fish are caught and removed at rates pro-
portional to their densities, Ox and 4y. Compare this to the situation in
the absence of fishing, and show what Volterra concluded about
d'Ancona's observation. (For one treatment of this problem see Braun,
1979; a more advanced mathematical treatment can be found in Brauer
and Soudack, 1979.)

*10. In Section 6.2 we showed that the steady state (x2, yz) = (c/d, a/b) is associ-
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Applications of Continuous Models to Population Dynamics 	 259

ated with pure imaginary eigenvalues. Since the equations are nonlinear, it is
necessary to consider the possibility that the steady state is a spiral point.

(a) Write the system of equations in the form

dy __ — cy + dry
dx ax — bxy

Separate variables and integrate both sides to obtain
yae -by = Kx c e

 K is an arbitrary constant).
(b) On the nullcline x = c/d observe that

yae-b' = constant.

Graph the function f(y) = yae -by and use your graph to demonstrate that
f( y)  = constant can have at most two solutions for any given constant.

(c) Conclude that the trajectory cannot be a spiral. (Hint: Consider how
many times it intersects the line x = c/d.)

11. Interpret the assumptions 1 to 4 made in the Kolmogorov equations for a
predator-prey system.

12. (a) At the end of Section 6.2 a number of modifications of the Lotka-
Volterra equations are described. Explain these modifications, paying
particular attention to their predictions for low and high values of the
prey population x.

(b) For each modification you discuss in (a), assume it is the only change
made in equations (7a,b) and determine the effect on steady states and
their stability properties.

13. Show it is possible, by introducing dimensionless variables, to rewrite the
Lotka-Volterra equations as

dv 	de
dt 

= v(1 — e),	 -j- 	ae(v — 1),

where v = victims and e = exploiters.

14. Determine whether the nontrivial steady state of equations (8a,b) is a stable
node or a stable spiral.

15. In this problem we attend to several details that arise in the species competition
model [equations (9a,b)].
(a) The four cases shown in Figure 6.6 correspond to four possible sets of in-

equalities satisfied by the parameters K i , a2, ß12, and ß21. Give a biologi-
cal interpretation of these relations.

(b) Show that a fourth steady state to equations (9a,b) is

(x^ y) _ (
r21 K1 - K2 /312 K2 - K I

R21/312 - 1' /21/312 - i i '
and demonstrate that this steady state has biological relevance only in
cases 3 and 4.
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260	 Continuous Processes and Ordinary Differential Equations

(c) The Jacobian of (9a,b) has off-diagonal elements as follows:

9	—rißi2Ni

=	 K^

— r2 ß2 Nz 	
?	 (Ni.N2)•

Kz

Verify this fact, find the remaining entries, and then compute J for each
of the steady states of (9a,b). (Note: one of these involves rather cumber-
some expressions.)

(d) Verify the stability properties of steady states to the species competition
model [equations (9a,b)] in the four cases discussed in Section 6.3.

(e) Give a biological interpretation of cases 1 through 4 in Figure 6.8.
(1) What is the outcome of competition in case 1? How does this differ

from case 3?
(2) In cases 1, 2, and 4 the final outcome does not depend on the initial

levels of the competing populations. This is not true in case 3. Give
a rough rule of thumb for determining which species wins in
case 3.

*16. In this problem you are asked to generalize the competition model of equations
(9a,b) to the case of k species, with particular emphasis on k = 3.
(a) Write a set of equations for the populations of species 1, 2, ... , k that

compete pairwise as in equations (9a,b).
(b) For k = 3 how many steady states are possible? (Hint: in the absence of

a third species, each pair behaves according to the original two-species
competition model.)

(c) The accompanying figure sketches the case roughly corresponding to
case 4. Now suppose that the populations are such that (1) species 2 wins

Species 3

es 2

Species

Figure for problem 16(c).
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when 3 is absent; (2) species 3 wins when I is absent; and (3) species 1
wins when 2 is absent. Sketch the expected dynamics.

17. Species may derive mutual benefit from their association; this type of interac-
tion is known as mutualism. May (1976) suggests the following set of equa-
tions to describe a possible pair of mutualists:

dN,	 1—N1 	 dN2 	1—N2
dt 

= rN1 KI +aN2 '	 dt 
=rNZ K2+ßN1 ,

where Ni is the population of the ith species, and aß < 1.
(a) Explain why the equations describe a mutualistic interaction.
(b) Determine the qualitative behavior of this model by phase-plane and lin-

earization methods.
(c) Why is it necessary to assume that aß < 1?

18. Write down all Routh-Hurwitz matrices H 1 , Hz , and H 3 for the case of three
species. Show that May's conditions are equivalent to the original Routh-Hur-
witz criteria by evaluating the determinants of these matrices.

19. Suppose that in the three-species model discussed in example 1 (Section 6.4),
species x and z are competitors. How would the model and its conclusions
change?

20. Suppose that in the same example species y is also a prey of species z. How
would the model and its conclusions change?

21. In the accompanying directional graph, arrows represent positive and negative
effects that each of three species exert on each other when they are at equi-
librium. For example, the effect of y on x is negative. Use the Routh-Hurwitz
criteria to show that this system must be unstable.

y 	 +z
Figure for problem 21. 	 _

22. Use the Routh-Hurwitz criteria to investigate stability in problem 29 of Chap-
ter 4.

23. Analyze the community structures shown in the accompanying figures in the
following way:
(1) Give the patterns of signs in the qualitative matrix Q that describes the

system.
(2) Identify predation communities.
(3) Determine whether or not the system is qualitatively stable. If not, iden-

tify which condition(s) it does not satisfy.
(4) Suggest what kind of community might be represented by the graph.
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262	 Continuous Processes and Ordinary Differential Equations

(a)
	

(b)

1 ^^ 3 ^—^ 4 ^^^
7

O 5
2

6

(c)

+	 +

Z Q Q 4
+	 3

Oj 	OS

(e)

Figures (a—e) for problem 23.

^O p3

O	 +
4

(d)

24. Draw directed graphs, identify predation communities, and determine whether
the systems depicted in the following qualitative matrices are stable or not.
(a) 0 + 0 0	 (Levins, 1977: one of two competitors for a

— + 0 —	 common resource is itself preyed on: the
0 0 0 +	 other is resistant.)
0 + — 0

(b) 0 0 0 +	 (Levins, 1974: nutrients and organisms in a
— 0 + +	 lake. Two species are algae; the others rep-
+ — — 0	 resent nutrients, one of which is produced
— — 0 —	 by an alga. )
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(c) — — 0 0 + Unlikely food chain.
+ — — 0 0
0 + — — 0
0 0 + — -
- 0 0 + 0

(d) 0 — 0 0 A larval prey and predator whose roles re-
+ — 0 0 verse in adulthood.
+ 0 — +
0 + — 0

(e)	 — 0 0 0 0 A species that can exist in two types that
+ — 0 0 0 compete in adulthood.
+ 0 — 0 0
0 + 0 0 —
0 0 + — 0

25. In this problem you are asked to verify several results quoted in Section 6.6.
Show that N = S + I + R is constant for the SIRS model given by equa-
tions (28a,b,c).

(b) Verify that the two steady states of (28) are given by (29a,b).
(c) Suppose that all members of a population give birth to susceptibles (at

rate S) and die (at rate S). How would the equations change?
(d) Find steady states for part (c), and determine what the infectious contact

number is in terms of the parameters.
(e) Compare the model with and without the above vital dynamics.

*26. Analyze an SIR model with and without vital dynamics. Verify the results
summarized in Table 6.1.

*27. Show that in an SIR model with disease fatality at rate r the disease will al-
ways eventually disappear.

*28. Show that in an SIR model with carriers who show no symptoms of the dis-
ease, the disease always remains endemic.

29. Capasso and Serio (1978) considered the following model with emigration of
susceptibles:

dS __
dt	

—g (1)S — AS,

d1
dt =g(I)s — 'YI,

dR
dt

=kS+yl.

The function g(I), shown in the accompanying graph, takes into account
"psychological" effects. Explain the equations and show that the epidemic will
always tend to extinction with respect to both infectives and susceptibles.
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264	 Continuous Processes and Ordinary Differential Equations 

g (1)

Figure for problem 29.

30. Anderson and May (1979) describe a model in which the natural birth and
death rates, a and b, are not necessarily equal so that the disease-free popula-
tion may grow exponentially:

dN _
dt = (a — b)N.

The disease increases mortality of infected individuals (additional rate of death
by infection = a), as shown in the accompanying figure. In their terminology
the population consists of the following:

X = susceptible class (= S),
Y = infectious class (= I),
Z = temporarily immune class (= R).

Figure for problem 30.

(a) Write equations describing the disease.
(b) Show that the steady-state solution representing the presence of disease is

given by
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_ a+b+ v

	z a b +
 r 	_ r ^ v )N2,

XzYz a N ' Z 
where

265

a(a+b+v)

ß(a — rLl + v/(b + y) j)'
and	 r=a — h.

(c) The steady state in part (b) makes biological sense whenever

a>r(l+b+ 1.
y

Interpret this inequality.
(Note: Anderson and May conclude that disease can be a regulating
influence on the population size.)

31. Consider a lake with some fish attractive to fishermen. We wish to model the
fish-fishermen interaction.

Fish Assumptions:
i. Fish grow logistically in the absence of fishing.

ii. The presence of fishermen depresses fish growth at a rate jointly propor-
tional to the fish and fishermen populations.

Fishermen Assumptions:
i. Fishermen are attracted to the lake at a rate directly proportional to the

amount of fish in the lake.
ii. Fishermen are discouraged from the lake at a rate directly proportional to

the number of fishermen already there.
(a) Formulate, analyze, and interpret a mathematical model for this situ-

ation.
(b) Suppose the department of fish and game decides to stock the lake with

fish at a constant rate. Formulate, analyze, and interpret a mathematical
model for the situation with stocking included. What effect does stocking
have on the fishery?

32. Beddington and May (1982) have proposed the following model to study the
interactions between baleen whales and their main food source, krill (a small
shrimp -like animal), in the southern ocean:

z=rx 1 --) —axy
K

Y = sy^ 1 — bx f
Here the whale carrying capacity is not constant but is a function of the krill
population:

Kwhales = bx

Analyze this model by determining the steady states and their stability; include
a phase-plane diagram.
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266	 Continuous Processes and Ordinary Differential Equations

33. Estimating parameters in the logistic equation: We would like to address the
curve-fitting problem of how to find the logistic equation of best fit when given
appropriate data. First, rearrange equation (2b) and show that

N(t) =	 K

Then conclude that

N(t) =
K

1 + exp {— rt + In [(K — No)/No]}'

Now rearrange the above to demonstrate that

K N N 	K No= exp ( 

\

— rt + ln No
J

Thus

1n K—N =—rt +1n K —No
	N 	 No

Now the quantity In [(K — N)/N] is a linear function of time with slope r. The
following data is given in Gause (1969) for the growth in volume of each of
the yeasts Saccharomyces and Schizosaccharomyces growing separately. (See
Figure 6.9, top curves in each graph.)

Age (h)	 (1) Saccharomyces	 (2) Schizosaccharomyces

6 0.37 —

16 8.87 1.00
24 10.66 —

29 12.50 1.70
40 13.27 —

48 12.87 2.73
53 12.70 —

72 — 4.87
93 — 5.67

141 — 5.83

(a) Use the maximal population levels to estimate K, and K2 , the carrying
capacities for each of the two species.

(b) Plot (K; — N;)/N; on a log scale and use this to determine r, and r2 . Do
your values agree with those given by Gause in Figure 6.9?

34. Estimating the species-competition parameters.
(a) Use equations (9a,b) to show that

_ K, — (dN,/dt)K, — N,
ßl2	 r,N1N2

1 + [(K — No)/No]e -
nt
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K2 — (dNz /dt)K2 — N2
ßZ^

r2N,N2

(b) Suggest how such parameters might be estimated given empirical obser-
vations of N, and N2 growing in a mixed population. (See Gause for ex-
perimental data.)

(c) The values of all parameters determined by Gause are given in Section
6.3, Figure 6.9. Determine whether the two species can coexist in a sta-
ble mixed population or if one wins over the other.

35 . Populations of lemmings, voles, and other small rodents are known to fluctuate from
year to year. Early Scandinavians believed the lemmings to fall down from heaven dur-
ing stormy weather. Later in history, the legend developed that they migrate periodi-
cally into the sea for suicide in order to reduce their numbers.... None of these theo-
ries, however, was supported by any accurate observations. (H. Dekker, 1975)

An alternate hypothesis was suggested by Dekker to account for rodent popula-
tion cycles. His theory is based on the idea that the rodents fall into two geno-
typic classes (Myers and Krebs, 1971) that interact. Type 1 reproduces rapidly,
but migrates in response to overcrowding; type 2 is less sensitive to high densi-
ties but has a lower reproductive capacity.

The following simple mathematical model was given by Dekker to
demonstrate that oscillations could be produced when types I and 2 rodents
were both present in the population:

dn, 
= n,[a, — (b, — c 1 )n 2 — c,(n, + n,)],

dt

dn2
— n2[ — a2 + bzn,],

dt

where

n, = density per acre of type I,
n 2 = density per acre of type 2.

The term b, — c, was chosen for convenience in the mathematical calculations
rather than for particular biological reasons.
(a) On the basis of the information, give an interpretation of the individual

terms in the equations.
(b) Using phase-plane methods, determine the qualitative behavior of solu-

tions to Dekker's equations. If there is more than one case, pay particular
attention to the case in which oscillations are present. Give conditions on
the parameters a; , b; , and c; for which oscillatory behavior will be seen.

(C) Give a short critique of Dekker's model, indicating whether you would
change his assumptions and/or equations. Dekker's article has received a
somewhat critical peer review by Nichols et. al. (1979). You may wish
to comment on their specific points of contention.
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