
2 Nonlinear Difference
Equations

... It could be argued that a study of very simple nonlinear difference
equations ... should be part of high school or elementary college
mathematics courses. They would enrich the intuition of students who are
currently nurtured on a diet of almost exclusively linear problems.

R. M. May and G. F. Oster (1976)

Before reading through this chapter, you are invited to do some exploration using a
calculator and some graph paper. The problem is to understand the behavior of the
rather innocent-looking difference equation shown below:

xn+1 = rxn(1 — x„). (1)

Set r = 2.5, let x0 = 0.1, and find x 1 , X2, .. . , x20 using equation (1) . Now repeat
the process for r = 3.3, 3.55, and 3.9. As r is increased from 3 to 4, you should no-
tice some changes in the sort of solutions you get.

In this chapter we will devote some time to understanding this equation while
developing some concepts and techniques of more general applicability.

The first thing to notice about equation (1) is that it is nonlinear, since it in-
volves a term x. Attempting to "solve” (1) by setting x„ = A „ as for linear problems
leads nowhere. Clearly this problem cannot be understood directly by methods used
in Chapter 1. Indeed, nonlinear difference equations must be handled with special
methods, and many of them, despite their apparent simplicity, to this day puzzle
mathematicians.

Why then should we study nonlinear difference equations? Mainly because al-
most all biological processes are truly nonlinear. In Chapter 3 many examples of dif-
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40	 Discrete Processes in Biology

ference equation models drawn from population biology illustrate the fact that self-
regulation of a population or interactions of competing species lead to nonlinearity.
For example, the per capita growth rate of a population often depends on its size, so
that as density increases, the birth rate or survivorship declines. As a second exam-
ple, the proportion of a prey population killed by predators varies depending on the
predator population. Even the problem of annual plants is much more complicated
than implied in Chapter 1 since seed germination and plant survival may be regu-
lated by the competition for available resources.

On the other hand, transcending the immediate application of difference equa-
tion models are some rather deep philosophical issues. For example, an important
discovery in the last decade is that what may appear to be totally random fluctuations
in a population with discrete (nonoverlapping) generations could in fact arise from a
purely deterministic rule such as equation (1) (May, 1976). At least one example of
this effect is recognized in real populations (see Section 3.1), though broader appli-
cation is regarded with some doubt. Before delving more deeply into these exotic re-
sults, some of the methods of tackling equations such as (1) analytically deserve
consideration.

2.1 RECOGNIZING A NONLINEAR DIFFERENCE EQUATION

A nonlinear difference equation is any equation of the form

x-+ =f(x,,, xn-1, ...),	 (2)

where x„ is the value of x in generation n and where the recursion function f depends
on nonlinear combinations of its arguments (f may involve quadratics, exponentials,
reciprocals, or powers of the x„'s, and so forth). A solution is again a general for-
mula relating x„ to the generation n and to some initially specified values, e.g., xo,
x 1 , and so on. In relatively few cases can an analytic solution be obtained directly
when equation (2) is nonlinear. Thus we must generally be satisfied with determin-
ing something about the nature of solutions or with exploring solutions with the help
of the computer.

While the methods of Chapter 1 cannot be applied directly to solving nonlinear
difference equations, we shall soon see their usefulness in understanding the charac-
teristics of special classes of solutions. Before proceeding to demonstrate these lin-
ear techniques, certain key concepts must be established to prepare the way. In the
following section we discuss specifically the case of first-order difference equations,
which take the form

x"+ I = f(x„)•	 (3)

Properties of solutions of equation (3) will be encountered again in many related sit-
uations.

2.2 STEADY STATES, STABILITY, AND CRITICAL PARAMETERS

The concepts of homeostasis, equilibrium, and steady state relate to the absence of
changes in a system. An important question stemming from many problems in the
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Nonlinear Difference Equations	 41

natural sciences is whether constant solutions representing these static situations
exist.

In some cases steady-state solutions are of intrinsic interest: for example, most
living organisms function well in rather narrow ranges of temperature, acidity, or
salinity. (More highly evolved organisms have developed intricate internal mecha-
nisms for maintaining body temperatures and other factors at their appropriate con-
stant levels.) On the other hand, steady-state solutions may seem of marginal interest
in problems involving dynamic events such as growth, propagation, or reproduction
of a population. Nevertheless, it is often true that by examining carefully what hap-
pens in a steady state, we can better understand the behavior of a system, as will be
demonstrated shortly.

In the context of difference equations, a steady-state solution z is defined to be
the value that satisfies the relations

xn+I = xn = x, (4)

so that no change occurs from generation n to generation n + 1. From equation (3)
it follows that x also satisfies the relation

x =f(x) (5)

and is thus frequently referred to as a fixed point of the function f (a value that f
leaves unchanged). While not always the case, it is often true that solving an equa-
tion such as (5) for the steady-state value is simpler than finding a general solution to
a full nonlinear difference equation problem such as equation (3).

We now distinguish between two types of steady-state solutions. Here the con-
cept of stability must be introduced. Since this is best described by analogy, see Fig-
ure 2.1, which exemplifies three situations, two of which are steady states; one
steady state is stable, the other unstable.

A steady state is termed stable if neighboring states are attracted to it and un-
stable if the converse is true. As shown in Figure 2. 1, while an object balanced pre-
cariously on a hill may be in steady state, it will not return to this position if dis-
turbed slightly. Rather, it may proceed on some lengthy excursion leading possibly
to a second, more stable situation.

Such distinctions are of interest in biology. When steady states are unstable,
great changes may be about to happen: a population may crash, homeostasis may be
disrupted, or else the balance in a number of competing groups may shift in favor of

Figure 2.1 In this landscape balls 1 and 3 are at
rest and represent steady-state situations. Ball 1 is
stable; if moved slightly it will return to its former
position. Ball 3 is unstable. The slightest
disturbance will cause it to fall into one of the
adjoining valleys. Ball 2 is not in a steady state,
since its position and speed are continually
changing.
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42	 Discrete Processes in Biology

the few. Thus, even if an exact mathematical solution is not easy to come by, quali-
tative information about whether change is imminent is of potential importance.
With this motivation behind us, we turn to the analysis that permits us to make such
predictions.

Let us assume that, given equation (3), we have already determined x, a
steady-state solution according to equation (5). We now proceed to explore its stabil-
ity by asking the following key question: Given some value x,, close to x, will x,, tend
toward or away from this steady state? To address this question we start with a solu-
tion

X,, + xn, 	(6)

where x„ is a small quantity termed a perturbation of the steady state x. We then de-
termine whether xn gets smaller or bigger. As we will show presently, these steps re-
duce the problem to a linear difference equation, so that we can apply methods de-
veloped in the previous section.

From equations (5) and (6) it follows that the perturbation x„ satisfies

xn+l=x^+l — z=f(xn) — x=f(X+x„) — x.	 (7)

Equation (7) is still not in a form from which direct information can be gleaned
because the RHS involves the function f evaluated at x + x,, a value that often is
not known. Now we resort to a classic step that will be used again in many nonlinear
problems; the value of f will be approximated by exploiting the fact that x„ is a small
quantity. That is, in writing a Taylor series expansion, we note that for a suitable
function f,

f(x + xn) —J(x) + (dx
^f

X
)xn + Q(xn2).

very small terms

The "very small terms” can be neglected, at least close to the steady state. This ap-
proximation results in some cancellation of terms in (7) because f( )  = z according
to equation (5). Thus the approximation

Xn+l = f(x) — x +
 (df

 I )xndx

can be written as

x„+l = ax„,	 (8)
where

a = \ x x I .

The nonlinear problems in equations (3) or (7) have led to a linear equation (8)
that describes what happens close to some steady state. Note that the constant a is a
known quantity, obtained by computing the derivative off and evaluating it at x.
Thus to understand whether small deviations from steady state increase or decrease,
we can now apply the methods of linear difference equations. From Chapter 1 we
know that the solution of equation (8) will be decreasing whenever a ( < 1. We
conclude that
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Nonlinear Difference Equations 	 43

Condition for Stability

x is a stable steady state of (3) q ( x I s  < 1.	 (9)

Example I
Consider the following nonlinear difference equation for population growth:

kx„
x"+' _
	

'	
b, k > 0.	 (10)

b + xn

(1) Does equation (10) have a steady state? (2) If so, is that steady state stable?

Solutions: (1) To compute a steady-state value, let

= x„+ i = x„ .

Then

x— kz 	x(b +x) =kz,	 x(x +b—k)=0.
b +x' 

So

x =k—b	 or	 x =0.

The steady state makes sense only if k > b, since a negative population x would be
biologically meaningless.

(2) As previously mentioned, any small deviation must satisfy

xn+l = aXn,	 (8)

where now

a =dfl = d1 kx )I — kb — b
dx z dx \b + xl x (b + z)2 k

Thus, by the stability condition, the steady state is stable if and only if I b/k I < 1.
Since both b and k are positive, this implies that

k > b.

Thus, the nontrivial steady state is stable whenever it exists. Stability of x = 0 is left as
an exercise.

In example 2, stability of one of the steady states is conditional on a parameter
r. If r is greater or smaller than certain critical values (here 1 or 3), the steady state
x2 is not stable. Such critical parameter values, often called bifurcation values, are
points of demarcation for abrupt changes in qualitative behavior of the equation or of
the system that it models. There may be a multitude of such transitions, so that as
increasing values of the parameter are used, one encounters different behaviors.
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44	 Discrete Processes in Biology

Example 2
Now consider the following equation:

	x^+I = rx.(1 — x„),	 (11)

and determine stability properties of its steady state(s).

Solution:
Again, steady states are computed by setting

x=rx(1 —z),

so that

r12—x(r— 1) = 0.

This time two steady states are possible:

x, = 0	 and	 xZ = 1 — 1/r.

Perturbations about 12 satisfy

xn+1 = ax,',

where here

a=d =r(l-2x)	 =(2—r).
dx r2 	X2

Thus X2 will be stable whenever I a < 1 according to our linear theory. For stability of
this steady state we conclude that the parameter r must satisfy the condition that
1 <r <3.

Equation (11), which will be the subject of some scrutiny in Section 2.3, provides a
striking example of bifurcations.

One of the particularly important underlying ideas here is that we can think of
a particular difference equation as a rule that governs the behavior of many classes
of systems (e.g., different populations, distinct species, or one species at different
stages of evolution or at different developmental stages). The rules can have shades
of meaning depending on critical parameters that appear in the equation. This point,
which we will amply illustrate and exploit in a variety of settings, will reappear in
discussions of almost all models.

2.3 THE LOGISTIC DIFFERENCE EQUATION

Equation (11) encountered in example 2 has been known for some time to possess
interesting behavior, but it first received public attention as an outcome of a classic
paper by May (1976) which provided an exposition to some of the perhaps unex-
pected properties of simple difference equations. Sometimes known as the discrete
logistic equation, (11) is an equivalent version of

yn +i = yn(r — dyri), 	 (12)
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Nonlinear Difference Equations 	 45

where r and d are constants. To see this, we redefine variables as follows. Let

x„ =

This just means that quantities are measured in units of d/r. This results in a reduc-
tion of parameters based on consideration of scale, which we will discuss at great
length in later chapters. This type of first step proves an aid in both formulating and
analyzing complicated models.

The resulting equation,

xn+i = rx,(l — xn),	 (11)

is one of the simplest nonlinear difference equations, containing just one parameter,
r, and a single quadratic nonlinearity. While (11) could be a description of a pop-
ulation whose reproductive rate is density-regulated, there are practical problems
with this interpretation. (In particular, it is necessary to restrict x and r to the inter-
vals 0 < x < 1, 1 < r < 4 since otherwise the population becomes extinct; see
May, 1976.)

Comparison with a Continuous Equation

Consider the following ordinary differential equation:

dxdt = rx(1 — x),	 x ? 0.

Sometimes called the Pearl-Verhulst or logistic equation, the above is often used to
describe continuous density-dependent growth rates of populations. Its solutions are
shown in Figure 2.2.

x (t)

Figure 2.2 Solutions to the logistic	 chosen for r. Thus x(t) tends toward a
differential equation are characterized by a	 limiting value of x = 1 for all positive
single nontrivial steady state z = 1, which is 	 starting values.
stable regardless of the parameter value
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46	 Discrete Processes in Biology

In example 2 of Section 2.2 we showed that equation (11) has two possible
steady states, only one of which is nontrivial (nonzero): z2 = 1 — 1 /r. The steady
state is stable only when the parameter r satisfies 1 < r < 3. (Notice that the
parameter d in equation (12) only influences scaling of the qualitative behavior.)

What happens beyond the value of r = 3 and up to the permitted maximal
value of r? Let us cautiously turn the knob on our metaphorical dial (Figure 2.3) and
find out.

Xn + =rXn (I — Xn)

r= 1.0
2.0

Turn at
«— your own

3.0	 risk

Figure 2.3

2.4 BEYOND r = 3

We shall resort to a clever trick (May, 1976) to prove that as r increases slightly be-
yond 3 in equation (11) stable oscillations of period 2 appear. A stable oscillation is
a periodic behavior that is maintained despite small disturbances. Period 2 implies
that successive generations alternate between two fixed values of x, which we will
call z 1 and x2 . Thus period 2 oscillations (sometimes called two point cycles) simul-
taneously satisfy two equations:

xn+l = f (x„),	 (13a)

Xn+2 = Xn .	 (13b)

Now observe that these can be combined,

f(xn+1) = f(f(xn)),
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Nonlinear Difference Equations 	 47

so that

xn+z = f(f(x^))•	 (14)

Let us call the composite function by the new name g,

g(x) =f(f(x)),

and let k be a new index that skips every other generation:

k = n/2,	 n even.

Then equation (14) becomes

xk+l = g(xk),	 (15)

and a steady state of equation (15), z (or a fixed point of g), is really a period 2 solu-
tion of (13a). Note that there must be two such values, X, and X z since by assumption
x oscillates between two fixed values.

By this trick we have reduced the new problem to one with which we are fa-
miliar. That is, stability of a period 2 oscillation can be determined by using the
methods of Section 2.2 on equation (15). Briefly, suppose an initial situation is cre-
ated whereby xo = 'x, + eo , where co is a small quantity. Stability of z, implies that
periodic behavior will be reestablished, i.e., that the deviation eo from this behavior
will grow small. This happens whenever

(dgl 	< 1.	 (16)

It is a straightforward calculation (see problem 5) to prove that this condition is
equivalent to stating the following:

x; isa stable 2point cycle q (dx X J(dx x ) < 1
I 1 	 I z

(17)

From equation (17) we conclude that the stability of period 2 oscillations depends on
the size of df/dx at z ; . The results will now be applied to further exploration of
equation (11). Steps will include (1) determining x, and x2, the steady two-period os-
cillation values, and (2) exploring their stability.'

1. To the instructor: This section may be skipped without loss of continuity in the dis-
cussion.
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48	 Discrete Processes in Biology

Example 3
Find X, and x2 for the two-point cycles of equation (11).

Solution
To do so, first determine the composite map g(x) = f(f(x)):

g(x) = r[rx(1 — x)](1 — [rx(1 — x)])

	= r 2x(1 — x)[1 — rx(1 — x)].	 (18)

Next, in equation (18) set equal to g() to obtain

	

1 = r 2 (1 — x)[1 — rx(1 — x)]. 	 (19)

Here it is necessary to be slightly resourceful, for the expression obtained is a
third-order polynomial. We look back at the information at hand and use an important
fact in solving this problem.

We notice that any steady-state values of the equation x. +1 = f(x) are
automatically steady states also of x,+, = f(f(x^)) or of any higher composition of f
with itself. (In other words, x is also a periodic solution in the trivial sense.) This
means that x satisfies the equation x = g(x). To see this, note that

x=x„=x„+, =x„+z,
so

z =f(x) =f(f(x)) = g(x).

Continuing the analysis of example 3, we now exploit the fact that x = 1 — 1/r must
be one solution to equation (19). This enables us to factor the polynomial so that the
problem is reduced to solving a quadratic equation. To do this, we expand equation
(19):

p(x)=x 3 -2x 2 +(1+!)x+(r3 —r)=0.	 (20)

Now divide by the factor {x — [ 1 — (1 /r)]}, to get

[x — I 1 — r/JL
x2 — \ 1 + r/x + \r + r /J 

— P(x) = 0.	 (21)

This can be done by standard long division of polynomials.
The second factor is a quadratic expression whose roots are solutions to the

equation

x2—(r
r 1

— )x+
"	 (r+

Hence

x = 2L \ r r 1 / ±	 \r r 1 I 2	 4(rr 1) ]>r 2

x x — r+l± (r-3)(r+1)1 	2
 (22)

2r

The two possible roots, denoted x 1 and z2 , are real if r < —1 or r > 3. Thus for
positive r, steady states of the two-generation map f(f(x„)) exist only when r > 3.
Note that this occurs when X = 1 — 1/r ceases to be stable.
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Nonlinear Difference Equations 49

With z, and z2 computed, it is a straightforward (albeit algebraically messy)
task to test their stability. To do so, it is necessary to compute (df/dx) and evaluate
at the values z, and x2 . When this is done, we obtain a second range of behavior: sta-
bility of the two-point cycles for 3 < r < r2 with r2 = 3.3. Again we could pose
the question, What happens beyond r = r2 ?

It should be emphasized that the trick used in exploring period 2 oscillations
could be used for any higher period n: n = 3, 4, ... . Because the analysis be-
comes increasingly cumbersome, this method will not be further applied. Instead,
we will explore some underlying geometric ideas that make the process of "tuning" a
parameter more immediately significant.

2.5 GRAPHICAL METHODS FOR FIRST-ORDER EQUATIONS

In this section we examine a simple technique for visualizing the solutions of first-
order difference equations that can be used for gaining insight into the stability of
steady states and the effects of parameter variations. As an example, consider equa-
tion (11). Let us draw a graph of f(x), the next-generation function (Figure 2.4). In
this case f(x) = rx (1 — x), so that f describes a parabola passing through zero at
x = 1 and x = 0 and with a maximum at x = Z .

Choosing an initial value xo, we can read off x, = f(xo) directly from the
parabolic curve. To continue finding x2 = f(x,), x3 = f(x2) and so on, we need to
similarly evaluate ! at each succeeding value of x,,. One way of achieving this is to
use the line y = x to reflect each value of x„+, back to the x. axis (Figure 2.4). This
process, which is equivalent to bouncing between the curves y = x and y = f(x)
(Figure 2.5) is a recursive graphical method for determining the population level. In
Figure 2.5, a time sequence of x,, values is also shown. (This method should be com-
pared to the one outlined in problem 13.)

f(X) f(x) =X,+l

2
0	 x„	 I	 1

2

Figure 2.4 The parabola y = f(x) and the line 	 x, n = 0, 1, 2, . ... This is known as the
y = x can be used to graph the successive values of cobwebbing method (see Figure 2.5).
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50	 Discrete Processes in Biology

Figure 2.5 A number of values of x,,, n = 0, 1,
... , 7 are shown. Below is the corresponding
time sequence, where the vertical axis shows
time n.

Xn +

2

3

4

5

6

n

n

In Figure 2.5 the sequence of points converges to a single point at the intersec-
tion of the curve with the line y = x. This point of intersection satisfies

xn+, = xn 	and	 xn+, = f(xn).

It is by definition a steady state of the equation. The present example illustrates a
particular regime for which this steady state is stable. Recall that the condition for
stability is that

1a1 — Id Ixl <1.

Interpreted graphically, this condition means that the tangent line T to f(x) at the
steady state value z has a slope not steeper than 1 (see Figure 2.6). Notice what hap-
pens when the parameter r is increased. This effectively increases the steepness of
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Nonlinear Difference Equations 	 51

X

Figure 2.6 The steady state z is always located at 	 if the tangent to the curve y = f(x) is not too steep
the intersection of y = f(x) with y = x. x is stable	 (a slope of magnitude less than 1).

the parabola, which makes its tangent line _T at x steeper, so that eventually the sta-
bility condition is violated (see Figure 2.7).

A similar procedure can be applied to the case of period 2 solutions discussed
analytically in example 3, or indeed solutions of higher period. Here one is required
to construct a graph of f(f(x)) [or f"(x)]. This task can be accomplished once the
maxima and minima of these composed functions are identified, for instance by set-
ting their derivatives equal to zero. (It can also be done computationally.) One can
verify that the function f(f(x)) given in example 3 undergoes the following sequence
of shape changes as the parameter r is increased. Initially, g(x) = f(f(x))  has a flat
graph, but as r increases, two humps appear and grow in size. Eventually these are
big enough to intersect the line y = x at three locations: z (as before) and z, , xz . At
this point x loses its stability to the two-point cycle consisting of x, , 2.

As r is increased even further, z, and z2 in turn lose their property of stability
to other periodic states (with periods 4, 8, etc.). Each time a transition point of bi-
furcation value is reached, some new qualitative behavior is established. One can
see these effects graphically or by using the simple pocket calculator computations,
as suggested in the introduction to this chapter.

One way of summarizing the range of behaviors is shown in Figure 2.8, a bi-
furcation diagram, which depicts the locations and stability properties of periodic
states. In the case of the logistic difference equation (11), since all of the relevant
cases must fall within the interval 1 < r < 4 (see May, 1976), the intervals of sta-
bility of any of the 2" periodic solutions become increasingly smaller.

The first significantly new thing that happens (when r = 3.83) is that a solu-
tion of period 3 suddenly appears. Li and Yorke (1975) proved that period 3 orbits
were harbingers of a somewhat perplexing phenomenon they called chaos. This is a
solution that appears to undergo large random fluctuations with no inherent periodic-
ity or order whatsoever. An example of this type of behavior is given in Figure 2.9.
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52	 Discrete Processes in Biology

Figure 2.7 (a) f(f(x)) initially has a flat graph with
a single intersection of x„+2 = x,, at x, the steady
state of X = f(z ). (b) As r increases, two humps
appear. As yet a single intersection is maintained. X
remains stable as the slope of the tangent line is
still less than 1. (c) As the two humps grow and as
r increases beyond 3, two new intersections appear.
Simultaneously, 'x becomes unstable. z, and z2 are
now stable as fixed points of f(f(x)). They thus form
the period 2 orbit of this system.

Xn + 2

0
	

Xn

(a)

x ---

Xn + 2

0
	

Xn

(b)

Xn + 2

0
	

Xn

(c)
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X

0.5

.. rn	 M M fl,	 M

Figure 2.8 Bifurcation diagram for equation (11)
	

Nature, 261, pp. 459-467. Copyright © 1976
(From May (1976). Reprinted by permission from Macmillan Journals Limited.]

A disturbing aspect of this type of solution is that two very close initial values xo and
yo will in general grow very dissimilar in a few iterations. May (1976) remarked that
it may be visually impossible to distinguish between a totally random sequence of
events and the chaotic solution of a deterministic equation such as (11).

Does the chaotic regime of a difference equation have any biological rele-
vance? In Chapter 3 one example of a chaotically fluctuating population, the
blowflies, will be discussed. The majority of biologists feel, however, that most bio-
logical systems operate well within the range of stability of the low order periodic
solutions. Thus the rather bizarre chaos remains largely a mathematical curiosity.

Bifurcation Diagrams

The effect of a parameter variation on existence and stability properties of steady states
in equations such as (11) are often represented on a bifurcation diagram, such as the
one in Figure 2.8. The horizontal axis gives the parameter value (e.g., r in equation
(11)). The vertical axis represents the magnitudes of steady state(s) of the equation. A
branch of the diagram (shown in solid lines) represents the dependence of the steady
state level on the parameter. At points of bifurcation (e.g., at r = 3.0, r = 3.5, ...)
new steady states come into existence and old ones lose their stability (henceforth
shown dotted). Two stable branches imply that a stable period 2 orbit exists; four stable
branches imply that a period 4 orbit exists; and so on. Note that the succession of
bifurcations may occur at ever closer intervals. The values of r at which such
transitions occur are called bifurcation values.D
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10	 15	 20	 (a)

10	 15	 20	 (b)

i

10	 15	 20	 (c)

I1'VVMV\VV
10
	

20	 30	 (d)

Figure 2.9 The discrete logistic equation
xn+l = rxn(1 — x„) is one of the simplest examples
of a nonlinear difference equation in which complex
behavior results as the single parameter r is varied.
Shown here are four examples of the range of
behaviors. On the left, the parabola y = f(x) _
rx(1 — x) and the line y = x provide a graphical
method for following successive iterates x i , x2 ,

... , x„ by the cobwebbing method. On the right,

successive values of x, are displayed. r values are
(a) 2.8, (b) 3.3, (c) 3.55, and (d) 3.829. Note that
as r increases, the parabola steepens. There are
transitions from a stable steady state (a), to a
two-point (b), four-point (c) cycle, and eventually to
chaos (d). See text for explanation. These figures
were produced by a FORTRAN program on an
IBM 360 digital computer.D

ow
nl

oa
de

d 
05

/3
1/

21
 to

 1
28

.6
.4

5.
20

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



Nonlinear Difference Equations	 55

Summary and Applications of the Logistic Difference Equation (11)

Equation (11) has been used as a convenient example for illustrating a number of key
ideas. First, we saw that the number of parameters affecting the qualitative features of a
model may be smaller than the number that initially appear. Further, we observed that
existence and stability of steady states and periodic solutions changed as the critical
parameter was varied (or "tuned"). Finally, we had a brief exposure to the fact that
difference equations can produce somewhat unusual solutions quite unlike their "fame"
continuous counterparts.

Equation (11) is seldom used as an honest-to-goodness biological model.
However, it serves as a useful pedagogical example of calculations and results that also
hold for other, more realistic models, some of which will be described in Chapter 3.
For a more detailed and thorough analysis of this equation, turn to the lucid review by
May (1976).

2.6 A WORD ABOUT THE COMPUTER

Perhaps one of the most pleasing properties of difference equations is that they read-
ily yield to numerical exploration, whether by calculator or with a digital computer.
This property is not shared with the continuous differential equations. Solutions to
difference equations are obtainable by sequential arithmetic operations, a task for
which the computer is precisely suited. Indeed, the key strategy in tackling the more
problematic differential equations by numerical computations is to find a reliable ap-
proximating difference equation to solve instead. This makes it particularly impor-
tant to appreciate the properties and eccentricities of these equations.

2.7 SYSTEMS OF NONLINEAR DIFFERENCE EQUATIONS

To conclude this chapter, we will extend the methods developed for single equations
to systems of n difference equations for arbitrary n. For simplicity of notation we
will discuss here the case where n = 2. Assume therefore that two independent vari-
ables x and y are related by the system of equations

xn+I _ f(xn, y,,),	
(23)

yn+1 = g(xn, yn),

where f and g are nonlinear functions. Steady-state values X and y satisfy

=f(X,y),	
(24)

Y=g(x,y)•

We now explore the stability of these steady states by analyzing the fate of
small deviations. As before, this will result in a linearized system of equations for
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56	 Discrete Processes in Biology

the small perturbations x' and y'. To achieve this we must now use Taylor series ex-
pansions of the functions of two variables, f and g (see Appendix at end of chapter).
That is, we approximate f( + x', y + y') by the expression

	f(X + x', Y + y') = f(X, Y) +	
x.y x' + ay Ix.y y'

 + ... ,	 (25)

and do the same for g. You should verify that when other steps identical to those
made in the one-variable case are carried out, the result is

= a„x;, + a 12 y„ ,	
(26)

yn+^ = a21x + a22yn,

where now

ail
 of

	, 	 a12 = —	 ,
_of
= 

	ax s.y	 ay z.Y	
(27)

a21 	ag (z.Y I 	a22	 ay Iz.Y

The matrix consisting of these four coefficients, i.e.,

A = (a
u  a12	 (28)
 a22, '

is called the Jacobian of the system of equations (23). One often encounters the ma-
trix notation

x',, = Ax,	 (29)

as a shorthand representation of equations (26), where

xn = x ;	 (30)
yn

The problem has again been reduced to a linear system of equations for states
that are in proximity to the steady state (x, y). Thus we can determine the stability of
(z, y) by methods given in Chapter 1. To briefly review, this would entail the fol-
lowing:

1.	 Finding the characteristic equation of (26) by setting

det (A — AI) = 0.

The result is always the quadratic equation

A 2 —ßA+y=0,

where

ß = ,s u i + a22,

y = a11a22 — a12a21.

2.	 Determining whether the roots of this equation (the eigenvalues) are of
magnitude smaller than 1.
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Nonlinear Difference Equations	 57

If the answer to (2) is affirmative, we can conclude that small deviations from
the steady state will decay, i.e., that the equilibrium is stable. In the next section we
show that it is not always necessary to compute the eigenvalues explicitly in order to
determine their magnitudes. Rather, as we will demonstrate, it is sufficient to test
whether the following condition is satisfied:

	

2> 1+ y> I ß I	 (both eigenvalues I A, I < 1
steady state (x, y) is stable

2.8 STABILITY CRITERIA FOR SECOND-ORDER EQUATIONS

It is possible to formulate stability criteria for systems of difference equations in
terms of the coefficients in the corresponding characteristic equation. May, et al.
(1974) were among the first to derive explicitly a necessary and sufficient condition
for second-order systems:

Given the characteristic equation

A 2 —ßA+y=0,

both roots will have magnitude less than 1 if

2>l+y >IPI.

Now we examine how this condition is derived.

Derivation of Condition (32)

Recall that roots of equation (31) are

= ß± ß 2 -4y .	 (33)

For stability it is necessary that

l A I I < I	 and	 A21 < 1.	 (34)

Figure 2.10 shows the desired result geometrically when equation (31) has real
roots. Notice that roots of equation (31) are equidistant from the value ß/2. Thus it is
first necessary that this midpoint should be within the interval (-1, 1):

—1<ß/2<1,	 or	 Iß < 1.	 (35)

(31)

(32)
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58	 Discrete Processes in Biology

Figure 2.10 For stability of a second-order
system such as (23), both eigenvalues
corresponding to roots of the characteristic
equation y = A 2 - (3d + y must lie within
the interval (- 1, 1).

y= 2 -ßA+y

1
I

-I
	 0	 p^2

Furthermore, it is necessary that the distance from ß/2 to either root be smaller than
the distance to an endpoint of the interval. In the situation graphed shown in Figure
2.10 this implies that

1— ßI> 
2	 2

Squaring both sides does not change the inequality since each side is positive.

( 1 _ I P ) 2 > ß 2 4 4y

- Iß  + 2> Z- y4	 4

Cancelling ß 2/4 and rearranging terms gives

(36)

The final step of combining the inequalities in equations (35) and (36) is left as a
problem.

2.9 STABILITY CRITERIA FOR HIGHER-ORDER SYSTEMS

Thus far we have examined only the relatively straightforward case of two coupled
difference equations. In theory the techniques of analyzing stability of steady-state
solutions are similar for bigger systems, e.g., a set of k equations. However, compu-
tationally one can encounter problems in estimating magnitudes of eigenvalues be-
cause the characteristic equation associated with this system is a polynomial of de-
gree k. In general it is then impossible to actually determine the eigenvalues, and it
is necessary to use certain criteria to obtain information about their magnitudes.

One such criterion, called the Jury test as developed by Jury (1971), is de-
scribed in this section. See Lewis (1977), for a broader discussion.

Consider the polynomial

P(A)=A"+a,A"-'+a2An-2+...+a"-,A+a".
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Nonlinear Difference Equations	 59

Define the following combinations of parameters:

bn = 1 — an,	 cn=bn —bi, 	d=c—c,

b-1bn-1 = a, — anan-1,	 cn-, = bbn-1 — b1b2,	 un-1 = CnCn-1 — C2C3,

bn-k = ak — anan-k,	 Ca-k = bbn-k — blbk+l,	 do -k = CnCn-k — C2Ck+2,

b, = an-, — ana,,	 c2 = bnb2 —	 d3 = CnC3 — C2Cn -1

The list grows shorter at each stage until there are just three quantities that relate to
their predecessors by the rule

2	 2
9n = pn —

qn-1 = pnpn-, — Pn-3Pn-2,

qn-2 = pnpn-2 — pn-3pn-1•

Now we formulate the criterion as follows:

Jury Test

Necessary and sufficient conditions for all roots of P(A) to satisfy the condition that
Al < 1 are the following:

1. P(1)=1 +a 1 +•••+an_,+an >0.
2. (-1)"P(-1) _ (-1)"[(-1)" + a,(-1)n -1 + • • + a. 1 (-1) + an] > 0,
3.	 (a)	 lang < 1,

IbnI > Ib1I,
ICnI >IC21,
IdnI > Id31,

3.	 (q)	 JgnI > Iq" -2l•

Example
Apply the Jury test to

A4 + A 3 + A 2 + A + 1 = 0.

Solution
We note that n = 4 and examine conditions 1 and 2:

1. P(1)=1+1+1+1+1>0
2. (-1)4P(1) = 1(1 —1 + 1— 1+ 1)>0

Since these are both satisfied, we go on to the first part of condition 3, namely
that I a < 1. We see that this condition is not satisfied since a4 = 1. Thus the
polynomial will have at least one root whose magnitude is not smaller than 1.
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60	 Discrete Processes in Biology

2.10 FOR FURTHER STUDY: PHYSIOLOGICAL APPLICATIONS

In recent years several problems in physiology have been modeled by the use of dif-
ference equations or by a combination of difference-differential equations (called de-
lay equations) that share certain properties. One of the earliest review articles on this
subject, entitled "Oscillation and Chaos in Physiological Control Systems," dates
back to 1977 (see Mackey and Glass, 1977). Students who are interested in such ap-
plications should consult the references provided. Two of these are briefly high-
lighted here.

1. In their 1978 article, Glass and Mackey describe several respiratory disor-
ders in which the pattern of breathing is irregular. In normal resting humans, ventila-
tion volume is approximately constant from one breath to another. Cheyne-Stokes
breathing consists of a repeated waxing and waning of the depth of breathing, with
an amplitude of ventilation volume that oscillates over intervals of 0.5 to 1 min.
Other disorders (such as biot breathing and infant apnea) also seem to indicate a
problem in the control system governing ventilation.

A simple linear model for ventilation volumes and chemoreceptor sensitivity to
CO 2 in the blood was described in Section 1.9 and outlined in problem 18 of Chapter

1 liter

0	 0.5	 to	 1.5	 2.0	 2.5	 3.0
(a)

X12

E 8
E
Um q

SI

(b)

Figure 2.11 Two dynamical diseases: (a) In
Cheyne-Stokes respiration, the volume per breath
undergoes periodic cycles of deep breathing
interspersed by intervals of apnea (no breathing).
(b) Chronic granulocyclic leukemia is associated
with characteristic oscillations in the level of

circulating white blood cells (WBCs) over periods
of several months. [From Mackey and Glass
(1977), "Oscillations and Chaos in Physiological
Control Systems," Science, 197, 287-289.
Reprinted by permission. Copyright 1977 by the
AAAS.]
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1. We continue to develop the model in problem 17 of this chapter. The articles by
Glass and Mackey are recommended for good summaries of the phenomena and for
a more sophisticated approach using delay equations. The authors apply similar
models to hematopoiesis (the control and formation of circulating blood compo-
nents). This makes for a more detailed model of a process described rather crudely
in Section 1.9.

2. Cardiac and neurological disorders have also been modeled with discrete
equations. These processes too are characterized by events that recur at some regular
time intervals. The beating pattern of the heart is regular in normal resting humans.
Specialized tissues at sites called the sinoatrial (SA) node and the atrioventricular
(AV) node act as pacemakers to set the rhythm of contraction of the atria and ventri-
cles. When one of these nodes is not functioning properly, arrhythmia (irregular
rhythms) may result. The papers by Keener (1981) and Ikeda et al. (1983) outline
models for arrhythmia based on the interaction of the SA node with some secondary
pacemaker in the ventricle.

Collectively, physiological disorders in which a generally adequate control
system becomes unstable have been called dynamical diseases (Figure 2.11). Some
of the very simple abstract models given in this chapter have revealed that such phe-
nomena can arise spontaneously when one or several parameters of a system have
values slightly beyond certain threshold bifurcation points.

PROBLEMS*

1. Indicate whether each of the following equations is linear or nonlinear. If
linear, determine the solution; if nonlinear, find any steady states of the equa-
tion.
(a) xn = (1 — a)xn _, + ßx,	 a and /3 are constants

xn
(b) x,,+ 1

_
+l	

1 + xn

(c) —vn e- `ten,	 a is a constant
(d) (xn + 1 — a) 2 = a 2(xn — 2x n + 1),	 a is a constant

= k, + k2/x'K(e) xn+^ k1, k2 and K are constants
n

2. Determine when the following steady states are stable:
(a) x,,+ I = rxn(l — x),	 x = 0
(b) xn+1 = —xn( 1 — xn),	 x	 +
(c) xn+l = 1/(2 + xn),	 x = V2 — I

(d) xn+, = xn In xn,	 z = e 112

Sketch the functions f (x) given in this problem. Use the cobwebbing method to
sketch the approximate behavior of solutions to the equations from some initial
starting value of xo .

*Problems preceded by an asterisk (*) are especially challenging.
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3. In population dynamics a frequently encountered model for fish populations is
based on an empirical equation called the Ricker equation (see Greenwell,
1984):

N„+1 = aNn e -19NA

In this equation, a represents the maximal growth rate of the organism and ß is
the inhibition of growth caused by overpopulation.
(a) Show that this equation has a steady state

Ina
N= 	 .

(b) Show that the steady state in (a) is stable provided that

^1—lna < 1.

4. Consider the equation

N1+1 = NN exp[r(1 —Ne/K)].
This equation is sometimes called an analog of the logistic differential equation
(May, 1975). The equation models a single-species population growing in an
environment that has a carrying capacity K. By this we mean that the environ-
ment can only sustain a maximal population level N = K. The expression

A = exp[r(1 — N,/K)]
reflects a density dependence in the reproductive rate. To verify this observa-
tion, consider the following steps:
(a) Sketch A as a function of N. Show that the population continues to grow

and reproduce only if N < K.
(b) Show that N = K is a steady state of the equation.
(c) Show that the steady state is stable. (Are there restrictions on parameters

r and K?)
(d) Using a hand calculator or simple computer program, plot successive

population values N, for some choice of parameters r and K.

*5• Show that a first-order difference equation

xn+l = f (xn)

has stable two-point cycles if condition (17) is satisfied.

6. Show that by using a Taylor series expansion for the functionsf and g in equa-
tions (23) one obtains the linearized equations (26) for perturbations (x', y')
about the steady state (x, y).

7. In Section 2.8 we demonstrated that conditions (35) and (36) are necessary for
both roots of A 2 — ßA + y = 0 to be negative.
(a) Derive an additional constraint that y < 1 and hence show that condition

(32) must be satisfied.
(b) Show that the same result is obtained when ß/2 is negative.
(c) Equation (31) admits complex conjugate roots A 1 , 2 = a ± bi when

(.3 2 < 4y. In this situation it is necessary that the modulus (a 2 + b2)U2

be smaller than I for the quantities A" to decay with increasing n (see
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Nonlinear Difference Equations	 63

Figure 2.2). Show that this will be true whenever condition (32) is
satisfied.

8. The equation

N,+1 = AN,(1 + aN,) -b ,

where A, a, b > 0 is often encountered in the biological literature as an empir-
ical description of density-limited population growth. For example, see M. P.
Hassell (1975). A is a growth rate, and a and b are parameters related to the
density feedback rate.
(a) Show that by rescaling the equation one can reduce the number of

parameters.
(b) Find the steady states of the equation N,+1 = ANN(1 + aN,) -b and deter-

mine the conditions for stability of each steady state.
(c) Draw the functionf(x) = Ax(1 + ax) - ' and use it to graph N i , ... , No

for some starting value No .

9. The difference equation

N1+1= A 1 +	 Jk2	 lN,
1 +expA(N1 —B)J

is discussed by C. Pennycuik, R. Compton, and L. Beckingham (1968). A
computer model for simulating the growth of two interacting populations. J.
Theor. Biol. 18, 316-329; and by M. B. Usher (1972). Developments in the
Leslie Matrix Model, in J. N. R. Jeffers, ed., Mathematical Models in Ecol-
ogy, Blackwells, Oxford. Determine the behavior of solutions to this equation.
(Assume A,, A z , A, B > 0.)

10. Graph the function

Axf(x) = 
1 + (ax)b '

for A, a, b > 0 and use this to deduce the properties of the equation

AN,
N`+' = 1 + (aN,)b

.

This is one example of a class of equations discussed by Maynard Smith
(1974). What happens when b = 1?

11. In May (1978), Host-parasitoid systems in patchy environments: a phenomeno-
logical model. J. Anim. Ecol., 47, 833 — 843, the following system of equa-
tions appear:

H,+1 = FH,(1 + aP,/k) -k ,

P,+, = H, — H,+, IF.

Determine the steady states and their stability for this system. (The parameters
F, a, k are positive.)

12. In Chapter 1 a problem for annual plant propagation led to a set of linear dif-
ference equations whose eigenvalues were given by equation (34). Using the
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where the function F has the shape shown in part (a) of the figure.

nk + I = F(nk)  

nk
(a)

nk

nk (b)

1l

nk	 (c)

64	 Discrete Processes in Biology

criteria in Section 2.8, determine a general condition that ensures growth of the
plant population.

13. In Levine (1975), a single species population is assumed to be governed by the
difference equation

nk+I = F(nk),

Figure for problem 13.

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Nonlinear Difference Equations 	 65

(a) Levine shows a variant of the cobwebbing method discussed in this chap-
ter, in which a graph of F (n) and its reflection F (n) are used to produce
successive iterates n k (see part (b) of the figure). What is the point
marked S in this figure? A somewhat different situation is shown in part
(c) of the figure. Interpret the points A, B, C, and discuss what happens
to the population nk .

(b) Levine describes the problem of stability in enriched ecosystems by sug-
gesting that "enrichment should tend to elevate the curve F (nk) though
not necessarily in a simple fashion." Explain this statement. Illustrate
how a sequence of ecosystems enriched to different degrees might corre-
spond to functions F(nk), which yield changes in stability of the steady
state, h.

14. Show that the steady state x = 0 of equation (10) is unstable whenever the
nontrivial steady state is stable.

15. Advanced exercise or project. Analyze the model

x,+l = ax n (1 — xn )

for a > 0. See Marotta (1982).

16. Waves of disease. In a popular article that appeared in the New Scientist,
Anderson and May (1982) 2 suggest a simple discrete model for the spread of
disease that demonstrates how regular cycles of infection may arise in a popu-
lation. Taking the average period of infection as the unit of time, they write
equations for the number of disease cases C, and the number of susceptible in-
dividuals S, in the tth time interval. They make the following assumptions:
(i) The number of new cases at time t + 1 is some fraction f of the product of
current cases C, and current susceptibles S,; (ii) a case lasts only for a single
time period; (iii) the current number of susceptibles is increased at each time
period by a fixed number, B(B # 0) and decreased by the number of new cases.
(iv) Individuals who have recovered from the disease are immune.
(a) Explain assumption (i).
(b) Write the equations for C,+, and	 based on the above information.
(c) Show that S = 1 /f, C = B is a steady state of the equations.
(d) Use stability analysis to show that a small deviation away from steady

state may result in oscillatory behavior.
(e) What happens when f = 2/B?
(f) Using a hand calculator or a simple computer program, show how solu-

tions to the equations depict waves of incidence of the disease. Typical
parameter values given by Anderson and May (1982) are

B = 12 births per 1000 people for the U.K.,
or 36 births per 1000 in a third-world country.

f= 0.3 X 10 -4 .

2. Note to the instructor: The article by Anderson and May (1982), which deals with the
control of disease by vaccination, is accessible to students at this stage and may be considered as
a topic for class presentation. More advanced models for epidemics will be discussed in Chap-
ter 6.
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Typical population data are

	

So = 2000,	 Co = 20.
17. This problem pursues further the topic of blood CO2 and ventilation volume

first described in Section 1.9 and problem 16 of Chapter 1. There we studied a
linear model for the process; we now examine a nonlinear extension.
(a) Whereas in problem 1.16 we assumed that the amount of CO2 lost,

`ß(V, Cn), was simply proportional to Vn and independent of C,,, let us
now consider the case in which

-T(Vn, Cn) = f VnCn •

Explain the biological difference between these distinct hypotheses.
(b) Further assume that the ventilation volume Vn+l is simply proportional to

Cn, so that
Vn+1 = aCn

as before. Write down the system of (nonlinear) equations for Cn and Vn .
(c) Show that the steady state of this system is

Cn = Vn /a = (m/ßa)" 2

and determine its stability.
(d) Are oscillations in Vn and C„ possible for certain ranges of the parame-

ters?
(e) Now consider a more realistic model (based on Mackey and Glass, 1977,

1978). Assume that the sensitivity of chemoreceptors to CO2 is not linear

	

but rather sigmoidal, i.e.,	 e

where
^(C)=K C C ee

e = an integer,
K = some real number.

Further suppose that

Vn+1 = Vmax SP(Cn),

with T(V,, Cn) as before. Write down the system of equations, and show
that it can be reduced to the following single equation for Cn :

C,,+1 = Cn — ßVmaxCn-1 Cn/(K' + Cn-1) + m.

(f) Sketch S(C) as a function of C for C = 0, 1, 2. The integer f can be de-
scribed as a cooperativity parameter. (For C > 1 the binding of a single
CO2 molecule to its chemoreceptor enhances additional binding; this type
of kinetic assumption is described in Chapter 7.)

(g) Determine what equation is satisfied by the steady states Cn and V,,.
(h) For e = 1 find the value of the physiological steady state(s). Give a con-

dition for their stability.
(i) Investigate the model by writing a computer simulation or by further

analysis. Are oscillations possible for f = I or for higher € values?
Comment: After thinking about this problem, you may wish to refer to the arti-
cles by Mackey and Glass. Their model combines differential and difference
equations so that the details of the analysis are different. See references in
Chapter 1.
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APPENDIX TO CHAPTER 2: TAYLOR SERIES

PART 1: FUNCTIONS OF ONE VARIABLE

Technical Matters

In order for a function F(x) to have a Taylor series at some point xo , it must have derivatives
of all orders at that point. (The function F(x) _ x at x = 0 does not qualify because of the
sharp corner it makes at x = 0.)

A Taylor series about xo is an expression involving powers of (x — x o), where xo is a
point at which F and all its derivatives are known. Written in the form

T(x) _	 a"(x — xo)",	 (37)
"=o

this expression is called a power series and may be thought of as a polynomial with infinitely
many terms. Equation (37) makes sense only for values of x for which the infinite sum is
some finite number (i.e., when the series converges). There are precise tests (e.g., the ratio
test) that determine whether a given power series converges.

Suppose T (x) is a power series that converges whenever I x — xo < r (r is then called
the radius of convergence). It can be shown that

F(x) = T(x) _	 a"(x — xo)"
"=o

provided the coefficients a" are of the following form:

ao = F(xo),

dF
a i =-

dx x0'
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1 d 2F
a 2 =— 2

2 dx xo

1 d"F I

ar	

(38)

= n!dx"`s fl
,

where these expressions are derivatives of F evaluated at the point x o . A technical question is
whether the sum (37) with the coefficients in (38) actually equals the value of F at points x
other than xo . Below we assume this to be the case.

Practical Matters

The Taylor series of a function of one variable can be written as follows:

dF	 1 d 2FI	 Z	 1 d 3 F	 3
F(x) = F(xo) +— (x — xo) + — Z (x — xo) + 3 (x — x o)

dx X0 	2 dx o 	3. dx ,o

1 d"F
+...+-----H 

(x—xo)^+....
n! dx ,

When x — xo is a very small quantity, the terms (x — xo) k for k > 1 can usually be neglected
(provided the derivative coefficients are not very large; i.e., the function does not make
abrupt changes). In this case

F(x) = F(xo) + dF I (x — xo) +	 + (neglected terms) .
dx Xa

Figure 2.12 demonstrates how this expression approximates the actual function.

Figure 2.12 By retaining the first two terms in a
Taylor series expansion for a function, the value of
the function at a point x, P2 = F(x), is	

P3 — Fa (x)approximated by the expression
P3 = Fa(X) = F(xo) + Ay = F(xo) + (slope) Ax.

Pz =F(x)
The quantity dX is the slope of the tangent line,

^o
and Ax = x — xo . Using these terms one arrives at
an approximation that is accurate only when xo and
x are close.	

Pi — F(x o )

F 

xO	 x
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PART 2: FUNCTIONS OF TWO VARIABLES

Technical Matters

Consider the function of two variables F (x, y) that has partial derivatives of all orders with
respect to x and y at some point (xo, yo) such that P, = F(xo, yo). Then the value of F at a
neighboring point P2 = F(x, y) can be calculated using a Taylor series expansion for F, pro-
vided this expansion converges to the value of the function. Since variation in both x and y
must be taken into account, the series involves partial derivatives. It proves convenient to
define the following quantity:

OF = (h ä + k -)F(x, y) def 
(x

 — xo)— + (y — yo) 
aY

By nth power of the above expression we mean the following:

n	 n	 n
AF = h aax + k ay F(x, y) = (x — xo)" ax" + n(x — xo) n- ' ( y — yo) ax Fay

a"F
+ ... + n(x — xo)(y — yo)"-' axayn 1

a"F
+ (y — Yo)" ay

Using this notation, we can now express the Taylor series of F as follows:

F (x, y) = F (xo, yo) +	 (xo, yo) + 2 ÄF (xo, yo) + ... + n' AF (xo, yo) + .. .

In this shorthand, the similarity to functions of one variable is apparent. Note that the expres-
sions 0"F are binomial expansions involving mixed partial derivatives of F that are evaluated
at (xo, yo).

Practical Matters

When (x, y) is close to (xo, yo), the function F can be approximated by retaining the first two
terms of a Taylor series expansion, as follows:

F(x, y) = F(xo, yo) + ÄF(xo, Yo)

	= F(xo , yo) + (x — xo) 
aF	 + ( y — yo) 

aF
ax I0,0	 ay xo,vo

Figure 2.13 illustrates how this expression approximates the value of the function. The geo-
metric ideas underlining this expression are best understood by readers who have had some
exposure to vector calculus. For others it suffices to remark that this is a natural extension of
the one-variable case to a higher dimension.
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Figure 2.13 Shown is the surface z = F(x, y),
where F is a function of two variables. Assuming
that the value of F at (xo, yo), Pi = F(xo, yo), is
known, we approximate the value of F at some
neighboring point (x, y), P2 = F(x, y) by a Taylor
series expansion. If only terms up to order 1 are
taken, the expression yields

aF
P3 = F(xo, yo) + ax	 (x — xo

)
x0,Y0

+(y — yo).ayay ,0 , yo

The value P3 # P2 can be interpreted geometrically.
P3 is actually the height [at (xo, yo)] of a tangent
plane (shaded) that approximates the surface
z = F(x, y). The partial derivatives of F are slopes
of the vectors that are shown as bold arrows.
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