
3 Applications
of Nonlinear Difference Equations
to Population Biology

Great fleas have little fleas upon their backs to bite 'em.
And little fleas have lesser fleas, and so ad infinitum.
The great fleas themselves in turn have greater fleas to go on,
While these again have greater still, and greater still, and so on.

Anonymous (1981). The brand x anthology of poetry, Burnt Norton edition,
William Zaranka, ed. Apple-wood Books, Cambridge, Mass.

They hop in tens and in hundreds they fly
Thousands lie still while millions go by
That makes billions of bugs who jump and who crawl
So try as you will, you can't count them all.

Haris Petie (1975). Billions of bugs, Prentice-Hall,
Englewood Cliffs, N.J.

Methods developed in Chapter 2 prove useful in addressing the population dynamics
of organisms that have distinct breeding periods and life-cycle stages, notably in-
sects and other arthropods (the phylum consisting of segmented-leg organisms).
Since insects often compete with humans for crops or natural resources, efforts at
pest management have been of fundamental economic interest.

Recognizing that chemical sprays and toxins are as unhealthy in the long run
for people as for pests, recent efforts have been directed at biological control of pest
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Applications of Nonlinear Difference Equations to Population Biology 	 73

species using other potential competitors, predators, or parasites. Folk tradition has
held that this would lead to eradication of the undesirable pest. In fact, however, the
outcomes of biological intervention are not always as clear-cut as we might naively
expect. We discover time and again that interactions of a species with the environ-
ment, with other members of its own species, or with another population can be po-
tentially complex and bizarre.

To understand some of the outcomes of population interactions, an examina-
tion of fairly elementary mathematical models proves quite illuminating. Here again,
we make no claim to describe the full intricacies of a given situation. Rather, the ap-
proach is to examine the consequences of several simplifying assumptions. Often
these assumptions lead us to predictions that are biologically unrealistic (see the
Nicholson-Bailey model, for example, as described in Section 3.3). It is then in-
structive to consider how modifying the underlying assumptions tends to change the
predictions.

To introduce discrete models into population dynamics we first consider single-
species populations in Section 3.1. As indicated in Chapter 2, nonlinear difference
equations arise rather naturally in models for populations that have nonoverlapping
generations. Many of these models are based on the observation that the net growth
rate of the population depends in some way on its density. These effects may stem
from competition of individuals for limited resources or from numerous other envi-
ronmental considerations including predation, disease, and so forth. Single-species
models are often based on empirical formulae rather than on detailed interactions in
the population. We examine several of these in Section 3.1.

In many ecological settings one finds that two or more species are intimately
related in their influence on each other. A classic example, that of the host-parasitoid
system, is outlined in Sections 3.2 through 3.4. Here one species (the parasitoid) can
reproduce only in the presence and at the expense of the other (its host). We observe
that under the simplest reasonable assumptions, a model for such systems (the
Nicholson-Bailey model) predicts growing population oscillations in the two species.
Section 3.4 summarizes a number of potentially stabilizing influences.

Models described in Sections 3.1 through 3.4 proceed largely from detailed
choices for functions that represent growth rates, fraction of hosts parasitized, or
survivorships. In a model for plant-herbivore interactions (Section 3.5) we depart
somewhat from this traditional approach. We observe that certain logical deductions
about population behavior can be made even when only broad features of the system
are known. For would-be modelers this approach is an instructive one and reappears
in later material. Sections 3.5 and 3.3 as well as 3.1 contain several explicit exam-
ples of how to apply the stability criteria derived in Chapter 2. As such, these exam-
ples may enhance your appreciation of the techniques previously developed.

The concluding section of this chapter contains some introductory material on
population genetics. This topic provides an excellent example of yet another realm
in which discrete difference equations are important.

Note to the instructor: For rapid coverage of this chapter, include only Sec-
tions 3.1 through 3.3 and 3.6, leaving Sections 3.4 and 3.5 for further independent
study by more advanced students.

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



74	 Discrete Processes in Biology

3.1 DENSITY DEPENDENCE IN SINGLE-SPECIES POPULATIONS'

An assumption that growth rate, reproductive rate, or survivorship depends on the
density of the population leads us to consider models of the following form:

N,+1 = f(N,)	 (1)

where f(N,) is some (nonlinear) function of the population density.
Quite often single-species populations (of insects, for example) are described

by such equations, where! is a function that is fit to data obtained by following suc-
cessive generations of the population. Here we consider several models of this type
and demonstrate their properties.

1. A model by Varley, Gradwell, and Hassell (1973) consists of the single equation

a
(2)

Here A is the reproductive rate, assumed to be greater than 1, and 1/a NI" is the
fraction of the population that survives from infancy to reproductive adulthood. The
equation is thus best understood in the form

N,+1 _ \ a N, b) (AN,).	 (3)

no. of progeny at generation t

fraction that survives to generation t + 1

where a, b, A > 0. Since the fraction of survivors can at most equal but not exceed
1, we find that the population must exceed a certain size, N, > N, for this model to
be biologically reasonable (see problem 1).

Populations satisfying equation (3) can be maintained at steady density levels.
To observe this we look for the steady-state solutions to (3) by setting

N=N,+ = N,.

Substituting into (3) we find that

N = A N1 -b	 (4)
a

Cancelling the common factor N and rearranging terms gives us

N = (a 1/b

)	 (5)
a

Next, we let

f(N) = A Ni-b

a

1. This section contains material compiled by Laurie Roba.
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Applications of Nonlinear Difference Equations to Population Biology 	 75

and proceed to test for the stability of N. We find that perturbations 8, from this
steady state must satisfy

N+ S,+ =f(N+ S,)

ßf0 	&V 
NSt +....

Since N = f(N), recall that this simplifies to

df

But

dN I N a (1 — b)N -b I N = 1 — b.	 (6)

Thus stability of N hinges on whether the quantity 1 — b is of magnitude smaller
than 1; that is, N will be stable provided that

—1<1 —b<1,

or

0<b<2.	 (7)

It is clear that b = 0 is a situation in which survivorship is not density-dependent;
that is, the population grows at the rate A /a. Thus the lower bound for the stabiliz-
ing values of b makes sense. It is at first less clear from an intuitive point of view
why values of b greater than 2 are not consistent with stability; it appears that den-
sity dependence that is too strong is destabilizing due to the potential for boom-and-
bust cycles.

2. A second model cited in the literature (for example, May, 1975) consists of the
equation

N,+1 = N, exp r(1 — N,/K),	 (8)

where r, K are positive constants. The quantity A = exp r(1 — N,/K) could be con-
sidered the density-dependent reproductive rate of the population. Again, by carry-
ing out stability analysis we observe that

N, = N,+1 = K

is the nontrivial steady state. To analyze its stability properties we remark that for

f(N) = N exp r(1 — N/K)	 (9)

we have

f' (N) _ [exp r (1 — N/K)](1 — Nr/K). 	 (10)

Evaluated at N = K, (10) leads to

f'(K) = 1 — K(r/K) = 1 — r. 	 (11)

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



76	 Discrete Processes in Biology

Thus stability is obtained when

^1—rI<1,	 or	 0<r<2.	 (12)

We observe that when N < K the reproductive rate A > 1, whereas when N > K,
A < 1 (see problem 3). This property is shared with equation (11) of Chapter 2
where K = 1. K is said to be the carrying capacity of the environment for the popu-
lation. In the next chapter we shall see examples of similar density-dependent rela-
tionships within the framework of continuous populations.

3. Yet a third model, proposed by Hassell (1975), is given by the equation

Nt+ 1 = ANt(1 + aN,) -b ,	 (13)

for A, a, b positive constants. Analysis of this equation is left as a problem for the
reader.

One generally observes with models such as 1, 2, and 3 (and with other dis-
crete equations such as the prototype given in Chapter 2) that the dynamical behav-
ior depends in a sensitive way on parameter settings. Typically such equations have
stable cycles of arbitrary periods as well as chaotic behavior. Each model thus de-
scribes a highly complex range of dynamic behavior if parameter values are pushed
to high values. For example, equation (13) has the behavioral regimes mapped out
on the Ab parameter plane shown in Figure 3.1. The values 1t = 100 and b = 6 fall

10

b	 Munolonit	 o.mp.d	 et.,b
d.mpl nR	 .nlll.lion•	 Illnll

t)cls

4

2	 •	 •	 O

•	 O

0`

	

10 	 loo	 1000

Rate of increase (A)

Figure 3.1 Stability boundaries for the density-
dependent parameter b and the population growth
rate A from equation (13). The solid lines separate
the regions of monotonic, oscillatory damping,
stable limit cycles, and chaos. The broken line
indicates where two-point limit cycles give rise to
higher-order cycles. The solid circles come from
analyses of life table data; the hollow circles from

analyses of laboratory experiments. [Reproduced
from Michael P. Hassell, The Dynamics of
Anthropod Predator-Prey Systems. Monographs in
Population Biology 13. Copyright © 1978 by
Princeton University Press. Fig. 2.5 (after Hassell,
Lawton, May 1976) reprinted by permission of
Princeton University Press.]
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Applications of Nonlinear Difference Equations to Population Biology 	 77

in the chaotic domain, so that populations fluctuate wildly. The values A = 100 and
b = 0.5, correspond to a stable steady state, so that a perturbed population under-
goes monotonic damping back to its steady-state level.

For a given single-species population, density fluctuations may or may not be
described well by a model such as equation (13). If so, parameters such as b and A
can be estimated by following the observed levels of the population over successive
generations. Such observations are called life table data. Studies of this sort have
been carried out under a variety of conditions, both in the field and in laboratory set-
tings (see Hassell et al., 1976). Typical species observed in the field have included
insects such as the moth Zeiraphera diniana and the parasitoid fly Cyzenis albicans.
Laboratory data on beetles and on the blowfly Lucilia cuprina (Nicholson, 1954)
have also been collected.

Pooling results of many observations in the literature and in their own experi-
ments, Hassell et al. (1976) plotted the parameter values b and A of some two dozen
species on the bA parameter plane. In all but two of these cases, the values of b and
A obtained were well within the region of stability; that is, they reflected either
monotonic or oscillatory return to the steady states.

Hassell et al. (1976) found two examples of unstable populations. The only
one occurring in a natural system was that of the colorado potato beetle (shown as a
circled dot in Figure 3.1), which is known to fluctuate periodically in certain situa-
tions. A single laboratory population, that of the blowfly (Nicholson, 1954), was
found to have (A, b) values corresponding to the chaotic regime in Figure 3.1. Some
controversy surrounds the acceptance of this single example as a true case of chaotic
population dynamics.

From their particular set of examples, Hassel et al. (1976) concluded that com-
plex behavioral regimes typical of discrete difference equations are not frequently
observed in reality. Of course, to place this deduction in its proper context, we
should remember that only a relatively small sample of species has been sufficiently
well studied to be represented, and that Figure 3.1 describes the fit to one particular
model, chosen somewhat arbitrarily from many equally plausible ones.

One of the contributions of mathematical modeling and analysis to the study of
population behavior has been in bringing forward questions that might otherwise
have been of lesser interest. Comparison between observations and model predic-
tions indicate that many dynamical behavior patterns, which are theoretically possi-
ble, are not observed in nature. We are thereby led to inquire which effects in natu-
ral systems have stabilizing influences on populations that might otherwise behave
chaotically.

Hassell et al. (1976) comment on some of the key elements of studies based on
data collected in the field versus those collected under controlled laboratory condi-
tions. In the former, the survival of a population may depend on multiple factors in-
cluding predation, parasitism, competition, and environmental conditions (see Sec-
tions 3.2-3.4). Thus a description of the population by a single-species model is, at
best, a crude approximation.

Laboratory experiments on the other hand, can provide conditions in which a
population is truly isolated from other species. In this sense, such data is more suit-
able for interpretation by single-species models. However, the influence of a some-
what artificial setting may result in effects (such as competition in close
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78	 Discrete Processes in Biology

confinement) that are not significant in the natural setting. Thus, data for laboratory
studies such as those of Nicholson's blowflies, in which erratic chaotic behavior is
observed, may reflect not a realistic trend but rather an artifact observed only in
the laboratory.

3.2 TWO-SPECIES INTERACTIONS: HOST -PARASITOID SYSTEMS

Discrete difference-equation models apply most readily to groups such as insect pop-
ulations where there is a rather natural division of time into discrete generations. In
this section we examine a particular two-species model that has received consider-
able attention from experimental and theoretical population biologists, that of the
host parasitoid system.

Found almost entirely in the world of insects, such two-species systems have
several distinguishing features. Typical of insect species, both species have a num-
ber of life-cycle stages that include eggs, larvae, pupae and adults. One of the spe-
cies, called the parasitoid, exploits the second in the following way: An adult female
parasitoid searches for a host on which to oviposit (deposit its eggs). In some cases
eggs are attached to the outer surface of the host during its larval or pupal stage. In
other cases the eggs are injected into the host's flesh. The larval parasitoids develop
and grow at the expense of their host, consuming it and eventually killing it before
they pupate. The life cycles of the two species, shown in Figure 3.2, are thus closely
intertwined.

A simple model for this system has the following common set of assumptions:

1. Hosts that have been parasitized will give rise to the next generation of
parasitoids.

2. Hosts that have not been parasitized will give rise to their own progeny.
3.	 The fraction of hosts that are parasitized depends on the rate of encounter of

the two species; in general, this fraction may depend on the densities of one or
both species.

While other effects causing mortality abound in any natural system, it is in-
structive to consider only this minimal set of interactions first and examine their con-
sequences. We therefore define the following:

NN = density of host species in generation t,
P = density of parasitoid in generation t,
f = f(N,, PP) = fraction of hosts not parasitized,
A = host reproductive rate,

c = average number of viable eggs laid by a parasitoid on a single host.

Then our three assumptions lead to:

N,+1 = number of hosts in previous generation X fraction not parasitized
x reproductive rate (A),
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Eggs	 Larvae	 Pupae
Si

i1W

Adults

	Infected host	 Larvae

Adult female

Parasitoid

Figure 3.2 Schematic representation of a	 host. Infected hosts die, giving rise to parasitoid
host-parasitoid system. The adult female parasitoid progeny. Uninfected hosts may develop into adults
deposits eggs on or in either larvae or pupae of the and give rise to the next generation of hosts.

Pt+^ = number of hosts parasitized in previous generation X fecundity of
parasitoids (c).

Noting that 1 — f is the fraction of hosts that are parasitized, we obtain

N,+, = AN,.f(N,, PA),	 (14a)

	Pr +1 = cN,[l — f(N, Pr)]
	

(14b)

These equations outline a general framework for host-parasitoid models. To
proceed further it is necessary to specify the term f(NN , PP) and how it depends on the
two populations. In the next section we examine one particular form suggested by
Nicholson and Bailey (1935).

3.3 THE NICHOLSON-BAILEY MODEL

A. J. Nicholson was one of the first biologists to suggest that host-parasitoid systems
could be understood using a theoretical model, although only with the help of the
physicist V. A. Bailey were his arguments given mathematical rigor. (See Kingsland,
1985 for a historical account.)
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80	 Discrete Processes in Biology

Nicholson and Bailey made two assumptions about the number of encounters
and the rate of parasitism of a host:

4. Encounters occur randomly. The number of encounters Ne of hosts by
parasitoids is therefore proportional to the product of their densities.

	N e = aN,Pr ,	 (15)

where a is a constant, which represents the searching efficiency of the
parasitoid. (This kind of assumption presupposes random encounters and is
known as the law of mass action. It is a common approximation which will
reappear in many mathematical models; see Chapters 4, 6, and 7.)

5. Only the first encounter between a host 	 and a parasitoid is significant. (Once a
host has been parasitized it gives rise to exactly c parasitoid progeny; a second
encounter with an egg-laying parasitoid will not increase or decrease this
number.)

The Poisson Distribution and Escape from Parasitism

The Poisson distribution is a probability distribution that describes the occurrence of
discrete, random events (such as encounters between a predator and its prey). The
probability that a certain number of events will occur in some time interval (such as the
lifetime of the host) is given by successive terms in this distribution. For example, the
probability of r events is

eµµr

	p(r) = rR 	(16)

where µ is the average number of events in the given time interval. (For more details
on the Poisson distribution consult any elementary text in statistics, for example, Hogg
and Craig, 1978.) In the case of host-parasitoid encounters, the average number of
encounters per host per unit time is

	µ=N(.	 (17)

Note that by equation (15) this is the same as

	µ = aP,.	 (18)

Thus, for example, the probability of exactly two encounters would be given by

P(2) = e2i p, (aP) 2 .

The likelihood of escaping parasitism is the same as the probability of zero encounters
during the host lifetime, or p(0). Thus

e	.f(Nt, PP) = 
P (0) = 0j- 	(aPt)° = e-ar, .	 (19)
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Applications of Nonlinear Difference Equations to Population Biology 	 81

Based on the latter assumption it proves necessary to distinguish only between
those hosts that have had no encounters and those that have had n encounters, where
n ? 1.

Because the encounters are assumed to be random, one can represent the prob-
ability of r encounters by some distribution based on the average number of encoun-
ters that take place per unit time. It transpires that an appropriate probability distri-
bution for describing this situation is that of Poisson, highlighted briefly in the box
on page 80.

Combining assumptions 4 and 5 with the comments about the Poisson distribu-
tion leads us to the expression for the fraction that escapes parasitism,

f(N1, PA) = p(0) = e-
°P',
	 (20)

given by the zero term of the Poisson distribution.
Thus the assumption that parasitoids search independently and randomly and

that their searching efficiently is constant (depicted by the parameter a) leads to the
Nicholson-Bailey equations:

N,+ = AN, e -'Pt,	 (21a)

P,+i = cN,(l – e -' ").	 (21b)

We now analyze this model using the methods developed in Chapter 2. The
steps include:

1. Solving for steady states.
2. Finding the coefficients of the Jacobian matrix (for the system linearized about

the steady state).
3.	 Checking the stability condition derived in Section 2.8.

Nicholson-Bailey Model: Equilibrium and Stability

Let

F(N, P) = ANe -°P ,	 (22a)

G(N, P) = cN(1 – e-°P).	 (22b)

Solving for steady states, we obtain the trivial solution N = 0, or

N = F(N, P) _ ,1N e -°P ,	 (23a)

P = G(N, P) = cN(1 – e-°P).	 (23b)

These imply that

In A	
(24a)P = —,

a

e-°P = 1/A,	 (24b)

N = A In A
	(24c)

(A – 1)ac
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82	 Discrete Processes in Biology

From these equations we observe that A > 1 is required, since otherwise N would be a
negative quantity. Computing the coefficients a ;; of the Jacobian, we obtain

an = FN(N, P) = Ae = 1,	 (25a)

a 12 = Fp(N, P) = —aANe -°P = —aN,	 (25b)

a21 = GN(N, P) = c(1 — e -°P) = c(1 — 1/A),	 (25c)

a22 = Gp(N, P) = calve-°P = caN/A.	 (25d)

(Comment: The notation FN(N, P) is shorthand for dF/aNI ,P^.) To check the stability
of (N, P) the quantities we need to examine are thus

= a ll + a22 = 1 + caN/A = 1 + Ain A
i '

	(26a)
—

a 11 a22 — a12a21 = calV A + caN 1 — 1/A)	
A In A

We now show that y > 1. To do so we need to verify that A(in A)/(A — 1) > 1
or S(A) = A — 1 — A In A <0. Observe that S(1) = 0, S'(A) = 1 — In A —
A(1/A) = —In A. So S'(A) <0 for A ? 1. Thus S(A) is a decreasing function of A
and consequently S (A) < 0 for A - 1.

We have verified that y > I and so the stability condition given in Chapter 2,
equation (32), is violated. We conclude that the equilibrium (N, P) can never be stable.

From the analysis we observe that the Nicholson-Bailey model has a single
equilibrium

N = A 1n A
	(27a)

(A — 1)ac

In A	
(27b)P=—,

a

and that the equilibrium is never stable; small deviations of either species from the
steady-state level leads to diverging oscillations. Curiously enough, a host-parasitoid
system consisting of a greenhouse whitefly and its parasitoid was found to have such
dynamics when grown under particular, albeit somewhat contrived, laboratory con-
ditions (see Hassell, 1978, for details). Figure 3.3 demonstrates the fluctuations ob-
served in this laboratory system and a comparison with the predictions of the Nichol-
son-Bailey model.

Most natural host-parasitoid systems are certainly more stable than the Nichol-
son-Bailey model seems to indicate. It would therefore seem that the model is not a
satisfactory representation of real host-parasitoid interactions. However, before dis-
missing it as an ineffective model we shall exploit this theoretical tool to experiment
with a number of conjectures on the effects (in natural systems) that might act as sta-
bilizing influences. In the following section we therefore focus on more realistic as-
sumptions about the searching behavior of the parasitoids and the host survival rate.
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Figure 3.3 The Nicholson-Bailey model, given by
equations (21a,b), predicts unstable oscillations in
the dynamics of a host parasitoid system. The
fluctuations of a greenhouse whitefly Trialeurodes
vaporariorum (0) and its chalcid parasitoid
Encarsia formosa (0) give evidence for such
behavior. The solid lines are predictions of

equations (21) where a = 0.068, c = 1, and
A = 2. [From Michael P. Hassell, The Dynamics
of Arthropod Predator-Prey Systems. Monographs
in Population Biology 13. Copyright © 1978 by
Princeton University Press. Fig. 2.3 (after Burnett,
1958) reprinted by permission of Princeton
University Press.]

3.4 MODIFICATIONS OF THE NICHOLSON-BAILEY MODEL'

Density Dependence in the Host Population

Since the Nicholson-Bailey model is unstable for all parameter values, we consider
first a modification of the assumptions underlying the host population dynamics and
investigate whether these are potentially stabilizing factors. Thus, consider the fol-
lowing assumption:

6.	 In the absence of parasitoids, the host population grows to some limited
density (determined by the carrying capacity K of its environment).

Thus the equations would be amended as follows:

N,+1 = NA(N,)e - ",

PP+i = N,(1 — e-°")

For the growth rate A (Ne) we might adopt

A(N) = exp r(1 — Ne/K),

2. This section is based on a review by David F. Dabbs.
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84	 Discrete Processes in Biology

as in equation (8). Thus if P = 0, the host population grows up to density N, = K
and declines if N, > K. The revised model is

	N,+1 = N, exp [r(1 — N1/K) — aP,],	 (28a)

	P1+, = N1(1 — e -°").	 (28b)

This model was studied in some detail by Beddington et al. (1975). They found it
convenient to discuss its behavior in terms of the quantity q where

q = IV/K = the ratio of steady-state host density with and without parasitoids
present.

The value of q indicates to what extent the steady-state population is depressed by
the presence of parasitoids.

Equations (28a,b) are sufficiently _complicated that it is impossible to derive
explicit expressions for the states N and P. However, these can be expressed in terms
of q and P as follows:

= r (1 — 1V/K) = r (1 — q),	 (29a)

	N = P/(1 — e - °P).	 (29b)

It transpires that the resulting model is stable for a fairly wide range of realistic
parameter values, as desired. Even so, the return to equilibrium in these ranges is
typically rather complex. As parameters are changed, the equilibrium does lose its
stability property, so that cycles and other more complicated dynamics ensue. Bed-
dington et al. (1975) demonstrate that stability depends on r and the quantity
q = N/K with the system stable within the shaded range in Figure 3.4. We see that
for each value of r, there exists a range of q values for which the model is stable; the
larger the value of r, the narrower the range.

When the equations of a model are difficult to analyze explicitly, computer
simulations can prove particularly revealing. In Figures 3.5 through 3.8 the behavior

Prey reproductive rate (r)

^- 0	 1	 ?	 3	 4 	^5

E 0.0
 . a .—gib - 3a

►-2d 3b
II	2 	J/ d

^a .̂  03 
 q=0.4

Ca.

ö 0.6

ä0.
A

Figure 3.4 The density-dependent Nicholson-Bailey high values of r. [Reprinted by permission from
model (equations 28) is stable within the hatched 	 Nature, 255, 58-60. Copyright © 1975 Macmillan
area. Note how the area of stability narrows for	 Journals Limited.]
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of solutions to equations (28a,b) obtained with a simple computer simulation are dis-
played for a variety of parameter choices. A TURBO — PASCAL program, written
by David F. Dabbs and run on a personal computer, was used to generate successive
values of N, and P, and to plot these simultaneously. What is somewhat novel about
these plots is that in this two-variable system, time is suppressed and (N,, P,) values
are plotted in the plane sometimes referred to as the NP phase plane. (In a later
chapter a similar technique will be applied to systems of two differential equations in
two variables.)

To interpret these figures, note that a central cross indicates the position of the
steady state of the equations. The initial values (No , Po) are specified at the top right-
hand corner of the graph. In Figure 3.5 successive values proceed in a counterclock-
wise manner, visiting each of the arms of the "spiral galaxy" in succession. In Fig-
ures 3.6 through 8, q = 0.40 is kept fixed, while r is given the values 0.50, 2.00,
2.20, and 2.65.

For small values of r, the equilibrium point (N, P) is stable; any initial value
spirals in toward it (Figure 3.5) and will eventually reach it. As r grows past a cer-
tain value, the equilibrium becomes unstable and new patterns emerge.

r, q =	 8,58	 8.48	 N[B], P[8] =	 11,88	 1,88
K = 14.47	 Nbar, Pbar =	 5,79	 1.5

i:	 260

P[t]	 4.0 +

* +
	 • *3.0

* + **	 *	 *
*	 * *

	2.0	 *	 *
*

** *
	1.8	 +„ 1+++++

  
	

+
f* **	 *	 * **	 *
**	 **

8,8
8,8	 3,0	 6.0	 9,8	 120	 15,0	 18,8	 21,8

N[t]
Figure 3.5 A single approach to equilibrium from 	 steady-state point, not inward along the spiral
an arbitrarily chosen outlying point. Note that the	 arms. (Computer-generated plot made by David F.
direction of flow is counterclockwise about the 	 Dabbs.]
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K'
q
	^1,4^
	 0,48

18.8

P[t]

N[8]1 P[8] :	 5,88
Nbar t Pbar =	 8,59 6,M

1^0

12,8 **+ *+

+	 + +
+

+*
+

•

6.8	 #	 +	 *+ +
+	 +4+

*+
+*

++h► *+++*+*+*+ + ++ • +++ + + + + + +J

8.8
8,6	 5,0	 10,0	 15.8	 20,8

N[t]
Figure 3.6 This stable "limit" cycle is jagged about have smooth edges. [Computer-generated plot made

	

the edges. Similar cycles for smaller values of r	 by David F. Dabbs.]

Away from the single equilibrium point, the model will settle into a stable
limit cycle around the equilibrium point, as shown in Figure 3.6. Larger values of r
result in larger and larger cycles. Beyond a certain point there appear cycles whose
periods are multiples of 5 (Figure 3.7). Still larger values of r yield either chaos or
cycles of extremely high integral period. For large enough values of r, this chaotic
behavior will seem to fill in a sharply bounded area (Figure 3.8).

As Figure 3.4 indicates, q and r are both involved in determining the dynamic
population behavior. This figure can be interpreted to mean that the greater the de-
pressing influence of parasitoids on their hosts, the lower the growth rate r that
suffices to induce chaotic dynamics.

Other Stabilizing Factors

As we have just shown, the Nicholson-Bailey model is rendered more stable, and
hence more realistic for most natural host-parasitoid systems, by taking into account
the limitations of the environment and the fact that populations are not capable of
infinite growth. Several other effects have been studied (notably by Beddington et

25.0
	

38,8
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r, q =	 2.28	 0,40	 Nt8]1 P[8] :	 12.80	 1,88
=	 22.51	 Nbar, Pbar =	 9.81	 6.68

i:	 288

Ptt]	 18.8

12.8

t

	6.8	 +

87

0.8
8.0	 5.8	 11,8

Figure 3.7 This cycle shows a cycle whose period
is 5. Further increasing r slowly would produce
cycles of periods 10, 20, 40, and so on.

15.0	 28.0	 25.8	 30.8

N[ t]
[Computer-generated plot made by David F.
Dabbs.]

al., 1978) in further exploring the interactions that stabilize the host-parasitoid popu-
lations. Two of these are as follows.

1. Efficiency of the parasitoids
The density of the attacking parasitoids may have some effect on their efficiency in
searching for hosts. It is observed that efficiency generally decreases somewhat
when the parasitoid population is too large. This effect is modeled by changing the
assumed form of f(N,, Ps). One version studied by Beddington et al. (1978) is

f(N,, P1) = exp —(aP,)' -m,	 (30)

where m < 1. (See Beddington et al., 1978, for a discussion of this assumption and
predictions of the model.)

2. Heterogeneity of the environment (refuges)
A second factor that has been brought into closer scrutiny in recent years is the sup-
posed homogeneity of the environment. Researchers recognize that the physical set-
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r, q =	 2.65	 8.48	 N[8], P[8] =	 12.08	 2,88
K =	 24.9?	 Nbar, Par =	 9.99 	 7,95

i-	 AN

P[t]	 21,9

	14.8	 *+	 * +►

.8 .
4

',. ;''

*#	 + $+ ' + #^ + ++++*+ +^ * 4 *^''*

6.0
0,8	 6,8	 12.0	 18,8	 14,9	 38,8	 36.8

N[ t]
Figure 3.8 This sharply bounded figure shows	 higher r values they tend to fill in. [Computer-
definable areas without any points. For slightly 	 generated plot made by David F. Dabbs.]
lower r values these areas are better defined; for

ting is never perfectly uniform, so part of the host population may be less exposed
and thus less vulnerable to attack. It has become popular to refer to patchy environ-
ments, which are spatially as well as temporally heterogeneous.

While a full treatment of spatial variation would lead us to models that involve
several independent variables (for example, time as well as physical position), it is
possible to consider a simple example that gives some broad indication of the ef-
fects. This is generally done by assuming that there exists a small refuge, represent-
ing some physical location to which some fraction of the attacked population can re-
treat for safety from the attackers. For example, let us assume that E is the fraction
of the carrying capacity population K that can be accommodated in safe refuges.
Then at any given time

EK/N, = the fraction of the population that can retreat to a refuge,
1 — EK/NN = the fraction vulnerable to attack.

The equations would then be modified accordingly (see problem 11 and the
original articles cited by the sources listed in the References). It has been a recurrent
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theme of articles by Hassell, May, and others that the patchiness of ecosystems leads
to stabilization. Part of the argument is that refuges serve as sites for maintaining
vulnerable species that might otherwise become extinct. Such sites also indirectly
benefit the exploiting species since a constant spillover of victims into the unpro-
tected areas guarantees a constant food source. You are encouraged to pursue these
topics by reading the excellent summaries and reviews and through further indepen-
dent research.

3.5 A MODEL FOR PLANT-HERBIVORE INTERACTIONS

Outlining the Problem

In Sections 3.1 to 3.4 we saw numerous models that describe particular responses of
a population to its environment, to another species, or to intraspecific competition.
A notable feature of many such models is that they contain functions that are chosen
to fit empirical data and that may or may not reveal any basic insight into underlying
population behavior. What does one do when a plethora of empirical data is unavail-
able and one knows only vague, general properties of the processes? Is it always
necessary to restrict attention to well-defined functional relationships when proceed-
ing with a model?

As the model in this section will demonstrate, often even when data are avail-
able, it may be an advantage to study the problem in a rather general framework be-
fore fitting exact functional forms to the empirical observations. In this section we
introduce a problem stemming from plant-herbivore systems and then use this gen-
eral approach to study its properties. The problem to be considered here is hypothet-
ical but sufficiently general to apply to a variety of cases. We use it to illustrate a
technique and later comment on its applicability.

Consider herbivores that feed on a vegetation and consume part of its
biomass.' Unlike predation it need not be true that the damage or consumption
inflicted by the herbivore, commonly called herbivory, necessarily leads to death of
the victim, which in this case is the host plant. Rather, herbivores might reduce the
biomass of vegetation they consume, possibly also causing other qualitative changes
in the plant. In this first attempt at modeling plant-herbivore interactions we will fo-
cus only on quantitative changes, i.e., changes in the biomass of the populations.
Some comments about plant quality will be made at the end of this section.

To give structure to the problem, we make the following broad assumptions:

1. Herbivores have discrete generations that correspond to the seasonality of the
vegetation.

(Comment: We can thus treat the problem using a set of difference
equations; the generation span will be identical for the two participants. This
assumption is fairly realistic. Many herbivores have coevolved with their host

3. The term biomass is often used as a measure of population size in units of mass rather
than, say, density or numbers of individuals.
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90	 Discrete Processes in Biology

plant species and have life cycles that are closely linked to seasonality or to
stages of growth of the vegetation.)

2. The availability of vegetation and the current population density of herbivores
are the main factors that determine fecundity and survivorship of the
herbivores.

(Comment: While this statement seems plausible, we are surreptitiously
assuming that other factors do not play major roles. This is an arguable point,
to which we shall return.)

3. The abundance of the vegetation depends on the extent of herbivory to which
the plant was subjected in the previous season as well as on the previous
biomass of the vegetation.

(Comment: This too seems to be a reasonable basic hypothesis. To take
one example, leaf biomass in deciduous trees contributes to production and
storage of substances that will eventually be used to produce the next season's
crop of leaves. Thus the plant biomass contributes in a positive sense to its
future abundance. On the other hand, defoliation or herbivory might reduce the
potential of a plant to grow and so would contribute negatively to the
abundance of the vegetation in the next season.)

The model will be written in terms of the following two variables:

v,, = vegetation biomass in generation n,

h,, = number of herbivores in generation n.

From our three assumptions we infer that the most general framework for a model of
this plant-herbivore system would consist of the two equations

v,,+, = F (v„, ha),	 (31a)

hn+1 = G(v., ha).	 (31b)

The functions F and G, which govern the population levels of the vegetation and
herbivores respectively, will not be assigned particular mathematical expressions.
Rather, we will use certain qualitative features of these functions to reason further.
Our purpose below is to shed light on the following question: Under what assump-
tions will it be true that the herbivores and plant populations are mutually regulat-
ing? (The question is deliberately phrased in a vague way and bears more careful
discussion. Before proceeding, you are encouraged to attempt to decipher this ques-
tion independently.)

For a "mutually” regulated situation it must be true, first of all, that the model
consisting of equations (31a,b) admits a nonzero steady-state solution (v, h). That
is, the populations can coexist at some constant levels at which neither increase nor
decrease occurs. We recall that these values must, by definition, satisfy the relations

v = F(v, h),	 (32)

h = G(v, h).
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In dealing with even the simplest model, it often proves enormously useful to
scale the equations in terms of quantities that are inherent to the process. In this way
we will reduce the number of parameters to consider. For those of you who do not
wish to scrutinize the details of this rescaling procedure (in the following subsec-
tion), the idea is equivalent to assuming that the values v and h are both equal to 1.

Rescaling the Equations

We define new variables that are ratios of the old variables and their steady-state val-
ues as follows:

Vn = U„/v,	 (33a)
hn = hn/hh.	 (33b)

The equations rewritten in terms of the new, scaled variables will have steady-state
values v„* = h,* = 1.

Example
The equations

xn+, = axnyß,	 (34a)

Yn+1 = Y s +
n x,,X r	

(34b)

have the corresponding steady states

y = a- 'j^,	 (35)

•=y—s,	 y>s.

Defining

xn = xn/(y — 5),	 (36)

Yn = a^lßyn ,

we obtain the rescaled form

**ßxn+I = x *nYn	 (37)

__	 y,K 	*
Yn+l	

e + X^ (1 — E)

where e = 5/y. It can be verified (see problem 14) that the steady-state solutions to
(37) are

xn—* _

=

—*
 Xn+l = 1,

yny^I-1.

Notice that two parameters rather than the previous four appear in equations (37).D
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92	 Discrete Processes in Biology

With the justification given in this example we may at this point assume that
equations (31a,b) have been rescaled and are written in terms of new variables, as
follows:

	v^ 1 = F * (vR , he),	 (38)

h,* , = G *(v,*, hr),
with steady-state solutions

v,* , = hn , = 1.	 (39)

For convenience of notation, we shall drop the asterisks, return to the form shown in
(31), and simply assume that both steady-state levels are unity. The reasons for mak-
ing this simplification will emerge.

Further Assumptions and Stability Calculations

Assuming that equations (31a,b) have steady states v = 1 and h = 1 will simplify
analysis of the model. To continue defining the problem we use several assumptions
to deduce features of the functions F and G. From the comment on assumption 3 we
may infer that the following two statements are true.

3a. The greater the herbivory, the lower will be the abundance of vegetation in the
next season.

3b. The greater the current vegetation biomass, the greater will be next season's
vegetation biomass.

Since the vegetation level is governed by equation (31 a), these statements lead
us to deduce that F is a decreasing function of h and an increasing function of v.
Mathematically this means that

ah < 0	 (from 3a),

aF > 0	 (from 3b).
av

In other words, assumptions (3a) and (3b) determine the signs of the partial deriva-
tives of the function F (see Figure 3.9).

We shall treat the second function in a slightly different way, first noting that it
represents herbivore recruitment. Assuming the herbivore population changes by re-
production or mortality (and not by migration), we shall rewrite G as a product of
the number of herbivores and the net recruitment per individual; that is, assume G
has the form

	G(v,,, hn) = h„R (v,,, h„).	 (40)

The function R is the net number of adult herbivores that are progeny of a single in-
dividual herbivore when both fecundity and survivorship are taken into account. It
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G

(a)
	

(b)

F
	

F

V 	 h

R = 
G/h 	(c)	 (d)

x =h /v	 x=h/v

(e)

Figure 3.9 The functions F and G, which depict 	 we have only used information about the slopes
plant and herbivore responses, may depend on v 	 (partial derivatives) of_F and R = G / h at the
and h in some complicated way as shown in (a) and steady-state point (v, h).
(b). (c — e) In analyzing the plant-herbivore model
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follows from equation (40) that

aGäR
= h--, (41a)

-

av — av

ah 
= h-

	 ah + R.	 (41b)

We now complete the formulation of this model by making assumptions about
the function R.

2a. Recruitment of herbivores depends on the extent of competition for the
vegetation, i.e., on the average number of herbivores that must share a unit of
available vegetation.

2b. The greater the competition in generation n, the lower the recruitment for the
next generation.

(Comment: This will be true of some but not all plant-herbivore systems.
A number of leading biologists maintain that competition for resources plays a
minimal role, if any, in herbivory. See, for example, Strong et al., 1984. The
question is a controversial one.)

By assumption (2a), R is a function of the ratio x = h„/v„ of the two variables;
by assumption (2b), it is a decreasing function of its argument. To summarize:

	R = R (x),	 where x = h„ 	( from 2a)
v„

dR < 0.	 (from 2b)

Using the chain rule of elementary calculus we notice that

aR _ dRax _ R'
ah dx 8h	 v'

(42a)

aR dR ax —R'h
av dx 8v	 vz	

(42b)

where R' = dR/dx.
Collecting all equations and assumptions of the model so far, we have the fol-

lowing two equations:

	V„+ 1 = F(V, h„),	 (43)

= G (V„, h„) = h„ R (x„), 	 (44)

where x,, = h„/V„, R'(x) < 0, and the partial derivatives of F satisfy F,, < 0,
FU > 0.

We now explore the outcome and predictions of the model. We return to a
question posed earlier in this section to determine when the plant-herbivore system is
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self-regulating in the sense that the nonzero steady state is stable. To determine
when this holds, we resort to the stability criteria outlined previously. To formulate
these in a convenient way, we use the following symbols to represent quantities that
enter into a stability calculation:

Let

aF

	

v=av ,	 (45a)
a 

l
v ,s

aF l—µ = ah gs,	
(45b)

dR L'	 /	 (45c)—E_^ x=h v,

where ss means the steady-state value, v = h = 1. The constants v, µ, and e are
positive, and signs preceding them depict our conclusions about the derivatives of
the functions F and R. Note that partial derivatives are all evaluated at the steady
state v = h = 1. Using the last definition one can show that

aG I	
(46)= 1 —E,

ah SS

aG
=E.

av SS

[See _problem 12(b).] Thus the Jacobian of (43) and (44) at the steady state
v=h= 1 is

aF aF
av ah

	J= aG aG	
= (E 1—µE).	

(47)

av	 ah SS

Comment: The fact that equations were scaled in terms of the steady-state values and
that herbivore recruitment depends only on the ratio h/v results in a total of three in-
dependent parameters in equation (47).

The characteristic equation for (47) is

A z — ß1k +y=0,	 where 13 y =v+(1—E),	 (48)
=v(1—E)+pc.

For stability of the steady state, both roots of the characteristic equation must satisfy
I A < 1. Using the stability criteria (see Chapter 2, equations 32), we conclude that
for this to be true

Iß1<l+y<2,
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96	 Discrete Processes in Biology

that is,

Iv +(1— E)l<I+V+E(µ —v)<2.	 (49)

Deciphering the Conditions for Stability

Although the mathematical steps leading to a stability condition are now complete,
there is still work to be done; we must now extract some meaningful information
from the murky inequality in (49). To do so it is necessary to "unravel" the tangle of
parameters to reach a clearer statement and then to interpret the results in their bio-
logical context by using the original definitions. The process of manipulating the ap-
propriate inequalities is illustrated in the following:

ßl <l +y<2:

1. AI <2meansthat-2 <v+ I —E <2,so

—3 < v — e < 1.

2. (3 < 1 + y means that v + 1 — e < 1 + v + E(µ — v).
Therefore,

-E < E(f6 - V),

1 <µ— v,

v—µ<1.

3. Subtracting (50b) from (50a) produces µ — E < 0, or

µ <C.

4. 1 + y <2 means that

v—µ<1.

(See problem 13.) Note: This is covered by the results of (50b), so no
new information is obtained.
5.	 1 ß I< 1+ y means that

—1—y</3<1+y
so by problem 13,

2(1 +v)
1 — µ + v

The above procedure yields a set of three relationships (50a — c) linking pairs of
parameters and one inequality of a more complicated form (50e). To interpret these
conditions for stability we now summarize what the parameters represent.

(50a)

(50b)

(50c)

(50d)

(50e)

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Applications of Nonlinear Difference Equations to Population Biology 	 97

v = F^ ss — at	 (v, h)= 	 the change in next year'sdOvn '
vegetation biomass caused
by a change in the current
vegetation biomass.

—µ = F,, ss = Oyn+l ,at	 (v, h) = change in next years veg-Ohn
etation biomass due to an
increment in current herbi-
vore level.

e = G, S, = (v, h) 	 = change in next year's her-dun'a t
bivore population h,+1 due
to increment in current
plant biomass.

1 — e = G,, ! SS = at	 (v, h) = change in h,,+, due to in-Ahhn'
crement in current herbi-
vore population.

Note: all these quantities are computed when the populations are
close to their steady-state levels.

We see that from equations (50a—e) we can reach the following conclusions:

1. µ < e (50c) means that, close to the steady state,

_ aF aG
(Sb)ah c av

When paraphrased, equation (51 a) implies that

the decline in vegetation	 the increase in the herbi-
biomass due to an	 is less than	 vore population due to an
increment in herbivory	 increase in vegetation mass

2. v — µ < 1 (50b) means that, close to the steady state,

äF V
— + — <l.
 
	 (Sib)

3v	 3h

To interpret, this would mean that the combined changes in plant biomass due
to slight increases in both v and h are not too drastic. It is interesting to note
that if F is independent of h, the condition reduces to the stability condition for
the plant in isolation (i.e., 3F/3v 1 ss < 1).
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98	 Discrete Processes in Biology

3.	 —3 < v — e < 1 (50a) means that, close to the steady state,

äF a
—3 < av	 äG < 1.	 (51c)

Thus changes in v and h caused by an increment in the vegetation biomass
should be roughly balanced within the indicated bounds.

Other conclusions are left as an exercise in the problems.
To understand why some of these conditions are a prerequisite for stability,

consider a hypothetical situation in which v,, and h, are close to (but not at) the
steady state; for example, v,, = I + Av, h,, = 1.

If condition (51a) is not satisfied, the following chain of events might occur:
the biomass increment causes herbivores to proliferate (hn+> > 1). This causes a
large decline in plant biomass (v,, + 2 < 1), which leads to a drop in herbivores
(h ,, + 3 < 1). The plant biomass increases again (v„ +4 > 1), and the cycle repeats. By
this means a periodic behavior could be established with both populations cycling
about their steady-state values. By considering several other scenarios, the student
should be able to give similar justification for these stability conditions.

Comments and Extensions

Perhaps the most important conclusion to be drawn from the example discussed
above in the previous subsection is that it often makes good sense to treat a problem
in an "impressionistic" way. Rather than adopting particular functional forms for de-
scribing the population growth, fecundity, and interactions, one might consider first
trying rather broad assumptions about their dependence on population levels.

What makes this approach attractive is that it can ease the burden of manipulat-
ing complicated mathematical expressions. After the appropriate inequalities are
derived, it is generally straightforward to determine when particular functions are
likely to satisfy these conditions and so lead to stability in the population. Moreover,
given a whole class of growth functions or fecundity functions, one can identify the
particular feature that contributes to stabilizing the population. [For example, in-
equality (51 b) tells us that F cannot be a very steeply varying function of its argu-
ments: small changes in the population levels should not engender large changes in
the predicted vegetation biomass.]

Yet a third positive feature of this general analysis is that it leads to much
greater ease of experimentation with the model, as suggested by several problems at
the end of the chapter. For example, we might like to determine how changing one
assumption alters the conclusions. This is rather easy to do in the abstract and usu-
ally does not require a repetition of all the calculations.

As a conclusion to this model, it may be wise to shed a somewhat broader per-
spective on the topic of plant-herbivore interactions. Recent biological research on
this problem has revealed that interactions between herbivores and their vegetation
may be extremely diverse, subtle, and full of surprises. This is especially true of in-
sect herbivores, whose evolution may be closely linked to those of their plants. In
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Applications of Nonlinear Difference Equations to Population Biology 	 99

many cases it has been discovered that plants have active defense strategies (using
many forms of chemical weapons) or are able to undergo qualitative changes that
may adversely affect their attackers.

Models that treat only the quantitative aspects of herbivory such as reduction in
plant biomass are relatively naive and rarely accurate in portraying the situation. For
this reason, we would want to develop a different type of model that treats more
fully the changes in character of the plant and its host. (For a hint on how this might
be done, see problem 17.)

Several recent books and articles provide excellent summaries of current
thoughts on plant-herbivore interactions. Among these, Crawley (1983) and Rhoades
(1983) are strongly recommended sources for further reading and research.

3.6 FOR FURTHER STUDY: POPULATION GENETICS

The genetics of populations with discrete generations is yet another topic well suited
for difference equation techniques. Many excellent books and articles on this subject
can be recommended for independent research. (A partial list is given in the Refer-
ences.) This section is an elementary introduction to Hardy-Weinberg genetics,
which is explored further in the problems following the chapter.

The genetic material in eukaryotes° is made up of units called chromosomes.
Organisms (such as humans) that are diploid have two sets of chromosomes, one ob-
tained from each parent. A locus (a given location on a chromosome) may contain
the blueprint instructions for some physical trait (such as eye color), which is deter-
mined by the combination of genes derived from each of the parents. A given gene
may have one of several forms, called alleles. [It is not always known how many al-
leles of a given gene are present in the genetic pool (i.e., total genetic material) of a
population.]

Suppose that there are two alleles, denoted by a and A, and that these are
passed down in the population from one generation to the next. A given individual
could then have one of three combinations: AA, aa, or aA. (The first two combina-
tions are called homozygous, the last one heterozygous.) It is of interest to follow the
distribution of genes in a population over the course of many generations.

A question we might explore is whether the relative frequencies of genes will
change, and, if so, whether some new stable distribution will emerge. Until 1914 it
was believed that any rare allele would gradually disappear from a population. After
a more rigorous treatment of the problem it was shown that if mating is random and
all genotypes (combinations of alleles, which in this case are aa, AA, and aA) are
equally fit (have an equal likelihood of surviving to produce offspring), then gene
frequencies do not change. This fact is now known as the Hardy-Weinberg law.

In the problems we investigate how the Hardy-Weinberg law can be demon-
strated, and then explore other areas in which the theory can be extended. For fur-
ther independent reading, Li (1976), Roughgarden (1979), Ewens (1979), and Crow

4. Eukaryotes are organisms whose cells have well-defined nuclei in which all the genetic
material is contained.
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100	 Discrete Processes in Biology

and Kimura (1970) are recommended. A mathematical treatment of the case of un-
equal genotype fitness is given by Maynard Smith (1968) and in a more expanded
form by Segel (1984).

To outline the problem, several definitions and assumptions are needed. By
convention we shall define the frequencies of the alleles A and a in the nth genera-
tion as follows:

p = frequency of allele A = total number of A alleles
2N

q = frequency of allele a = total number of a alleles
2N

where p + q = 1, and N = the population size.
We now incorporate the following assumptions:

1. Mating is random.
2. There is no variation in the number of progeny from parents of different

genotypes.
3. Progeny have equal fitness (that is, are equally likely to survive).
4. There are no mutations at any step.

We define the genotype frequencies of AA, aA, and aa in a given population to be:

u = frequency of AA genotype,

v = frequency of aA genotype,

w = frequency of aa genotype.

Then u + v + w = 1. Since aA is equivalent to Aa, it is clear that

p=u+zv,	 (52a)
q=zv+w.	 (52b)

The next step is to calculate the probability that parents of particular genotypes
will mate. If mating is random, the mating likelihood depends only on the likelihood
of encounter. This in turn depends on the product of the frequencies of the two par-
ents. The mating table (Table 3.1) summarizes these probabilities. (Six missing en-
tries are left as an exercise for the reader.)

Table 3.1	 Mating Table

Fathers

Genotype	 AA	 Aa	aa

Frequency %	 u	 v	 w

AA	 u	 u2	 uv	 uw
Mothers	 Aa	 v	 —	 v2	 —

aa	 w	 —	 —	 —
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v	 v

Parents

	

Type:	 a	 x
Aa	 Aa

%	 VZ

	Offspring	 AA	 Aa	 aA	 as

4	 2 4	 4

(a)

Figure 3.10 Offspring of (a) the cross Aa x Aa
and (b) the cross AA x AA are shown with the

U	 u

a	 x	 ^
AA	 AA

UZ

AA	 AA	 AA	 AA

U 2 	U2	 U2	 U2

4	 4	 4	 4

(b)

relative frequencies with which they occur.

Based on the likelihood of mating, one can determine the probability of a
given match resulting in offspring of a given genotype. To do this, it is necessary to
take into account the four possible combinations of alleles derived from a given pair
of parents. Figure 3.10 demonstrates what happens in the case of two heterozygous
or two homozygous parents. Other cases are left for the reader. The offspring table
(Table 3.2) is a convenient way to summarize the information. (Some entries have
been left blank for you to fill in —see problem 18.)

Table 3.2	 Offspring Table

Offspring Genotype Frequencies

Type of Parents	 Frequency	 AA	 alt	 as

AA x AA	 u2	 u2	 —	 —
AA x Aa	 2uv	 uv	 uv	 —
AAxas	 —	 0	 —	 —
Aa x Aa	 vZ	 v2/4	 v2/2	 02/4
Aaxaa	 —	 0	 —	 —
aa x as	 —	 0	 —	 —

Total	 (u2 + uv + V 2 /4)	 —	 —

Note: All genotypes are assumed to have equal likelihood of surviving to reproduce. If fitness depended
on genotype, these entries would be weighted by the probability that a given parent survived to
mate.
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102	 Discrete Processes in Biology

By counting up the total frequency of offspring of each type, we get values for
u, v, and w for the next generation, which we shall call u,,+,, v ,,+,, and wn+,. It can
be shown (see problem 18e) that these are related to the nth-generation frequencies
by the equations

Un+l — Un + unvn + qv„,	 (53a)

vn+l = Unvn + 2U„Wn + 2 v,2, + VnWn,	 (53b)

wn+, _ -ä v„ + vn wn + wn.	 (53c)

As an example, consider equation (53a) and note that the cumulative number
of offspring of genotype AA (in the vertical column of Table 3.2) leads to the given
relationship.

In the problems, you are asked to show that these equations lead to the conclu-
sion that gene frequencies p and q, as well as genotype frequencies u, v, and w, do
not change under random mating with equal fitness. In addition, Hardy-Weinberg
equilibrium is attained after a single generation. This conclusion depends on an as-
sumption that the genes are not located on the chromosomes that determine the sex
of an individual.

PROBLEMS*

1. The model for density-dependent growth due to Varley, Gradwell, and Hassell
(1973) given by equation (3), has the undesirable feature that, for low popula-
tion levels, the fraction of survivors f = Ns/N, = ä (N,) is greater than 1.
(a) Explain why this is faulty.
(b) Find the critical population level, NN , below which this happens. (N N

should be expressed in terms of a and b.)
(c) Suggest how the model might be modified to alleviate this problem.

2. Sketch the fraction of survivors as a function of population size for the follow-
ing models:
(a) Equation (3).
(b) Equation (13).

3. (a) In the model for single-species populations given by equation (8), show
that N = 0 is one steady state and N = K is another (the only nontrivial
steady state).

(b) Verify equation (10).
(c) Show that the population increases if N <K and decreases if N > K by

considering the magnitude of the reproductive rate

A = exp r(l — N,/K).

4. In this problem we investigate the model for density dependence due to Hassell
(1975) given by equation (13).

*Problems preceded by an asterisk (*) are especially challenging.
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Applications of Nonlinear Difference Equations to Population Biology 	 103

(a) What are the effects of the three parameters, A, a, and b? Do increased
values of these parameters strengthen or weaken the growth of the popu-
lation?

(b) For certain parameter ranges, this equation has a biologically meaningful
nonzero steady state. Show that this steady state is given by

N=—,
a

and discuss the appropriate parameter constraints. (Hint: Recall that N
has to be positive.)

(c) Determine conditions for stability of the above steady state.

5. Hassell et al. (1976) give the following estimates for the parameters A and b of
equation (13) for several insect populations.

Moth: Zeiraphera diniana	 0.1	 1.3
Bug: Leptoterna dolobrata	 2.1	 2.2
Mosquito: Aedes aegypti	 1.9	 10.6
Potato Beetle: Leptinotarsa decemlineata 	 3.4	 75.0
Parasitoid wasp: Bracon hebetor	 0.9	 54.0

(a) Plot these values on a Ab-parameter plane. (Recommendation: use a log
scale for the A axis.)

(b) Use your results from problem 4 to determine which of these species will
have a stable steady-state population level.

6. (a) Give two examples of physical processes that can be described by a Pois-
son distribution. (You may wish to consult a text on probability and
statistics.)

(b) Sketch p (r) as a function of r.
(c) Support the claim that in a host-parasitoid system the average number of

encounters per host per unit time is
Ne=Nr =aP,.

(d) Suppose we relax the assumption 5 of Section 3.3 and instead assume
that if a host is encountered once, it gives rise to c parasitoid progeny; if
a host is encountered twice or more, it gives rise to 2c parasitoid
progeny. How would the Nicholson-Bailey model change?

7. (a) From the stability calculations for the Nicholson-Bailey model we ob-
serve that the predictions are independent of the parameters a and c and
depend only on A. Explain the following observation: Consider a some-
what different formulation of the model. Define

n, = acN,,

p, = aP,
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104	 Discrete Processes in Biology

where a, c are the constants defined in Section 3.3. Substitute the new
variables into equations (21a, b) to obtain equations in terms of n, and p,.
How many (new) parameters do these equations contain?

(b) Interpret n, and p,.
*(c) Determine whether the instability of the Nicholson-Bailey model is ac-

companied by oscillations by determining whether /3 2 — 4y < 0 for /3, y
given by equations (26).

8. Project: One problem that leads to the oscillations in the Nicholson-Bailey
model (equations 21a, b) is the fact that at low parasitoid densities the host
population behaves approximately as follows:

N,+ ► = AN1;

that is, it grows at an unchecked rate. Notice that this eventually causes the
parasitoids to increase in number until their hosts are overwhelmed by the at-
tack. This is what sets up the increasing oscillations in the system.

Consider the effect of introducing other types of density dependence into
the host population. Two examples include

N1+1 = AN
' — N:) e-ar,,
	 (S4)K

and,
N,+t = ^1N^' -6e 	 (S5)

(see Varley and Gradwell (1963) and Hassell (1978)). Use the literature, com-
puter simulations, and your own analysis to compare the predictions of these
models and to comment on their applicability and/or special features. (Note:
Stability analysis may be algebraically messy in such models.)

9. (a) Show that equations (28a, b) have the steady state given by (29), where q
is defined as q = N/K.

(b) Find the Jacobian matrix that corresponds to the linearized version of
(28).

*(c) Find the stability conditions in terms of the parameter q and other
parameters appearing in equations (28a, b).

*(d) Reason that Figure 3.4 is the expected stability domain in the qr parame-
ter plane.

10. In this problem we consider the effect of parasitoid searching efficiency in the
Nicholson-Bailey model.
(a) Explain the restriction m < 1 in equation (30).
(b) Write a set of host-parasitoid equations that incorporate equation (30).
(c) Investigate the effect of the new assumption about f(N,, P,). Determine

whether steady states are elevated or depressed and whether stability is
affected.

(d) Suggest other forms of f(N,, P,) that might be reasonable in view of the
biological assumption that parasitoids interfere with each other less and
are hence more efficient at low densities.
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11. In this problem we consider a host population that has refuges from parasitoid
attack.
(a) Explain the assertion that EK/N, is the fraction of the population that can

retreat to a refuge.
(b) Explain why the fraction of hosts not parasitized is

f(N1, PP) = NK + ( 1 — Nr ) e - "t.

(c) Write an equation for N,+,.
(d) Explain why at time t + 1 the parasitoid density is given by

P+I = (N, — EK)(1 — e -0°,).

*(e) Longer Project: Consult the literature and use computer simulations and/
or other analysis to explore the results and predictions of this model.

Questions 12 through 17 are based on the model for plant-herbivore interactions de-
scribed in Section 3.5.

12. (a) Show that the function R takes on the value

R (h/v) = 1

for h = 1 and v = 1, the steady state of equations (31a, b).
(b) Use part (a) and the results of Section 3.5 (subsection "Further Assump-

tions and Stability Calculations") to show that for x = h/v and

dR
— E_ -

dx SS

it follows that

aGI _
1	 c,ah 55 =

aG l
= E.av SS

13. (a) Demonstrate that the inequalities (50d) and (50e) are correct.
(b) Interpret the biological meaning of (50e).
(c) Discuss why conditions (50d) and (50e) might be necessary to avoid in-

stability of the plant-herbivore system.

14. Verify that steady-state solutions of equations (37) have the values x = 1 and
y= 1.

15. Consider the following model for leaf-eating herbivores whose population size
(number of individuals) is h,, on a tree whose leaf mass is v„:

v,+, = fv,,(e -an
y),

h.+1 = rhn (S — hn),	 where v„ * 0
vn

and where f, a, r, 8 are positive constants.
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106	 Discrete Processes in Biology

(a) Find the steady state(s) v and h of this system. What happens if f = 1?
What restrictions on the parameters should be met for a biologically rea-
sonable steady state?

*(b) Show that by rescaling the equations, it is possible to reduce the number
of parameters. To do this, define

V,, = v„/v,	 H,, = h ,,/h.

Show that the system of equations can then be converted to the following
form:

V,,+1 =V„exp k(1—H„),

H,,+ = W.(I + 

What is the connection between b, k, and the previous four parameters f,
a, r, and S?

(c) Show that the equations in part (b) now have steady-state solutions

Q = H = 1.
(d) Determine whether the functions in the equations of the model fall into

the general category described in Section 3.5.
(e) Determine when the steady state will be stable.

16. In this question we explore several variants of the model outlined in Section
3.5.
(a) Suppose that for low levels of herbivory the function F, which represents

the vegetation response, does not depend on the herbivore population and
that äF/ah < 0 only beyond some value h = H. How would this affect
the conclusions of the model?

(b) In some plants it is observed that moderate to low herbivory actually pro-
motes enhanced growth. How would this be incorporated into the model
and what would be the results?

(c) Suggest other ways of incorporating the availability of the vegetation into
the response of the herbivore population and explore the outcomes of
these assumptions.

(d) Suppose that migration into the patch of vegetation takes place at some
rate that is enhanced by greater plant abundance. How would this be
modeled, and how would it change the problem?

17. (Note to the instructor: Problem 17 gives the student good practice at formulat-
ing a model and gradually increasing its complexity. Do not expect the later
stages of this problem to be as amenable to further direct analysis as the more
elementary model. More advanced students may wish to implement their mod-
els in computer simulations.) As indicated near the end of Section 3.5, an im-
portant influence on herbivores is the quality of the host vegetation, not just its
abundance. If the plants have induced chemical defenses or other protective re-
sponses, the population of attackers may suffer from increased mortality, de-
creased fecundity, and lower growth rates.
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(a) Define a new variable q„ as the average quality of the vegetation in gen-
eration n. Suggest what general equations might then be used to model
the v,,, q,,, h,, system.

(b) Instead of treating the vegetation as a uniform collection of identical
plants, consider making a distinction between plants that are nutritious
(or chemically undefended) and those that are not. For example, with hn

as before, let

un = number of undefended plants,

v„ = number of defended plants.

Now suppose that plants make the transition from u to v after attack by
herbivores and back from v to u at some constant rate that represents the
loss of chemical defenses. Formulate a model for vn, u,, and h,,.

(c) As a final step, consider vegetation in which plants can range in quality q
from 0 (very hostile to herbivores) to 1 (very nutritious to herbivores).
Assume that the change in quality of a given plant takes place in very
small steps every 0-r days at a rate that depends on herbivory in time in-
terval n and on previous vegetation quality. That is,

qn+t = qn + F(qn, hn)M,
where F can be positive or negative. Let vn(q) be the percentage of the
vegetation whose quality is q at the nth step of the process, and assume
that the total biomass

Vn = J vn(q) dq,
0

does not change over the time scale of the problem. Can you formulate
an equation that describes how the distribution of vegetation quality v„(q)
changes as each plant undergoes the above defense response?

0 q-zq q q+Aq I

Figure for problem 17(c).
Hint: Consider subdividing the interval (0, 1) into n quality classes, each
of range Aq. How many plants leave or enter a given quality class during
time A r?

Questions 18 through 20 deal with the topic of population genetics suggested in Sec-
tion 3.6.

18. (a) From the definitions of u, v, and w it is clear that

u +V +w= 1.

Show that p + q = 1.
(b) Fill in the remaining six entries in Table 3.1.
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(c) Draw a diagram similar to that of Figure 3.10 for the mating of parents of
type AA X aa and Aa X AA.

(d) Fill in the remaining entries in Table 3.2.
(e) Verify that the cumulative frequencies of genotypes AA, Aa, and aa in

the offspring are governed by equations (53a, b).
(f) Show that

un+1 + vn+1 + wn+1 = 1,
i.e., that u, v, and w will always sum up to 1.

(g) Suppose that (ü, v, W) is a steady state of equations (53a, b). Use the in-
formation in part (f) to show that

ü =

(h) Since wn+1 is related to u,,+l and vn+1 (similarly for w, u, and vn) by the
identity in part (f), we can eliminate one variable from equations (53a,
b). Rewrite these equations in terms of u and v.

(i) Using part (h) show that

un+1 = (un + ?vn) 2 ,

vn+1 = (un + zv )[2 — 2(un + 2vn)].

(j) Now show that

(Un+t + Zvn+l) _ (Un + 2vn)•

*(k) Show that this implies that the frequencies p and q do not change from
one generation to the next; i.e., that

qn+, = qn,	 pn+l = Pn.

Hint: you must use the fact that p 2 + 2pq + q 2 = 1. When you succeed
at this problem, you have proved the Hardy-Weinberg law.

19. Now consider the following modification of the random mating assumption:
Suppose that individuals mate only with those of like genotype (e.g., Aa with
Aa, AA with AA, and so forth). This is called positive assortative mating. How
would you set up this problem, and what conclusions do you reach?

20. In negative assortative matings, like individuals do not mate with each other.
Different types of models may be obtained, depending on assumptions made
about the permissible matings. In the questions that follow it is assumed that
homozygous females mate only with homozygous males of opposite type and
that heterozygous females (Aa) mate with AA and aa males depending on their
relative prevalence. The permitted matings are then as follows:

Females Males

AA X aa
aa x AA
Aa X AA
Aa X aa
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Assuming that a single male can fertilize any number of females results in a
mating table that depends largely on the female frequencies, as shown in the
mating table.

Males

Genotype	 AA	 Aa	aa
Frequency	 u	 v	 w

Females	 AA	 u	 0	 0	 u

Aa	 v	
vu	 0	 vW

u+w	 u+w
aa	 w	 w	 0	 0

It is assumed that u + v + w = 1.
(a) Explain the entries in the table.
(b) Derive an offspring table by accounting for all possible products of the

matings shown in the above mating table.
(c) Show that the fractions of AA, Aa, and aa offspring denoted by un+,,

vn+l, and w + satisfysatisfy the equations

	

1	 un
Un+l = — Vn2 Un + Wn

I
Vn+l = Un + W. + 2 vn ,

	I 	Wn
Wn+l = — vn2 Un + Wn

(d) Show that u + v + w = I in the (n + 1)st generation. Use this fact to
eliminate w from the equations.

(e) Show that the equations you obtain have a steady state with v = 3 . Is
there a unique value of (ü, w) for this steady state? Is this steady state sta-
ble?

(f) Show that the ratio u/w does not change from one generation to the next.

PROJECTS

1. Write a short computer program to simulate the Nicholson-Bailey model and
display the oscillatory behavior of its solutions.

2. Journal Article Report Difference Equations
The references contain a list of journal articles, grouped into several general
topics. Select one topic and write a short, concise review of the material pre-
sented in these articles. The objective of this project is to get you to read and
think about some of the original work in the field. Thus your summary should
deal critically with the ideas, methods, and presentation in these articles, rather
than merely restating the contents. Following are some questions you may
wish to address:
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110	 Discrete Processes in Biology

1. What is the main focus of the article(s); is a particular question being ad-
dressed?

2. Do the mathematical models help in illuminating the topic; if so, in what
ways?

3. Are there alternative methods or approaches that might have been suit-
able for answering the questions the authors addressed?

In certain cases you may need to fill in background details by consulting the
sources cited by the authors of these articles.

Note: The reference list at the end of this chapter is by no means a complete
survey. You may wish to propose your own topic and search through the literature
for relevant papers. Possible sources include the Journal of Theoretical Biology,
American Naturalist, the Journal of Animal Ecology, Ecology, Theoretical Popula-
tion Biology, and the Journal of Mathematical Biology.
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