
11 Models for Development
and Pattern Formation
in Biological Systems

It is suggested that a system of chemical substances, called morphogens, re-
acting together and diffusing through a tissue, is adequate to account for the

main phenomena of morphogenesis.
A. M. Turing, (1952).

The chemical basis for morphogenesis.
Phil. Trans. Roy. Soc. Lond., 237, 37-72.

... Simple interactions can have consequences that are not predictable by
intuition based on biological experience alone.

L.A. Segel, (1980). ed.
Mathematical Models in Molecular and Cellular Biology,

Cambridge University Press, Cambridge, England.

This indicates a genuine developmental constraint, namely that it is not pos-
sible to have a striped animal with a spotted tail . .

J. D. Murray (1981a).

The beauty of natural forms and the intricate shapes, structures, and patterns in liv-
ing things have been a source of wonder for natural philosophers long before our
time. Like the spiral arrangement of leaves or florets on a plant, the shapes of shells,
horns, and tusks were thought to signify some underlying geometric concepts in Na-

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Models for Development and Pattern Formation in Biological Systems 	 497

ture's designs. The teeming world of minute organisms was found to hold patterns
no less amazing than those on the grander scales. Forms of living things were used
from ancient times as a means of classifying relationships among organisms. The
study of phenomena underlying such forms, although more recent, also dates back to
previous centuries.

Initially, a primary fascination with static designs was characterized by at-
tempts to fathom the secrets of natural forms with geometric concepts or simple
physical analogies. Phyllotaxis (the study of the geometric arrangement of plant
parts; e.g. leaves on a stem, scales on a cone, etc.) was then restricted to
classification of spiral patterns on the basis of mathematical sequences (such as the
Fibonacci numbers). The shapes of minute aquatic organisms and the structures cre-
ated by successive cell divisions were compared to those formed by soap bubbles
suspended on thin wire frames. (Forces holding these shapes together were described
formally by F. Plateau and P. S. Laplace in the 1800s.) Spiral growth was explained
in the early 1900s by D. W. Thompson as a continuous addition of self-similar incre-
ments.

In recent times the emphasis has shifted somewhat in our study of develop-
ment, differentiation, and morphogenesis (morpho = shape or form; genesis = for-
mation) of living things. We have come to recognize that the forms of organisms, as
well as the patterns on their leaves, coats, or scales, arise by complex dynamic pro-
cesses that span many levels of organization, from the subcellular through to the
whole individual. While detailed understanding is incomplete, some broad concepts
are now recognized as underlying principles.

First, at some level, forms of organisms are genetically determined. Second,
the final shape, design, or structure is usually a result of multiple stages of develop-
ment, each one involving a variety of influences, intermediates, and chemical or
physical factors. Third, dramatic events during development are sometimes due to
rather gradual changes that culminate in sudden transitions. (This can be likened to a
stroll that takes one unexpectedly over a precipice.) Finally, environmental
influences and interactions with other organisms, cells, or chemicals can play non-
trivial roles in a course of development.

There are numerous unrelated theories and models for differentiation and mor-
phogenesis, just as there are many aspects to the phenomena. Here it would be im-
possible to give all these theories their due consideration, although some brief indi-
cations of references for further study are suggested in a concluding section. Instead
of dealing in generalities, the discussion will be based on two rather interesting mod-
els for development and morphogenesis that are of recent invention.

In the first model we focus on the phenomenon of aggregation, a specific as-
pect of one unusually curious developmental system,' the cellular slime molds. A
partial differential equation (PDE) model due to Keller and Segel is described and
analyzed. An explanation of several observations then follows from the mathemati-
cal results.

A second topic is then presented, that of chemical morphogens, (the putative
molecular prepatterns that form signals for subsequent cellular differentiation). The
theory (due to A. M. Turing) is less than 40 years old but stands as one of the single
most important contributions mathematics has made to the realm of developmental
biology.
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498	 Spatially Distributed Systems and Partial Differential Equation Models

While these topics are somewhat more advanced than those in the earlier chap-
ters of this book, a number of factors combine to motivate their inclusion. From the
pedagogic point of view, these are good illustrations of some analysis of PDE mod-
els. (While the analysis falls short of actually solving the equations in full generality,
it nevertheless reveals interesting results.) Furthermore, techniques of linear stability
methods, and the important concepts of gradual parameter variations (which are fa-
miliar to the reader) are reapplied here. (Although certain subtleties may require
some guidance, the underlying philosophy and basic steps are the same.) This then is
a final "variation on a theme" that threads it way through the approach to the three
distinctly different types of models (discrete, continuous, and spatially distributed).

Even more to the point, the models presented here are examples of genuine in-
sight that mathematics can contribute to biology. These case studies point to funda-
mental issues that would be difficult, if not impossible, to resolve based on verbal
arguments and biological intuition alone. These examples reinforce the belief that
theory may have an important role to play in the biological sciences.

The chapter is organized as follows: Sections 11.1 to 11.3 are devoted to the
problem of aggregation. In particular, Section 11.2 introduces the methods of ana-
lyzing (spatially nonuniform) deviations from a (uniform) steady state. Readers who
have not covered Chapters 9 and 10 in full detail can nevertheless follow this analy-
sis provided that the equations of the model are motivated and that the form of the
perturbations given by equations (9a,b) is taken at face value.

Sections 11.4 and 11.5 then introduce reaction-diffusion systems and chemical
morphogens. The general model requires a very cursory familiarity with the diffu-
sion equation (or faith that the special choice of perturbations given by equation (27)
are appropriate; see motivation in Section 11.2). Further analysis is essentially
straightforward given familiarity with Taylor series, eigenvalues, and characteristic
equations. (A somewhat novel feature encountered is that the growth rate o of per-
turbations depends on their spatial "waviness" q.) It is possible to omit the details of
the derivation leading up to the conditions for diffusive instability, (32a,b) and (38),
in the interest of saving time or making the material more accessible. Section 11.6 is
an important one in which we use simple logical deductions to make physically in-
teresting statements based on the conditions derived in the preceding analysis. The
concepts in Section 11.7 are more subtle but lead to an appreciation of the role of the
domain size on the chemical patterns. Implications for morphogenesis and for other
systems are then given in Sections 11.8 and 11.9.

11.1 CELLULAR SLIME MOLDS

Despite their mildly repelling name, slime molds are particularly fascinating crea-
tures offering an extreme example of "split personality." In its native state a slime
mold population might consist of hundreds or thousands of unicellular amoeboid
cells. Each one moves independently and feeds on bacteria by phagocytosis (i.e. by
engulfing its prey). There are many species of slime molds commonly encountered
in the soil; one of the most frequently studied is Dictyostelium discoideum.
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When food becomes scarce, the amoebae enter a phase of starvation and an in-
teresting sequence of events ensues. First, an initially uniform cell distribution de-
velops what appear to be centers of organization called aggregation sites. Cells are
attracted to these loci and move towards them, often in a pulsating, wavelike man-
ner. Contacts begin to form between neighbors, and streams of cells converge on a
single site, eventually forming a shapeless multicellular mass. The aggregate under-
goes curious contortions in which its shape changes several times. For a while it
takes on the appearance of a miniature slug that moves about in a characteristic way.
The cells making up the forward portion become somewhat different biochemically
from their colleagues in the rear. Already a process of differentiation has occurred; if
left undisturbed the two cell types (called prespore and prestalk) will have quite dis-
tinct fates: Anterior cells turn into stalk cells while posterior cells become spores.

At this stage the differentiation of the multicellular mass is as yet reversible. A
fascinating series of experiments (see box in Section 11.3) has been carried out to
demonstrate that the ratio of the two cell types is self-regulating; if a portion of the
slug is excised, some of the cells change their apparent type so as to preserve the
proper ratio.

The sluglike collection of cells executes a crawling motion; understanding of
the underlying mechanism is just beginning to emerge (see Odell and Bonner,
1986). It then undertakes a sequence of shapes including that of a dome. As a culmi-
nation of this amazing sequence of events, cellular streaming resembling a "reverse
fountain" brings all prestalk cells around the outside and down through the center of
the mass. The result is a slender, beautifully sculptured stalk bearing a spore-filled
capsule at its top. In order to provide a rigid structural basis, the stalk cells harden
and eventually die. The spore cells are thereby provided with an opportunity to sur-
vive the harsh conditions, to be dispersed by air currents, and to thus propagate the
species into more favorable environments. Since individual slime mold cells do not
reproduce after the onset of aggregation, there is always some fraction of the popula-
tion that is destined to die as part of the structural material. (There is a natural ten-
dency to view this anthropomorphically as an example of self-sacrifice for the group
interest.)

Slime molds have fascinated biologists for many decades, not simply for their
amazing repertoire, but also because of their easily accessible and malleable devel-
opmental system. There are many intriguing questions to be addressed in under-
standing the complicated social behavior of this population of relatively primitive or-
ganisms. To outline just a few theoretical questions, consider:

1. What causes cells to aggregate, and how do cells "know" where an aggregation
center should form?

2. What mechanisms underly motion in the slug?
3. What determines the prespore-prestalk commitment, and how is the ratio

controlled? (This is a problem of size regulation in a pattern.)
4. How are cells sorted so that prestalk and prespore cells fall into appropriate

places in the structure?
5. What forces lead to the formation of a variety of shapes including that of the

final sporangiophore (the spore-bearing structure)?
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Aggregate	 Slug stage

Sporangiophore

Figure 11.1 Life cycle of the slime mold
Dictyostelium discoideum showing the sequence

of events leading to formation of the spore-bearing
stalk, the sporangiophore.

While the theoretical literature deals with such questions, we shall address only
the first of these. (Other topics are excellent material for advanced independent
study.) Perhaps best understood to date, the aggregation process has been rather suc-
cessfully analyzed by Keller and Segel (1970) in a mathematical model that leads to
a more fundamental appreciation of this key step in the longer chain of events.

For many years it has been known that starved slime mold amoebae secrete a
chemical that attracts other cells. Initially named acrasin, it was subsequently
identified as cyclic AMP (cAMP), a ubiquitous molecule whose role is that of an in-
tracellular messenger. The cells also secrete phosphodiesterase, an enzyme that de-
grades cAMP. cAMP secretion is autocatalytic in the sense that free extracellular
cAMP promotes further cAMP secretion by a chain of enzymatic reactions (in which
a membrane-bound enzyme, adenylate cyclase, is implicated). The molecular sys-
tem has been studied in some depth (see references).

To give a minimal model for the aggregation phase, Keller and Segel (1970)
made a number of simplifying assumptions:

1. Individual cells undergo a combination of random motion and chemotaxis
towards cAMP.

2. Cells neither die nor divide during aggregation.
3.	 The attractant cAMP is produced at a constant rate by each cell.
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Figure 11.2 States in the aggregation of an initially Development; the biology of form. fig. 39.
uniform distribution of slime molds (each dot	 Reprinted by permission of Harvard University
represents a cell). [From Bonner, J. T. (1974). On Press, Cambridge, Mass., fig. 39.]

4. The rate of degradation of cAMP depends linearly on its concentration.
5. cAMP diffuses passively over the aggregation field.

Of this list, only assumptions 3 and 4 are drastic simplifications.
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502	 Spatially Distributed Systems and Partial Differential Equation Models

These assumptions lead to the following set of equations, given here for a one-
dimensional domain:

aa __ a
at	

ax (J..dom + Jchcmotactic), 	(Ja)

at	 a (Jdiffasion) + sources,	 (lb)

where

a (x, t) = density of cellular slime mold amoebae per unit area at (x, t),

c (x, t) = concentration of cAMP (per unit area) at (x, t),

J = flux.

By the results of Chapter 9, the appropriate assumptions for chemotactic and for ran-
dom motion lead to flux terms that can be incorporated into these equations; we then
obtain the following:

as _ a (

	aaac)^t = ^x \ µ ^x + xa a
x	(2a)

at = _ _ _D)  + fa — kc,	 (2b)

where

= amoeboid motility,
X = chemotactic coefficient,
D = diffusion rate of cAMP,
f = rate of cAMP secretion per unit density of amoebae,
k = rate of degradation of cAMP in environment.

The quantities µ, %, f, and k may in principle depend on cellular densities and chem-
ical concentrations, but for a first step they are assumed to be constant parameters of
the system.

We shall study this model in two stages. First we find the simplest solution of
the equations, that is, a solution constant in both space and time. This is called the
homogeneous steady state. We will next examine its stability properties and thereby
address the question of aggregation.

11.2 HOMOGENEOUS STEADY STATES AND INHOMOGENEOUS
PERTURBATIONS

A homogeneous steady state of a PDE model is a solution that is constant in space
and in time. For equations (2) such solutions must then satisfy the following:

c (x, t) = c,	 a (x, t) = ä,	 (3a)
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where
ac aä	 (3b)

aT_aa _
ax ax —0

Now substitute these into equations (2a,b). Observe that, since all derivatives are
zero, one obtains

0 = 0,

0=0+fä—kc,

In the homogeneous steady state it must follow that

fä=kc.	 (4)

This means that in every location the amount of cAMP degraded per unit time
matches the amount secreted by cells per unit time.

It is of interest to determine whether or not such steady states are stable. As be-
fore, we analyze stability properties by considering the effect of small perturbations.
However, a somewhat novel feature of the problem to be exploited is its space de-
pendence. In determining whether aggregation of slime molds is likely to begin, we
must look at spatially nonuniform (also called inhomogeneous) perturbations, and
explore whether these are amplified or attenuated.

If an amplification occurs, then a situation close to the spatially uniform steady
state will destabilize, leading to some new state in which spatial variations predomi-
nate. Keller and Segel (1970) identified the onset of aggregation with a process of
destabilization.

Starting close to ä and c we take our distributions to be

a (x, t) =	 + a' (x, t),	 (5a)

	

c (x, t) = c + c'(x, t), 	 (Sb)

where a' and c' are small. In preparation, we rewrite (2) in the expanded form

as ä2a _ raa ac	 ä2cl
at —µ ßx 2 X 1\ ax ax + a ^x^11'	 (6a)

2

at — D 
-j + fa — kc.	 (6b)

In this form equations (6a,b) contain two nonlinear terms within parentheses.
(All other terms contain no multiples or nonlinear functions of the dependent vari-
ables.) However, the fact that a' and c' are small permits us to neglect the nonlinear
terms. To see this, substitute (5a,b) into (6a,b) and expand. Then using the fact that
ä and c are constant and uniform we arrive at the following equations:

aa'	 a2a'f aa' ac'	 äc'	 , a2C'1
^t = µ az2  - XI\ ax ax + a

	

äx
+ a axe, 	(7a)
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504	 Spatially Distributed Systems and Partial Differential Equation Models

z,

at = D axe 
+ fa' — kc'.	 (7b)

The terms (aa'/ax)(ac'/ax) and a'a2c'/axz are quadratic in the perturbations or
their derivatives and consequently are of smaller magnitude than other terms, pro-
vided a' and c' and their derivatives are small (see problem 1).

We now rewrite the approximate equations:

aa ' 	aza'	 a2C'
^t = µ ax 2 — Xa axZ ,	 (8a)

z,
â t = D äz2 + fa' — kc'.	 (8b)

Note that they are now linear in the quantities a' and c'. Based on a similarity with
the diffusion equation discussed in the previous chapter, we shall build solutions to
equations (8a,b) from the basic functions e°` cos qx and e" sin qx. Without attempt-
ing to deal in full generality we restrict our attention to the following possibilities:

	a'(x, t) = Ae 0 ' cos qx,	 (9a)
	c' (x, t) = Ce °` cos qx,	 (9b)

While this rather special assumption may seem at first sight surprising, it
makes sense for several reasons.

1. The functions appearing as factors in equations (9a,b) are related to their own
first and second partial derivatives (with respect to time and space re-
spectively). These functions are thus good candidates for solutions to equations
such as (8) in which a 2/ax 2 and a/at appear. (Indeed, such functions were
shown to appear rather naturally in Chapter 9, where we encountered their
spatial parts as eigenfunctions of the diffusion operator.)

2. The spatial dependence of cos qx is that of a function with maxima and
minima—precisely descriptive of an aggregation field where there is depletion
of cells in some places and accumulation in others.

3. Later we explicitly consider the effect of domain size and boundary conditions
on the aggregation process. We saw in Section 9.8 that for impermeable
boundaries, the eigenfunction cos qx (where the wavenumber q is suitably
defined) is appropriate. This will soon be discussed more fully.

4. The time dependence of (9a,b), e°` would be suitable for either increasing or
decreasing perturbations. It is up to the analysis to determine whether o > 0
(that is, instability of the uniform state) is compatible with the model.

5.  In a given realistic example, a'(x, t) and c'(x, t) might have more complicated
spatial forms. There is then a theorem (called the Fourier theorem) analogous
to that in the Appendix to Chapter 9, which guarantees that the spatial
functional form of the perturbations can be expressed as an infinite sum of
cosines. (Such an expansion is called a Fourier cosine series.) For simplicity,
we are merely isolating one component in (9). Since the approximate equations
(8a,b) are linear, it is always possible to construct general solutions from linear
superpositions of simpler ones.

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Models for Development and Pattern Formation in Biological Systems 	 505

Pursuing the consequences of assumptions (9) for the perturbations, we substi-
tute (9) into (8) and differentiate. This leads to

	Ao-e 61 cos qx = — µg 2Ae°t cos qx + Cg ze i cos qx,	 (10a)
Co-e° cos qx = —Dq 2Ce 0` cos qx + fAe °` cos qx — kCe °` cos qx. (1Ob)

A factor of e Q` cos qx can be cancelled to obtain a pair of equations in A and C:

A (o + FuI 2) — C (XIq 2) = 0,	 (11 a)

A( f)+C(o, +Dq z +k)=0.	 (Ilb)

Thus equations (9a,b) indeed constitute a solution to (8a,b) provided that algebraic
equations (l la,b) are satisfied. One trivial way of solving these is to set A = C = 0.
(This is in fact the unique solution unless the equations are redundant.) But this is
not what we want since it means that the perturbations a' and c' are identically zero
for all t. To study nonzero perturbations it is essential to have A * 0 and C # 0; the
only way this can be achieved is by setting the determinant of equations (1 la,b)
equal to zero:

z	 z
det	 + f q if + Dq2 + k/ = 0.	

(12)

The resulting equation for if is then

	(0. + µg z)(cr + Dq z + k) — Xag 2f = 0,	 (13)

or, after rearranging terms, the quadratic equation in o-:

crz + ßQ + y = 0,	 (14a)
where

ß = q 2(µ + D) + k,	 (14b)
y = q 2[p (Dq 2 + k) — X4f]. 	 (14c)

We can now address the question of whether the growth rate o - of the perturbations
can ever have a positive real part (Re if > 0). First note that the two possible roots
of (14a) are

—ß ± ^ß
=	 2	 (15)

From (14b) we observe that ß is always positive, so there is always one root whose
real part is negative. In order for the second root to have a positive real part it is
therefore necessary that the value of y given by (14c) be negative [see problem (le)]:

Condition for Aggregation of Cellular Slime Molds

µ(Dg 2 +k)<Xnf.	 (16)

(Note: This also implies that both o-, and oz are real numbers.) Under this condition
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506	 Spatially Distributed Systems and Partial Differential Equation Models

we may conclude that the homogeneous cell distribution is unstable to perturbations
of the form (9) and that the uniform population will begin to aggregate.

11.3. INTERPRETING THE AGGREGATION CONDITION

We shall now pay closer attention to what is actually implied by inequality (16). To
do so, first consider the effect of boundary conditions on the quantity q. Suppose the
amoebae are confined to a region with length dimension L; that is, 0 <x < L. This
means that equations (2a,b) and therefore also equations (8a,b) are equipped with
the boundary conditions

ac = 0
	 at	 x = 0, x = L,	 (17a)ax

as
=0	 at	 x=0,x=L.	 (17b)ax

As we have seen in Section 9.8 such conditions can only be satisfied provided
functions (9a,b) are chosen appropriately. In particular, it is essential that

ä (cos qx) = 0	 at	 x = L,

that is, sin qL = 0. This is satisfied only for

na
q = L	 (n = 0, 1, 2, ...),	 (i8)

where the nonnegative integer n is called the mode. Thus inequality (16) implies that

Dµ LZ (nTr) 2 + k < ,yäf.	 (19)

To satisfy this it is necessary to have one or several of the following conditions met:

1. Values of µ, D, k, and/or n must be small.
2. Values of L must be large.
3. Values of X, ä, and/or f must be large.

This means that the factors promoting the onset of aggregation (leading to instabil-
ity) are as follows:

1. Low random motility of the cells and a low rate of degradation of cAMP.
2. Large chemotactic sensitivity, high secretion rate of cAMP, and a high density

of amoebae, ä.

Indeed, it has been observed experimentally that the onset of Dictyostelium ag-
gregation is accompanied by an increase in chemotactic sensitivity and cAMP pro-
duction, so it appears that these changes indeed bring about the condition for insta-
bility, given by inequality (19), that leads to aggregation.
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Several other factors apparently promote aggregation; of particular note is the
prediction that large L and small n are favorable for instability. This gives the fol-
lowing somewhat surprising results:

1. Aggregation is favored more highly in larger domains than in smaller ones.
2. The perturbations most likely to be unstable are those with low wavelength.

For example, n = 1 leads to the smallest possible LHS of inequality (19), all
else being equal.

The perturbation whose wavelength is q = it/L (that is, where n = 1) looks
like the function shown in Figure 11.3(a). If this is the most unstable mode, we ex-
pect that the aggregation domain should first be roughly bisected, with amoebae
moving away from one side of the dish and toward the other. Of course, if the
parameter values gradually shift so that inequality (19) is also satisfied for n = 2,
one can expect further subdivision of the domain into smaller aggregation domains.
Biologists were at one time puzzled about the fact that the size of aggregation do-
mains is not proportional to the density of amoebae . This result, too, is explained
by inequality (19). (See problem 4.)

From this analysis one gains evidence for Segel's (1980) statement that even
relatively simple interactions can have consequences that are not predictable based
only on intuition or biological experience. With the hindsight that mathematical
analysis gives, Keller and Segel (1970) were able to explain the counterintuitive as-
pects of the results as follows:

1. The forces of diffusion act most efficiently to smooth large gradients on small
length scales. For this reason, in a large dish the long-range variation in cAMP
concentrations and in cell densities has a greater chance of being
self-reinforced before being obliterated by diffusion.

2. Similarly, the lower wavelengths present locally shallower gradients and are
less prone to being effaced by diffusion and random motility.

Suggestions for Further Study or Independent Projects on Cellular Slime Molds

1. The prespore-prestalk ratio. See Bonner (1967, 1974) for surveys of older pa-
pers and a summary of the observed phenomena. For a more recent review of
modeling efforts consult MacWillians and Bonner (1979) and Williams et al.
(1981).

2. cAMP activity and secretion in D. discoideum. The substance cAMP can be
secreted in an excitable or an oscillatory response as well as constant steady lev-
els. In a series of models, Segel and Goldbetter outline the possible underlying
molecular events. See Figure 8.16 and Segel (1984), Goldbetter and Segel
(1980), and Devreotes and Steck (1979).

3. Later developmental stages (shape of the aggregate). See Rubinow et al. (1981).
4. Locomotion in the slug. See Odell and Bonner (1981).
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508	 Spatially Distributed Systems and Partial Differential Equation Models

Figure 11.3 Perturbations a' or c' of the
homogeneous steady state, ä (or c ). When a finite
one-dimensional domain has imposed boundary
conditions, there are restrictions on the
wavenumber q of permissible perturbations. For
example, no flux boundaries imply that d(cos qx)/
ax = 0 at x = 0 and x = L. This can only be
satisfied for q = n'rr/L, where n is an integer.
Examples of the cases where n = 1, 2, 3 and 4 are
shown here. The amplitudes have been
exaggerated; we can only address the evolution of
small-amplitude perturbations. Dotted lines
represent a homogeneous steady state of equations
(2a,b).

Perturbation
amplitude

0

n= I

L

n =2

n=3

L

n=4

L
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While it may be said that developmental biologists have to some extent resisted
the intrusion of mathematics, the Keller-Segel model has become a classic in this
field and is now frequently quoted in biological references. Many other aspects of
the differentiation of cellular slime molds are equally, if not more, amazing than the
aggregation phase. The topic continues to attract the most refined experimental and
theoretical efforts.

11.4. A CHEMICAL BASIS FOR MORPHOGENESIS

Morphogenesis describes the development of shape, pattern, or form in an organism.
The processes that underly morphogenesis are rather complex, spanning subcellular
to multicellular levels within the individual. They have been studied empirically and
theoretically for over a century. Among the first to devote considerable attention to
the topic was D'Arcy Thompson, whose eclectic and imaginative book On Growth
and Form could be considered as one of the first works on theoretical biology.
Thompson emphasized the parallels between physical, inorganic, and geometric
concepts and the shapes of a variety of plant and animal structures.

Some 35 years ago the theoretical study of morphogenesis received new im-
petus from a discovery made by a young British mathematician, Alan Turing. In a
startling paper dated 1952, Turing exposed a previously little-known physical result
that foretold the potential of diffusion to lead to "chemical morphogenesis."

From our daily experience most of us intuitively associate diffusion with a
smoothing and homogenizing influence that eliminates chemical gradients and leads
to uniform spatial distributions. It comes as some surprise, then, to be told that dif-
fusion can have an opposite effect, engendering chemical gradients and fostering
nonuniform chemical "patterns." Indeed, this is what the theory predicts. The fol-
lowing sections demonstrate the mathematical basis for this claim and outline appli-
cations of the idea to morphogenesis.

The key elements necessary for chemical pattern formation are:

1. Two or more chemical species.
2. Different rates of diffusion for the participants.
3. Chemical interactions (to be more fully specified shortly).

An appropriate combination of these factors can result in chemical patterns that arise
as a destabilization of a uniform chemical distribution.

Turing recognized the implications of his result to biological morphogenesis.
He suggested that during stages in the development of an organism, chemical con-
stituents generate a prepattern that is later interpreted as a signal for cellular differ-
entiation. Since his paper, chemical substances that play a role in cellular differenti-
ation have been given the general label morphogen.

The steps given in this section are aimed at exposing the basic idea on which
the Turing (1952) theory is built. To deal in specific terms we consider a set of two
chemicals that diffuse and interact. For simplicity, a one-dimensional domain is con-
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510	 Spatially Distributed Systems and Partial Differential Equation Models

sidered, although it is later shown that the conclusions hold in higher dimensions as
well. See Segel and Jackson (1972) for the source of this method.

Let
	C, = C,(x, t),	 C2 = C2(x, t),

be the concentrations of chemicals 1 and 2, and let

R,(C,, C2) = rate of production of C 1 ,

R2 (C1, C2) = rate of production of C2 ,

D, = diffusion coefficient of chemical 1,

D2 = diffusion coefficient of chemical 2.

The quantities R, and R2 (kinetic terms) generally depend on concentrations of the
participating molecules. By previous remarks we know that a set of equations for C,
and C2 consists of the following:

z
as = R,(C1, C2) + D'

. _c!,	 (20a)

zaCZ = R2(C1, C2) + D2
 a Cz
	(20b)

at	 ax2

To underscore the role of diffusion in pattern formation we assume that in ab-
sence of its effects (when solutions are _well_mixed) the chemical system has some
positive spatially uniform steady state, (C, C2). By definition this means that

aC;
	at = 0,

	 (21a)
azC, 	(i = 1, 2).

= 0.	 (21b)
ax z

We therefore conclude that

R1(1, C2) = 0,	 (22a)
R2(C 1 , C2) = 0.	 (22b)

As in Section 11.2 we now examine the effects of small inhomogeneous perturba-
tions of this steady state. We are specifically interested in those perturbations that are
amplified by the combined forces of reaction and diffusion in equations (1 ) and (2).
When such perturbations are introduced, the uniform distributions C, and Cz are up-
set.

Let

C (x, t) = C1 (x, t) — C,,	 (23a)
CZ (x, t) = C2 (x, t) — C2 ,	 (23b)

be small nonhomogeneous perturbations of the uniform steady state. Provided these
are sufficiently small, it is again possible to linearize equations (20a,b) about the ho-
mogeneous steady state. Recall that this can be achieved by writing Taylor-series ex-
pansions for R, (C,, C2 ) and R2 (C 1 , C2) about the values C,, and C2 and retaining the

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Models for Development and Pattern Formation in Biological Systems 	 511

linear contributions (see problem 9). We then obtain the linearized version of equa-
tions (20a,b):
	z 	 .

at 	a„C, + a12Ci + D, aC' 	 (24a)

	at 
= az, C, + a22Cz + D2 a _ 2

	
(24b)

where
aR,l	 aR,

„	
l

a=—	 — ,
aCI C,. CZ

	a,Z=
aCz ^,. E^	 (25)

äR2 	äR21
az,_a22 =—

aC, C,, C2 aCZ E,, 62

and C, and Ci are perturbations from C, and Cz. For convenience, these equations
can be written in the shorthand matrix form:

Cl = MC' + DCL,	 (26a)
where

C , = (c l (x , t))
	(C1(X, t) – C, l (26b)

Ci(x, t)1	 C2(x, t) – Cz/

a„ a1	
(26c)M =

(a2, a22

D, 0
D = 0 DZ 	(26d)

The resulting system of equations is linear. It can be solved by various meth-
s, including separation of variables. One set of possible solutions is

C'
	(CC2)

	(a2) cos qx e°`.	 (27)

(See problem 9.) While this is a special form, considerations identical to those of
Section 11.2 are again viewed as sufficient justification for restricting analysis to this
set of solutions.

By substituting perturbations (27) into equations (24) or (26) we obtain

a,v = a,,a, + a12a2 – D1g2a,,
a2Q = a21 a, + a22 a2 – D2q 2a2 .

While the quantities a, a2, q, and o- are a priori unknown to us, we are interested
specifically in the situation in which small perturbations grow with time. Rewriting
these as linear equations in a, and a2, we obtain

	a,(o – a ll + D1q 2) + a2(–a,2) = 0,	 (28a)

	

ai(–a21) + (a- – a22 + D 2q 2)a2 = 0,	 (28b)

As in Section 11.2, we arrive at a set of algebraic equations in the perturbation
amplitudes a, and a2 . Since the RHS is (0, 0), one solution is always a, = a2 = 0.
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512	 Spatially Distributed Systems and Partial Differential Equation Models

This is dismissed as a trivial case; that is, perturbations are absent altogether for all
t. But a nontrivial solution can only exist if the determinant of the coefficients ap-
pearing in equations (28a,b) is zero. It is thus essential that

det or — a" + D1q2	 —a12	 l	 0.	 (29)
— a21	 o, — a22 + D2g 2/

This leads to the following equation:

(Q — a l l + Dig 2)(o- — a22 + D2g 2) — a12a21 = 0,
or

a-2 + o'( — a22 + D2g 2 — all + D1q 2)

+ [(ail — Dig 2)(a22 — D2g 2) — aizazi] = 0.	 (30)

Equation (30) is called the eigenvalue or the characteristic equation.
Our next goal is to determine whether for some q, the eigenvalue v can have a

positive real part, in other words, whether perturbations of particular "waviness" can
cause instability to occur.

11.5. CONDITIONS FOR DIFFUSIVE INSTABILITY

As in previous analysis (of both ordinary and partial differential equations) the char-
acteristic equation (30) will now be used to determine whether growing perturbations
are possible. From equation (27) it is clear that the eigenvalue a (the growth rate of
the perturbations) should have a positive real part: Re o, > 0.

To concentrate solely on diffusion as a destabilizing influence we now incorpo-
rate the assumption that in the absence of diffusion the reaction mixture is stable.
This implies that by setting D, = D2 = 0 in equations (24) or in equation (30) one
obtains only negative values of Re v (consistent with stability). Eliminating D, and
D2 from equation (30) leads to

a-2 — a-(a„ + a22) + (a11a22 — a12a21) = 0.	 (31)

This quadratic equation is identical (save for the renaming of quantities) to the
characteristic equation of the system of 2 ODEs obtained by omitting the diffusion
terms in equations (20a,b). The conditions under which Re o, is negative are thus
identical to stability conditions derived in Section 4.9:

Conditions for Stability of the Chemicals in the Absence of Diffusion

1. a„ +a22<0,

2. an azz — a 12 a21 > 0,

(32a)

(32b)

Strictly speaking, the second of these is required in the case where o, is real.
To appreciate how diffusion can act as a destabilizing influence, we consider

analogous conditions obtained from equation (30) where D 1 , D2 * 0. By violating
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any one of these, a regime of instability would be created. The inequalities are as
follows:

1. (a„ + a22 — D2g 2 — D1q 2) < 0,	 (33a)

2. [(ali – Dig 2)(a22 – D2g 2) – a12a21] > 0.	 (33b)

Violation of either (1) or (2) leads to diffusive instability.

Because D, and D 2 and q z are positive quantities, it is clear that condition
33(a) always holds whenever 32(a) is true. The only other possibility then is that
33(b)may be reversed for certain parameter values. To study this more closely, we
represent the LHS of 33(b) by H. We require that

H < 0.	 (34)

By expanding the expression, H is found to be

H = D1D2(g 2) 2 — (D 1 a22 + D2a11)(g 2) + (a11a22 — a12a21)•	 (35)

This expression seems complicated at first glance, but it can be understood in a
straightforward way. Let us consider H as a function of q z and note that equation
(35) is then simply a quadratic expression (with coefficients that depend on the a,
and D,).

Since the coefficient of (q z) z , D1D2, is positive, the graph of H(q 2) is a
parabola opening upwards (see Figure 11.4). The function thus has a minimum for
some value of q z . By simple calculus the value of this minimum can be determined.
It is found to be

z 	1 a22 + a—' l	 (36a)gmin ° 2 
Dz D,/

(See problem 10.) Clearly, in order to satisfy (34) a minimal condition is that
H(g min) should be negative:

H(g min) < 0,	 (36b)

In problem 10 the reader is asked to evaluate H(gmin) and thus demonstrate that (36)
implies that

1 ^D, azz + Dza„ 1
(a11a22 – aizazi) – 4
	 DiDz	 J < 0.	 (37)

A more common way of writing this expression, after some rearranging and incorpo-
rating (32b), is as follows:

(a 11 D2 + a22D1) > 2	 Dz(aiiazz – auza2i)' 12 > 0.	 (38)

(See problem 10.) When (38) is satisfied, H(q) will be negative, so that for
wavenumbers close to g min the growth rate of perturbations o, can be positive. This in
turn implies that diffusive instability to small perturbations of the form (27) will take
place. Following is a summary of the key steps leading to this result.
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514	 Spatially Distributed Systems and Partial Differential Equation Models

Summary of Procedure for Deriving Conditions for Diffusive Instability

1. Equations:

(C,), = D,(C,). + R,(C,, C2)	 (i = 1, 2).

2. Assume a spatially uniform steady state (C,, CZ).
3. Assume perturbations C, (x, t) = a,e" cos qx, where

or = growth rate in time,

a, = amplitude at t = 0,

q = wavenumber (— 2 it/distance between peaks).

4. Find set of algebraic equations (28a,b) for a,, a, and q that must have zero deter-
minant for nontrivial perturbations.

5. Obtain a characteristic equation (30) for a from step 4. Then next steps are con-
ditions that guarantee Re(a) > 0.

6. Assume conditions (32a,b) to insure stability of chemical mixture when D, = 0.
7. Violate (33b) for instability of the system when D, # 0. [It is impossible to vio-

late (33a)].
8. Find a quadratic expression H(q 2) that must be negative to violate (33b).
9. Constrain the minimal value of this expression, H(q.,,) to be negative, thus ob-

taining (37).
10. Use (32b) to rewrite the condition as (38).

The three conditions for diffusive instability are then as follows:

Necessary and Sufficient Conditions for Diffusive Instabilty

1. a„ + a22 <0,	 (32a)
2. a 11 a22 — a12a2, > 0,	 (32b)
3. a 11 D2 + a22D1 > 2 D^ ZD (ai1a22 — a12a21) 1/2 > 0.	 (38)

It can be shown by simple rearrangement that the last of these may also be
written in the following dimensionless form:

3. ß'/2 + aß -112 > 2(a — e)"2 > 0, where	 (39)

D2	 az2 	al2a21

D,	 au	 au

(See problem 10.) We thus see that the condition for diffusive instability depends on
dimensionless ratios of diffusion constants (and of kinetic terms) and not on any ab-
solute magnitude.

In the next section we follow a physical interpretation of conditions (38) pro-
posed by Segel and Jackson (1972).
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Figure 11.4 This sequence illustrates how the
graph of H(q2) given by equation (35) might change
as a parameter variation causes the onset of
diffusive instability. (a) H is positive for all q2 .

(b) H = 0 at qmm ;,,, which would then be the
wavenumber of destabilizing perturbations. (c) A
whole range of q2 values makes H negative. Any
one of these wavenumbers would lead to diffusive
instability.

H(q2) 

q2

(a)

H(q2 )

q2

H(q 2 )

q`

(C)
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516	 Spatially Distributed Systems and Partial Differential Equation Models

11.6 A PHYSICAL EXPLANATION

Turing's (1952) paper was followed a decade later by generalizations and extensions
of the theory. The Brussels school, including G. Nicolis, I. Prigogine, and cowork-
ers, based most of their ideas on mathematical and thermodynamic arguments, many
of which would be inaccessible to most readers [see, for example, Nicolis and Pri-
gogine, (1977)]. Segel and Jackson (1972) were apparently the first team to derive
necessary and sufficient conditions for diffusive instability [equations (32a,b) and
(38)] and then explain the meaning in an elegantly simple way. The logical progres-
sion of steps leading to their conclusions is reproduced here.

1. By condition (32a) at least one of the two coefficients, a„ or a22, is negative.
Suppose a22 is negative.

Interpretation: aR2/ace < 0; chemical 2 inhibits its own rate of formation. We shall
call this substance an inhibitor.

2. From condition (38), a„ D2 + a22 D, > 0, so clearly a ll and a22 cannot both be
zero. Therefore a„ must be positive.

Interpretation: äR, /ac, > 0; chemical 1 promotes or activates its own formation.
This chemical species is called an activator.

3. Steps 1 and 2 together imply that

a„ a22 <0.	 (40)

4. From step 3 it follows that the inequality (32b) (au a22 — a 12 a21 > 0) can only
be met if

a12a21 < 0.	 (41)

This means that one of the two quantities, a 12 or a21, but not both, is negative. There
are then two possibilities, each giving a distinct sign pattern to the Jacobian matrix
M [equation (26c)]:

1. Activator-inhibitor:

	a 12<0,	 a21 >0	 M=
(+	 —

2. Positive feedback (also called substrate depletion).

	a12 >0,	 a2,< 0	 M =I +	 + l .

These are precisely the two cases that were explored in connection with pairs
of chemically interacting substances in Section 7.8. Recall that these were called,
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partly for historic reasons, an activator-inhibitor and a positive-feedback system re-
spectively.

By Segel and Jackson's reasoning, two chemical species that have the attribute
of diffusive instability can only fall under one of these two classes. Moreover, in or-
der for the chemical system to be stable when diffusion is absent (for example, in a
well-stirred solution), a steady state of the (spatially) homogeneous system

dCi
 = R;(C1, C2),	 (42)dt

must be stable.
Necessary and sufficient geometric conditions for stability of such steady states

were derived in Section 7.8. There we discovered that the nullclines of the present
system must satisfy certain intersection properties (see Figure 7.10). If a given set of
reactants has such qualitative geometry in the C, C2 phase plane, it makes a strong
candidate for diffusive instability provided that the condition given by (38) is also
satisfied. (Please note that axes in Figure 7.10(b) should be renamed in case 2 since
the roles of the two chemicals have been permuted in the positive-feedback case.)

We continue to draw further conclusions about the two chemicals:

5. Dividing (38) through by D 2 leads to the following:

D,
a n + a22 DZ > 0.	 (43)

This condition is met only if D, * D 2 because otherwise the inequality
a ll + a221 < 0 contradicts (32a).

Interpretation: The diffusion coefficients of chemicals 1 and 2 must be dissimilar for
diffusive instability to occur.

6. In both cases 1 and 2, signs of a„ and a22 are opposite.

Now define

	

= l/ja„^,	 (44a)

	

Tz = 111a221,	 (44b)

where Ti and T2 are time constants associated with activation and inhibition. One can
deduce from inequality (38) that

D I T I < D2T2 	(45)

(see problem 11). Based on dimensional considerations and the discussion in Chap-
ter 9, the ratios in (45) have units of area or, more precisely, mean square displace-
ment during the doubling time of the activator or the half-life of the inhibitor (see
problem 11). The quantities VD_ and \/5 are referred to as the ranges of activation
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518	 Spatially Distributed Systems and Partial Differential Equation Models

or inhibition. They represent a unit of length over which a peak concentration of chemical
tends to exert its effect. Thus inequality (45) can be restated in word as follows:

The range of inhibition \ is larger than the range of activation X .

Based on these conclusions, it can also be shown that D2 > D, (problem 11).
Together these observations give us the following picture of how diffusive instability
is caused. Consider in particular the activator-inhibitor case. As a result of random
perturbations, a small peak concentration of the activator is created at some location.
This causes an enhanced local production of the inhibitor that, were it not for diffu-
sion, would halt and reverse the process. However, the inhibitor diffuses away more
rapidly than the activator (D2 > D,), so it cannot control the local activator produc-
tion; thus the peak will grow). Now the region surrounding the initial peak will con-
tain sufficient levels of inhibition to prevent further peaks of activation. This leads to
the typical peak areas characterized by the expression D2/T2 in inequality (45). (Case
2 is left as an exercise for the reader.)

The idea described in the previous paragraph is actually a special case of a
much more general and ubiquitous pattern-forming mechanism called lateral inhibi-
tion. Briefly, positive reinforcement on a local scale together with a longer range of
inhibition is universally applied in a variety of pattern-generating mechanisms, many
of which are not driven by diffusion per se. Several examples for further study are
given in the concluding sections of the chapter.

Can any other statements be made regarding the actual chemical patterns that
are produced by these reaction-diffusion schemes? Here some care must be taken;
our analysis will work only as long as the perturbations are sufficiently small to ren-
der the linear approximation of equations (24a,b) a valid representation of the truly
nonlinear system of equations (20a,b). When the perturbations have been amplified
beyond a small size, the analysis is no longer adequate. As in previous examples,
linear stability theory applies only to states close to a steady state.

To extract even more information from our analysis we now consider how
parameter variations bring about the onset of diffusive instability and what might be
anticipated as a natural progression of events. It is well known that, as in the exam-
ple of cellular slime molds, the process of development is often accompanied by
gradual variations in characteristics of cells or tissues that could be depicted by key
parameters. Such changes may stem from enhanced enzyme activity, increased
affinity of reactions, or changes in cell—cell contacts (gap junctions) that permit in-
tercellular communication.

It is often the case that dependence on cellular parameters enter into expres-
sions such as (38) in nontrivial ways since the coefficients a;; may depend in a com-
plicated way on any given coefficient in the original nonlinear equations. Neverthe-
less, to take a simplified view, consider the following plausible (but not necessarily
exclusive) progression brought about as a single parameter I' varies through a criti-
cal bifurcation value r*:
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1. For F < I'*, diffusive instability is not possible. The parabola H(q 2) is
positive for all wavelengths q. No perturbations of any wavelength can lead to
pattern formation.

2. For r = I'*, H(q) = 0. This is the threshold situation. Just beyond it lies
the realm of diffusive instability; that is, for slightly larger values of I', H is
negative but only for values of q 2 very close to q n . Only perturbations whose
wavenumber is qR, ;n will be amplified and expressed in the final patterns.

3. For IF > I, *, H(q 2)  < 0 for a whole range of q values:

q n — O:Sq 2 <—grr,;n +0.

Any perturbation whose wavenumber falls within this range will be amplified.

Situation 2 is often called the onset of diffusive instability. At this critical point
one would expect patterns with a typical spacing between chemical concentration
peaks d, where

d = 21r

qr;n
(46)

Summary of Two-Species Chemical Interactions Leading to Pattern Formation

Necessary conditions

1. The system must have a nontrivial spatially uniform steady state S.
2. The pair must interact as an activator-inhibitor or a positive feedback system (in

the sense that the sign pattern of the Jacobian of the system at S is the same as
one of the cases given in this section).

3. (a) The steady state S should be stable in the well-mixed system. This is
equivalent to the following:

(b) The configuration of nullclines R 1 (C 1 , C2) = 0 and R 2(C 1 , C2) = 0 at their
nontrivial intersection should be of the type shown in Figures 7. 10(a or b).

4. The rate of diffusion of the inhibitor (in case 1) or of the substance receiving
negative feedback (in case 2) must be larger than that of the other activating sub-
stance.

Necessary and sufficient conditions

5. (a)	 Conditions (32a,b) and (38) should be satisfied, or
(b) All necessary conditions I through 4 hold and, in addition,

a?Z + a—" >0.
D2 D,

This is equivalent to the statement that the range of activation is smaller than the
range of inhibition.D
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520	 Spatially Distributed Systems and Partial Differential Equation Models

Beyond the onset of diffusive instability the situation becomes somewhat more
complicated. A whole range of possible wavenumbers can have a destabilizing ef-
fect. In general, perturbations might consist of many modes superimposed on one
another, for example,

C, =	 (a )ea" 
cos qkx.	 (47)

k=1

Once nonlinear effects become important, different modes may compete for
dominance. Those that initially grow fastest may gain an advantage over others. It is
possible to solve equation (30) for the growth rate vk associated with a given
wavenumber qk and thus determine the maximum possible growth rate. See Segel
(1984) and problem 12. Beyond this, little more can be said analytically about the
final patterns that diffusive instability creates. Further understanding requires consid-
erably more elaborate nonlinear analysis and is beyond our scope.

An alternative to further analytical techniques is numerical simulation. In Sec-
tion 11.8 we describe several references that present results based solely on com-
puter-aided numerical solutions.

11.7 EXTENSION TO HIGHER DIMENSIONS AND FINITE DOMAINS

The analysis of reaction-diffusion systems has thus far been restricted to infinite one-
dimensional domains. We now extend it to higher dimensions and indicate what new
features arise when the system is confined to a bounded domain, for example, a
rectangle in the plane.

Consider the following general reaction-diffusion system:

	aC' _ R,(C,, C2) + D, V2C,,	 (48a)at
	äC2 _ R2(C

1 , C2) + D2 V2 C2,	 (48b)
^t

with homogeneous steady state (C,, C2).
It is a straightforward matter to carry out the linearization of (48). Results are

similar to (24) where V 2C; replaces (a 2 C;/ax 2). The form of perturbations to be used
in testing stability is slightly different since variation in both spatial dimensions may
occur. In problem 14 the reader is asked to verify the following set of possible solu-
tions to a two-dimensional linear system:

	C, (x, y; t) = a; e °` cos q, x cos q2 	y	 (49)

where q, and q2 are the wavenumbers for variations in the x and y directions respec-
tively.

Now consider a finite rectangular domain of size Lx X L. By way of example,
suppose that the boundaries are impermeable (that is, no flux boundary conditions
apply). Then

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Models for Development and Pattern Formation in Biological Systems 	 521

a
ax	ax — 0
	 at	 x = 0, Lx ,	 (50a)

ac;
	= 0	 at	 y = 0, LY ,.	 (50b)ay

To satisfy these additional constraints, q ; can only take on one of a discrete set of
values:

mir
	q, =	 (m = 0, 1, . 	 (51a)Ls 

nir
	q2= --- 	(n = 0, 1, ...).	 (Sib)

Y

(See problem 19.)
Define

Qz=q,+qz.	 (52)

Then it may be shown that one obtains a set of algebraic equations for the perturba-
tion amplitudes a; identical to (28) where Q2 replaces q z . This leads to an identical
condition for diffusive instability after a procedure analogous to that of Section 11.5
(The dimensionality and geometry of the region have no influence on the stability
condition.) However, one finds that the most destabilizing perturbations are those for
which

Qz = Qz = 1(^22+  a—„ l	 (53)mm-
2 Dz D,l

Thus, at the onset of diffusive instability the waves that are amplified are those
that satisfy

	2 =
 .2(!L 	nzl

+	
_ 	

+	
(54

(a„	 azzl	 )
Q 	LX Ly/ 2\D 1 Dz/

 

As we shall soon see, this implies that the wavenumbers q, and q2 are interde-
pendent. For a given value of the RHS of equation (53), increasing q, must mean de-
creasing q2. To examine the effects of geometry and chemistry on the most excitable
waves, it proves convenient to use the following dimensionless quantities:

	L Y 	D2	 _ a22	Y  = Lxs	 f3 = D',	 a all	(55)

Then equation (54) can be rewritten in the following dimensionless form:

z	 z

mz + y z = L D 1 + ß)	 = E z, 	(56)

where we have written L = Lx , a = a,,, and D = D, for a more convenient nota-
tion. Ratios appearing in (56) bear important physical interpretations:
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522	 Spatially Distributed Systems and Partial Differential Equation Models

L Z = area characteristic of the domain (= area of domain if y = 1),

D
= area of range of inhibitor,

a

LZaD = ratio of area characterizing domain to range of inhibition,

a _ a22/a11 __ Dilou
ß D2/D1 D2/a22

= ratio of range of inhibition to range of activation.

Thus the quantity E 2 , defined by the RHS of equation (56), stands for

E Z =
area of domain	

+	 g
ran e of inhibition

1 
range of inhibition	 range of activation

Note that, by (54), E Z = Q Z LX/ir e .

In the following example of parameter variations it will be assumed that a and
ß [and e appearing in (39)] are held fixed so that condition (39) is just satisfied. Thus
we consider a system at the onset of diffusive instability when only the modes satis-
fying (54) or alternatively (56) lead to the formation of patterns. From equation (56)
it can be seen that the value of E 2 can be changed even though a and ß might be
held constant. For example, this can be done by

1. Increasing the diffusion rates D, and D 2 of both chemicals but keeping
ß = D2/D, fixed.

2. Altering all the chemical reaction rates a ;; while keeping a = azz/at, and
E = a 1Z a21 /a; 1 fixed.

3. Increasing or decreasing the domain size L.

The effect of any such parameter variation is that the relative ratios of the do-
main size and the chemical range size will change. As such changes occur, the value
of E 2 changes. One then expects abrupt transitions in the values of m and n that sat-
isfy (56).

In the following example we take y = 2 for illustrative purposes. We compute
the expression

E2=m2 + nz 	m= 0,1,2,...
yZ	 n=0, 1,2,...,

and then rank the pairs of integers (m, n) in order of increasing values of E 2 (see
Figure 11.5). The succession of modes thus generated might arise from any one of
the above parameter variations (as long as E 2 is thereby made to vary gradually and
monotonically). A different value of y would lead to a somewhat different sequence
of modes. Some of the chemical patterns corresponding to such modes are then dis-
played schematically in Figure 11.6.
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EZ

Modes Domain shape
(m, n) E2

1 (0,0) 0

(0,2)	 1
I H LY

2 	J}
(1,0)

(1,	 1) 11/4

(1, 2) 2

3 (0,3) 2'/4 L,

(1,3) 31/4 =2y=

(0,4) 4

(2,	 1) 41/4

(2,2)	 1
5
	(l,4)

	
J} 5

(0,5)	 1
6'/4

/23)
J}

6 (1, 5) 7'/4

(3, 0)

(0, 6)	
J} 9

7 	(3,	 I) 91/4

(3,2)	 1

/// (1	 6)	 J}
10

S

10

Figure 11.5 In a two-dimensional region the most	 number of wave peaks in the x and y directions
excitable modes (m, n) of a given reaction-diffusion (m, n) changes as the ratio of domain size to range
system would depend on the interplay between	 of inhibitor changes, that is, as EZ is altered. Here
geometric and chemical aspects. For a given ratio	 we have taken y = 2 by way of example.
of sides (-y = L^,/LX) in a rectangular domain, the
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(0, I)

(a)
	

(h)
	

(c)
	

(d)

Tj

ICJ
(1, 1)	 (1, 2)	 (0, 3)	 (1, 3)

(e)	 (t')	 (g)	 (h)

Figure 11.6 The first several modes (m, n) in the	 their steady-state values. A transition from (a) to
sequence predicted in Figure 11.5. (b = d) The	 (h) (and beyond) would occur if the size of the
functional shapes of the excitable perturbations are 	 domain was increased or the size of the chemical
shown by dotted outlines. Stippled areas are those 	 range was decreased.
in which chemical concentrations are higher than

From such results several observations can be made:

1. The transitions from one mode to the next do not necessarily occur at equal
increments of the parameter E Z ; some transitions are closer than others.

2. There are certain values of the parameter E 2 that correspond to more than one
possible mode. Which mode is actually expressed would then depend on initial
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conditions and nonlinear interactions that might tend to stabilize one pattern at
the expense of a second.

3. When the domain is wider in one direction (such as in the example in Figure
11.5 L,, = 2L,r), there is a tendency for successive subdivisions to occur in the
longer direction before they occur in the shorter one.

Such results bear several interesting implications in developmental systems.
The first of these is that the interactions of diffusing morphogens in a growing do-
main will lead to a discrete succession of patterns. Kauffman et. al. (1978) have pro-
posed an intriguing application of such ideas to the sequence of compartmental sub-
division in the imaginal disks of Drosophila (see box "Chemical Patterns and
Compartments in Drosophila"). Murray (1981) has similarly applied these concepts
to the spatial succession of patterns that occur on animal coats as the geometry of the
domain changes (for example, from an extremity to a broader region such as the
body). His model is discussed in greater detail in section 11.8.

Similar ideas with constant domain size and other spatially varying parameters
have been used in a number of different contexts. Berding et al. (1983) have shown,
for example, that spiral patterns typical of those found on sunflower heads can be
generated by a reaction-diffusion system in a circular domain with diffusivities that
vary as r 2 , where r is the radial distance. Other implications for pattern formation
systems are suggested in the problems as topics for independent exploration.

To keep the limitations of this theory in perspective, one must remember that
we have been operating under the admittedly artificial assumption that the patterns
develop at or close to the critical bifurcation (that is, at the onset of diffusive insta-
bility). When a whole range of Q Z values are excitable, one must again address the
possible nonlinear effects that lead to considerably more complicated problems.

Although linear analysis of two- or three-dimensional cases is an immediate
generalization of the one-dimensional case, there are genuinely novel effects that
arise beyond the predictive power of these theories. For large-amplitude perturba-
tions, nonlinear interactions of the waves in the x and y directions play an increas-
ingly important role. The final patterns may be different from those anticipated
solely on the basis of the linear approximations.

We summarize some of our findings in the following statements:

1. Pattern formation can only occur if the range of inhibition is greater than the
range of activation:

D' DZall	 a22

2. The type of patterns that then occur depends on two factors:

a.	 y = LX = the geometry of the domain,

b. Dz
la = the ratio of the size of the domain to the range of the inhibitor.

3. Parameter variations can lead to changes in the factors described in 2 without af-
fecting the inequality given in 1 or vice versa.
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Chemical Patterns and Compartments in Drosophila

Drosophila melanogaster, the common fruitfly, has a number of distinct life stages in-
cluding egg, larva, pupa, and adult. In the transition from egg to larva, certain groups
of cells are reserved in the structures known as imaginal discs. Specific parts of these
objects will eventually undergo growth and differentiation to produce adult structures.
In the larval tissues there are pairs of imaginal discs for eyes, legs, wings, and other
body parts. Moreover, each of these may be subdivided into groups of cells destined
for specific parts of the final structure. For example, the wing disc has compartments
corresponding to subdivisions of a wing including (1) anterior-posterior wing parts,
(2) dorsal-ventral wing parts, (3) wing-thorax wing parts, and others.

Based on experimental evidence, it is held that commitment to a given fate is at-
tained as a result of a sequence of stages, each of which increases the restrictions on a
given group of cells. It is possible to map cells (according to their positions on the wing
disc) with their eventual destinations. (See compartments in Figure 11.7.) Moreover,
the sequence of subdivision of the wing discs can also be ascertained (successive
boundaries labeled 1 to 5 in the figure). Such compartmentalization appears sponta-
neously as the imaginal disc grows.

Figure 11.7. Actual shape and 	 Figure 11.8. Wave patterns on a disk-shaped
compartmental boundaries of imaginal disc in domain. The peaks may correspond to places
Drosophilia. [From Figure 5 in Kauffman	 where certain chemical concentrations are
(1977), American Zoologist 17:631-648.] 	 high. [From Figure 2 in Kauffman (1977),

American Zoologist 17:631-648.]
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On the basis of such information, Kauffman et. al. (1978) has proposed the fol-
lowing model of successive compartmentalization. Identify the imaginal disc of a wing
with an approximate shape of an elliptical region. Consider a hypothetical reaction-dif-
fusion system on this elliptical domain. As the domain grows in size, a discrete se-
quence of chemical wave patterns is created. Figure 11.8 demonstrates typical wave
patterns on circular or elliptical domains. Note a basic similarity to Figure 11.6. The
nodal lines of successive patterns that fit on an ellipse as it enlarges are shown in the
sequence in Figure 11.9. Projecting all five such predicted boundaries onto a single el-
lipse results in the compartmentalization shown in Figure 11.10.

This type of sequential process of compartmentalization could, then, arise spon-
taneously by virtue of the fact that an increasing domain size [analogous to increasing
L 2 in the expression on the RHS of (56)] causes a succession of modes (m, n) to appear
in the chemical patterns that are expressed.

In this example the geometry of the domain is elliptical; however, the basic idea
of a succession of patterns (or rather compartmental subdivisions) resulting from a
gradual shift in a key parameter (in this case the size) is very much the same as that in
a rectangular domain. The actual nodal lines are computed by solving the diffusion
equation on a circular disk.

While there is as yet no direct evidence that a reaction-diffusion system underlies
the differentiation of Drosophila imaginal discs, the time sequence and geometry of
compartmentalization proves quite suggestive of some underlying wave phenomenon.

Figure 11.9. Successive nodal lines on a
growing ellipse. [From Figure 3 in Kauffman
(1977), American Zoologist 17:631-648.]

Figure 11.10. Successive boundaries formed
in the idealized elliptical domain. Compare
with the actual compartmental boundaries
shown in Figure 11.7. [From Figure 6 in
Kauffman (1977), American Zoologist
17:631-648.]
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11.8. APPLICATIONS TO MORPHOGENESIS'

Since Turing's (1952) paper, two parallel directions have arisen in the research on
reaction-diffusion systems. A highly abstract mathematical development character-
izes one branch (see, for example, Smoller, 1983 and Rothe, 1984); a more biologi-
cally oriented approach characterizes the other. The abstract theories have addressed
numerous questions, including the existence of nonstationary (travelling-wave) pat-
terns, spirals, solitary peaks, and fronts. See Fife (1979) for a summary. The more
biological directions have formed the connection between specific models and devel-
opmental patterns found in biological systems.

The interest of biologists was largely aroused due to contributions by Mein-
hardt and Gierer in the 1970s. Their work consists predominantly of numerical simu-
lations of reaction-diffusion systems in various geometries. The results often bear a
realistic likeness to patterns commonly found in nature. (See the survey in Mein-
hardt, 1982, and Figures 11.11 to 11.13. )

Figure 11.11. Phyllotaxis, the regular arrangement
of leaves on the stem of a plant, was modeled by
Meinhardt using an activator-inhibitor mechanism
with reaction-diffusion occurring on the surface of
the cylindrical stem. (a —f) Locations of activator
peaks (obtained by computer simulation); (g —  i)

Comparable leaf arrangements. [From Meinhardt,
H. (1978). Models for the ontogenetic development
of higher organisms. Rev. Physiol. Biochem.
Pharmacol., 80, 47-104, fig. 5. Reprinted by
permission of Springer Verlag.]

Biology students will find the Meinhardt-Gierer papers readily accessible since
very little mathematical analysis is given. Indeed, in the initial stages of their re-
search these authors were unaware of the Turing theory and based their ideas en-
tirely on a familiarity with lateral inhibition in other contexts. They have since de-

1. Part of the material in this section is based on a review by Marjorie Buff.
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veloped considerable insight into the combinations of geometry, chemical kinetics,
and other effects that lead to interesting patterns. (Not always is their insight im-
parted to readers.) We now discuss two examples of models proposed by Gierer and
Meinhardt.

Consider their first set of equations:

öA __ pA 2 Z — µA + DA VZA + pop, (57a)
at (1 + KA )H 

aH = p'A 
2 — vH + DHV 2H + p. (57b)

at

In these equations A and H are the concentrations of activator and inhibitor respec-
tively. The parameters po , p, µ, p', pi , v, tc, DA , and DH reflect source terms, decay
rates, reaction rates, and diffusional properties.

One interpretation of terms in equations (57a,b) is as follows. In (57a) the acti-
vator A decays spontaneously with rate µ, diffuses at the rate DATZA, and is created
in two ways: by a small source term pop, which could vary over space, and by an

Figure 11.12. (a,b) Bristlelike patterns and (c) Meinhardt, H. (1978). Models for the ontogenic
irregularly spaced structures such as stomata (pores development of higher organisms. Rev. Physiol.
on leaf surfaces) were also obtained by Meinhardt Biochem. Pharmacol., 80, 47-104, fig. 6.
using activator-inhibitor mechanisms. Results of his Reprinted by permission of Springer Verlag.]
simulations are shown in (d) and (e). [From
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530	 Spatially Distributed Systems and Partial Differential Equation Models

Figure 11.13. (a—h) stripes and other patterns that
can be produced by reaction-diffusion mechanisms
in a planar domain (under a variety of initial
conditions and chemical interactions). Examples of

naturally occurring stripes (i) in zebras and (j) in
the visual cortex. [From Meinhardt, H. (1982).
Models of Biological Pattern Formation. Academic
Press, New York, fig. 12.2.]

autocatalytic reaction represented by the first term of (57a). The sigmoidal kinetic
term A 2/(1 + KA 2) depicts a cooperativity effect (an enhanced reaction rate when
two molecules of A are present). (See Chapter 7 for the derivation of such terms.)
The presence of H in the denominator indicates that the inhibitor would tend to de-
crease the rate of production of the activator. The effect of these two terms is to limit
the maximal activator production rate so that an activator peak will not grow
indefinitely.

In equation (57b) the inhibitor H is produced as a result of the cross-catalytic
influence of the activator A 2 . Hence A indirectly results in its own inhibition. H also
decays spontaneously at the rate v, diffuses (DHO2H), and has a small activator-inde-
pendent source term (p `A 2) that prevents pattern formation at low concentrations of
the activator. To produce patterns with particular polarity, Gierer and Meinhardt
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have often biased the source distribution by assuming a convenient spatial depen-
dence. There has been some controversy regarding the validity of this approach.

A second simpler set of equations they have used is given in the box and ana-
lyzed as an example illustrating the techniques developed in this chapter. (An inter-
pretation is left as a problem for the reader.)

Example

Gierer and Meinhardt applied the following set of equations to a pattern-forming pro-
cess. 2 Define

a (x, y; t) = concentration of activator at location (x, y) and time t,

h (x, y; t) = concentration of inhibitor at location (x, y) and time t.

Then

	aµ + D0V2 a,	 (58a)
at	 h

ah = 
c2aZ

^	
— vh + D,,V 2 h.	 (58b)

t

A homogeneous steady state (ä, h) satisfies

c,ä Z 	c,v
	( 59a)-- ä=0 ä=cZ ,

µz
c2äz — vh=0	 h= 2 z.	 (59b)

cZµ

The Jacobian for this system is

2c,a _	 —c,a 2	 —µ2

h	 µ	 h 2 	µ	 c,
J= 	 (60)

2c2a	 — v SS	 —
2c,v 

—v

so

	detJ=µv(—I +2)=µv.	 (61)

The condition for diffusive instability is

µDa — vDh > 2(µv)' 2 (DaDh) 1/2 ,	 (62a)

2. In the original paper c, = c 2 = c; ; this leads to inconsistency in the dimensions and so
has been modified here.
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532	 Spatially Distributed Systems and Partial Differential Equation Models

or

eS — a > 2,	 (62b)

where

e = (/
j)

 ,/2	
8=(Dä)1 /2 (62c)

v 

Problem 17 shows that (62b) implies that €8, which must be a positive quantity,
satisfies

€6>1+V.	 (63)

At the onset of instability, the most excitable modes are characterized by

Q Z = qx + qY — \
Da Dh/	 (64)

Note that the instability condition depends only on dimensionless ratios such as e and
6, whereas Q 2 carries dimensions of (1/distance) 2 and thus depends on absolute magni-
tudes of the diffusion coefficients.

Figures 11.11 through 11.13 are a sample of some of the elegant patterns pro-
duced over the years by Meinhardt and Gierer. Unfortunately, rarely do they specify
the exact conditions and parameter values used in their simulations. It has been
shown (see Murray, 1982) that the sets of parameter values leading to pattern forma-
tion in these models are unrealistically restrictive.

Bridging the gap between the totally abstract and the predominantly biological
literature are several partly theoretical papers whose main concern is explaining
properties of patterns on the basis of chemical interactions and geometric consider-
ations. Among these are several classic contributions by Murray, including his
model for animal coat patterns briefly highlighted here.

Murray (1981a,b) describes a hypothetical mechanism for melanogenesis
(synthesis and deposition of melanin granules, which are responsible for the dark
pigmentation of mammalian skin and fur). It is assumed that reactions and diffusion
occur on the plane of an active membrane and that the kinetics stem from a sub-
strate-inhibited enzymatic reaction between two substances, S and A whose concen-
trations we represent by s and a (see problem 21).

In dimensionless form the model equations are as follows:

as
at = yg (s, a) + V2s,	 (65a)

as
at = 

yf(s, a) + 0V 2a,	 (65b)
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where

ß = Da/D S = ratio of diffusion coefficients,

y = dimensionless parameter proportional to the area of the domain,

g, f = the functions given in Figure 8.14.

These phase-plane drawings reveal a cubic nullcline configuration, with an intersec-
tion that depends on the size of a parameter K, which represents the degree of sub-
strate inhibition. Decreasing K results in the transition of (a) to (b) to (c) in Figure
8.14. While these equations do not permit easy analysis since their steady state can-
not be explicitly obtained, it transpires that only in one configuration, namely the
one shown in Figure 8.14(b), is diffusive instability possible. (See problem 21.)
This leads to a suggestive but entirely hypothetical mechanism for the development
of the patterns.

Suppose that there is a substance that inhibits melanogenesis whose concentra-
tion early in embryonic development is high. Suppose that, at later stages, a de-
crease in the level of this inhibitor is brought about. At that point, diffusive instabil-
ity leading to spatial patterns will occur, resulting in the prepattern for coat
markings. If, however, there is further decrease in inhibition, diffusive instability
will no longer be possible, and no further development of pattern can take place.

A second prediction concerns the interchange between size or geometry and
the nature of the patterns. Variations in the area of the domain can be conveniently
depicted by variation in the parameter y (see Figure 11.14). Murray demonstrates
that as y increases, there is a succesion of excitable modes, as we discovered in Sec-
tion 11.7. If one of the dimensions (for example, Lx , length in x direction) is
sufficiently small compared to the other (Lv), there is a tendency for a succession of
patterns with modes characterized by m = 0 and n = 1, 2, ... , k before the first
pattern with m ? 1 is obtained. This means that stripes predominate on this narrow
domain and spots are more characteristic of wider regions. (See Figure 11.6(g) for
"stripes" and Figure 11.6(f) for "spots".) A common feature in many spotted ani-
mals is that their slender extremities retain a striped pattern, as predicted by this
theory.

As an endpoint of his model Murray terminates with a whimsical but ingenious
prediction about pigmentation patterns on tails. Tails are often broader at their base
than at their end, so that their shape is roughly conical. If the fur is removed and the
cone opened by a longitudinal bisection, one obtains a triangular domain with a nar-
row end and a broader base of radius ro . This geometry can be represented by letting
the size parameter y vary gradually across the length of the domain (see Figure
11.15). According to our previous discussion, such variation is consistent with a
transition from stripes at the thin one-dimensional end to spots at the broader base.
The opposite transition would be inconsistent and thus contradictory of the theory.
To date, animals with the proper tail patterns have been found in great abundance.
As yet no single possessor of an inconsistent tail has reportedly been sighted. (See
Figure 11.16. )
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534	 Spatially Distributed Systems and Partial Differential Equation Models

Figure 11.14. Effects of size of an animal on the
patterns formed on its coat by a reaction-diffusion
prepattern mechanism proposed by Murray (1981).
As the size parameter y changes from (a) to (f), a
succession of patterns (typical of different animals)
occurs. For very large domains the nonlinear

effects make a substantial contribution, so that
patterns are no longer predictable based on linear
theory. [From Murray, .1. D. (1981). A prepattern
formation mechanism for animal coat markings. J.
Theor. Biol. 88, 161-199, fig. 8. Reprinted by
permission of Academic Press.]

Figure 11.15. Effects of geometry on patterns.
Reaction diffusion on a conical surface (such as a
tail) may result in a progression from stripes to
spots in only one way. The spots tend to appear if
(a) ro, the radius of the base, is large enough to
admit several chemical "peaks" around its

circumference, as in (c) [From Murray, J. D.
(1981 a). A prepattern formation mechanism for
animal coat markings. J. Theor. Biol., 88,
161-199, fig. 5. Reprinted by permission of
Academic Press.]
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(a)
	

(h)

Figure 11.16. (a) Tail pattern predicted by linear 	 (Drawn by Marjorie Buff.]
theory; (b) tail pattern impossible by linear theory.

11.9. FOR FURTHER STUDY

Patterns in Ecology

A recurring theme in this book is that mathematical models lead us to draw parallels
between situations that may seem totally unrelated on first inspection. Analogies be-
tween the microscopic molecular realm and the macroscopic population level have
appeared repeatedly in previous discussions. For this reason it is to be anticipated
that spatial patterns emerging from unstable uniform distributions may occur in eco-
logical settings as well, particularly in species that interact and disperse at different
rates.

The first prediction that this may indeed occur appears in Segel and Jackson
(1972). The authors realized that a similarity between activator-inhibitor chemicals
and prey-predator species exists. However, merely "tinkering" with the Lotka-
Volterra models, augmented by dispersal terms, was unsuccessful in producing dif-
fusive instability. One of the attractive features of the Segel-Jackson paper is the de-
tailed discussion of the motivation that led to their specific model. (Rarely are
authors as candid about the development of a theory.) A good topic for advanced

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



536	 Spatially Distributed Systems and Partial Differential Equation Models

students would be to independently address the following question posed by the
authors:

[What are] the characteristics of a situation where uneven geographic distribution of
predator and prey would be mutually advantageous? (1972, P. 553.)

As a second stage, students might attempt to write their own model and test the
Turing criteria (32a,b) and (38) before turning to the papers provided in the refer-
ences by way of a comparison. For reasons outlined in their paper, Segel and Jack-
son (1972) considered the following set of equations:

	

Prey:	 av = VR(V) — AVE + µ,V 2 V,	 (66a)

	Predators:	 äE = BVE — ME — CE 2 + p.2V2 E,	 (66b)

where V(x, t) = the prey ("victims"), E(x, t) = the predators ("exploiters"), and

R(V) = Ko + K,V.	 (67)

Interpretation of the model and its parameters is left as an exercise.
Patchy distributions of populations have been observed in nature under numer-

ous conditions. One well-documented example is plankton, the microscopic aquatic
organisms often found in uneven distributions at or close to the surface of the water.
(See Okubo, 1980, for review and references.) Plankton actually consists of a multi-
tude of uni- and multicellular organisms, which are frequently characterized simply
as zooplankton or phytoplankton. The latter are capable of photosynthesis; like
higher plants they are in a sense self-sufficient, relying mainly on sunlight for their
energy. The former are predatory, feeding on phytoplankton and on each other.

Patchy distributions of plankton may arise from different mechanisms, and a
conclusive explanation has not been given. However, the idea that the natural dis

-persal rate of these microscopic organisms might lead to instability of the type de-
scribed in this chapter is rather intriguing.

Mimura and Murray (1978) discuss a slightly different theoretical model given
by the equations

z
	a^=[f(P)—Q]P+2Paxz'	 (68a)

aQ = —
z

[g (Q) — P]Q + ^Q a Q ,	 (68b)
at	 ax

where P is phytoplankton and Q is zooplankton. A particular assumption made is
that the graph of f(P) has a "hump" and that g (Q) has a positive slope (see Figure
11.17). A typical set of functions proposed in the paper is the following:

	f(P) = K (Ko + K, P — Pz),	 (69a)

g(Q) = K2 + K3Q. 	(69b)

Noting that 1(P) represents the prey growth rate, one might attribute its hump
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Figure 11.17. The predator prey phase plane for
equations (68a,b) with f(P) and g(Q) given by
equations (69a,b) in a model by Mimura and
Murray (1978). Note the hump effect in f(P). 

0 

I-
0
ro'v

P
P*

Prey

to an Allee effect (see Section 6. 1). The authors prove that the hump in f leads to a
property crucial for realistic solutions; namely, that spatial patterns resulting from
diffusive instability will in certain limiting cases tend to have alternately low and
high plateaus of population density. Models in which the hump effect is absent tend
to have sharply peaked spikelike patterns of prey density. These are considered to be
less realistic. (Proof rests on singular perturbation analysis and may be too advanced
for some readers.)

Evidence for Chemical Morphogens in Developmental Systems

How has the chemical theory for morphogenesis fared in light of empirical research?
The true test of such theories would be to isolate and characterize chemical sub-
stances that have demonstrable morphogenetic effects. This is a challenging task
given that such substances, if they are present, may be found in minute quantities.

Work in this direction is being carried out. It is said that in an attempt to iso-
late such substances in one accessible system, the hydra, it was necessary to process
and analyze material from several tons of sea anemone, which are relatives of this
organism. (H. C. Schaller 1973, 1976).

The hydra is a small freshwater organism (3 to 4 mm long) with the ability to
regenerate body parts [see Figure 11.18(a)]. Any small piece excised from its body
column (a roughly cylindrical shape) can form a whole new hydra by making a ten-
tacled "head" and a "foot" in the appropriate ends. Chemical studies by Schaller and
others have revealed several molecular morphogenetic substances, among them the
head activator and the head inhibitor. Characterization of the nature and interactions
of such substances is proceeding, but many details are still missing.

Based on this partial characterization, Kemmner (1984) has formulated a
model for a possible reaction-diffusion system in the hydra [see Figure 11.18(b) and
Table 11.1]. The evidence indicates a somewhat more subtle underlying mechanism,
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(a)

Figure 1I.18. (a) Simple diagram of the hydra, a
freshwater polyp. (b) Chemicals identified as
morphogenetic substances in hydra. The head
inhibitor (HI) inhibits both its own release and the
release of head activator (HA) fromom sources. The
formation of sources depends on the presence of

(b)

HA. In this sense HA is autocatalytic. l(b) From
Kemmner, W. (1984). Head regeneration in Hydra:
Biological studies and a model. In W. Jager and J.
D. Murray, eds., Modelling of Patterns in Space
and Time. Springer-Verlag, New York, fig. 3.1

Table 11.1	 Properties of morphogenetic substances from hydra controlling head and foot formation.

Molecular Purification Active
Morphogen Weight Nature (x fold) Concentration	 Gradient

Head activator 1142 Peptide 109 10-" M
Head inhibitor <500 Nonpeptide 105 <10-9 M
Foot activator -1000 Peptide 105 <10 	 M
Foot inhibitor <500 Nonpeptide 10° <10-' M

Source: Kemmner, W. (1984). Head regeneration in Hydra: Biological studies and a model. In W. Jager
and J. D. Murray, eds., Modelling of Patterns in Space and Time. Springer-Verlag, New York,
table 1.D
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namely that one of the two substances inhibits the release of both from preexisting
sources. Moreover, self-enhancement arises not by direct autocatalysis but rather by
virtue of the fact that sources of the substances are restored (if removed) by the pres-
ence of the activator. The paper by Kemmner and other references provided therein
are recommended as good sources for further independent investigation.

Few other systems have so readily revealed their secrets to us. It would at
present appear that many developmental systems are not governed (even partially)
by simple pairs of chemical species. The Turing theory as yet remains a vivid
paradigm rather than an accurate description of any one real morphogenetic event.

A Broader View of Pattern Formation in Biology

A recent review paper by Levin and Segel (1985) provides a general survey and fur-
ther recent references on pattern-generating processes. While the Turing theory still
ranks among the top contenders for pattern-forming mechanisms, a variety of differ-
ent theories have been formulated for special systems. It has been shown in recent
papers that neural networks (with excitatory and inhibitory elements) can generate
patterns of various sorts. A number of self-organizing systems such as cellular au-
tomata and clonal organisms (both described in boxes to come), which are governed
by simple recursive rules, have been studied. Mechanochemical theories have ad-
dressed the morphogenesis of tissues formed by migration and movement or defor-
mation of cells. Some of these theories are entirely unrelated to those described in
this chapter. Others do share certain common conceptual features; for instance,
many are based on the property of lateral inhibition. One example, to be described
here, is drawn from neural interactions.

As previously mentioned, nerves communicate with one another over great dis-
tances. One can define the range of activation and the range of inhibition in a neural
network as the average distance over which one neuron transmits stimulatory or in-
hibitory signals to its neighbors via synapses. The effect modulated by a synapse can
be either positive (excitatory) or negative (inhibitory) to the neuron on which it im-
pinges. Thus, interactions over a distance in a neural network are analogous to inter-
actions over the diffusional range of activator-inhibitor chemicals in the Turing sys-
tem we described. The details of the mechanism and its mathematical description,
though, are different.

The boxes in this section give a brief survey of recent work in other theories of
pattern formation. For details and further sources, consult the appropriate Refer-
ences.D
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Patterns in neural networks: Visual Hallucinations

The patterns shown in Figure 11.19 are experienced during drug-induced visual halluci-
nations. In the figure, designs on the left-hand side are visual images that are perceived
to be centered at the fovea (the center of the visual field in the retina of the eye). The

Figure 11.19. Visual hallucination patterns
in retinal and cortical coordinates: On the
RHS are patterns that arise in some possibly
small region of the visual cortex as a result of
long-range inhibition and short-ranged
activation within the cortical neural network.
On the LHS are the actual hallucination
patterns perceived as though they are on the

retina. (A log-polar to rectangular coordinate
transformation governs the correspondence
between the patterns on the LHS and those on
the RHS.) [From Ermentrout, G. B., and
Cowan, J. (1979). Mathematical theory of
visual hallucination patterns. Biol.
Cybernet., 34, 137-150, fig. 2.]

corresponding designs on the right-hand side are patterns of neural excitation on the vi-
sual cortex (an area of the brain that processes visual signals). The correspondence,
called the retinocortical map, has been established empirically according to Ermentrout
and Cowan (1979). It is essentially a coordinate transformation from polar coordinates
in the retina to cortical rectangular coordinates in the cortex.

It is believed that hallucination patterns form in the cortex, which is a complex
neural network, even though no visual stimuli are present on the retina. Ermentrout and
Cowan (1979) proposed the theory that patterns of excitation in the cortex arise sponta-
neously as a result of instability of a uniform resting state. They further suggest that in-
stability occurs when enhanced excitatory and decreased inhibitory effects of neural
synapses occurs, for example, as a result of chemical changes in the brain. In their
1979 paper they demonstrate that spatial patterns such as those on the right side of Fig-
ure 11.19 are possible in neural networks with the property of lateral inhibition. An in-
formal presentation of these results is to be found in Ermentrout (1984).

For other neural network patterns, see Swindale (1980) and Ermentrout et al.
(1986).D
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A Spatially Discrete Lateral-Inhibition Model

In a discrete model for vertebrate skin patterns proposed by Young (1984), a differenti-
ated cell located at R = 0 exerts an effect on its neighbors according to the activation-
inhibition field shown in Figure 11.20. w, and w 2 are respectively the net positive and
negative effects; R is radial distance; and R, and R2 are analogous to the ranges of acti-
vation and inhibition respectively. If the net effect on some undifferentiated cell
(summed up over contributions of all its neighbors) is positive, the cell will differenti-
ate into a pigmented cell. Patterns thus produced by computer simulations for
R, = 2.3, R2 = 6.01, w, = 1, and four values of W2 are shown. Note that, although
diffusion is not explicitly depicted, the mechanism for pattern formation is that of lat-
eral inhibition: local activation and long-range inhibition.

Figure 11.20. (a) A discrete
activation-inhibition field. (b) Patterns
produced from an initially random
distribution of differentiated "cells" (not
shown) by successive iterations using the
spatial effects given in (a). [Reprinted by

permission of the publisher from "A local
activator-inhibitor model of vertebrate skin
patterns" by D. A. Young, Math. Biosci., 72,
figs. 1 b and 2, pp. 51-58. Copyright 1984
by Elsevier Science Publishing Co., Inc.]
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542	 Spatially Distributed Systems and Partial Differential Equation Models

Mechanochemical Patterns

In many developing systems, groups of cells are seen to migrate or move collectively in
forming the final shape of some part of an organism. The elasticity, adhesiveness, and
relative affinities of different cells for one another then governs the succession of
shapes or patterns that result in these systems. Models based on underlying physical,
mechanical, and chemical processes have been explored recently by Murray and Oster
(1984) and Odell et al. (1981).

Odell et al. (1981) explored the process of gastrulation, part of the early devel-
opment of an embryo. They modeled each cell as an element that could stretch and dis-
tend in shape, subject to properties of its internal structural components. In the com-
puter simulations (shown in Figure 11.21) the group of cells is seen to undergo a
sequence of shapes eventually forming the gastrula in which an invagination is present.
(These simulations depict a two-dimensional analog of a three-dimensional shape.)

For other references, see Oster et al. (1983), Murray and Oster (1984), also Sul-
sky et al. (1984).

a	 c	 e

b	 d	 f

Figure 11.21 (a f) Computer simulation of	 B. (1981). The mechanical basis of
gastrulation in the sea urchin. [From Odell, 	 morphogenesis. Develop. Blot., 85, 446-462,
G. M., Oster, G., Alberch, P. and Burnside, 	 fig. 7.] Academic Press, New York.

Patterns in Cellular Automata

One class of models for self-organizing systems is the cellular automata. These theo-
retical systems consist of a discrete number of "cells" (arranged, for example, in a
row). Each cell has some initial state (represented by an integer). The automaton is
governed by a transition rule, which assigns a new state to every cell based on the cur-
rent state of the cell and of its neighbors. The mathematical properties of cellular au-
tomata have been described in numerous papers by S. Wolfram (1984a,b). Such sys-
tems are more popularly known for their striking patterns, which are readily studied by
simple computer simulations (see Figure 11.22). See Wolfram (1984a) for a general re-
view and biological applications.
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Models for Development and Pattern Formation in Biological Systems 	 543

Figure 11.22. In these one-dimensional
cellular automata, the initial state of a row of
cells (at the top of each frame) changes
successively as the transition rule is applied.
The resulting space-time patterns are created.

[From Figures selected from Wolfram, S.
(1984). Universality and complexity in
cellular automata, Physica, 1OD. Reprinted
by permission of North-Holland Physics
Publishing.]

Patterns in clonal organisms

Many simple organisms grow by adding new segments to preexisting structures (see
Sections 1.9 and 10.4). Branching of filaments is one instance of clonal growth. The
patterns shown in Figure 11.23 are produced by a simple set of recursive rules applied
successively in a numerical simulation of the growth of such networks. Here the final
patterns result from local interactions of parts of the structure and the continual random
formation of new segments by branching. For other references on a similar subject see
Cohen (1967) and Jackson et al. (1986).

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



544	 Spatially Distributed Systems and Partial Differential Equation Models

(c)	 (d)

Figure 11.23. Patterns formed by computer 	 apices and branches in (a,d) and between
simulations of simple branching rules. (a, b)	 apices only in (b, c). [Simulation program
Branching occurs only along a preexisting	 written and figures produced by Richard
branch. (c,d) Branching is apical.	 Fogel.]
Anastomoses (reconnections) occur between

PROBLEMS*

1. Cellular aggregation
(a) Justify each of the terms appearing in equations (2a,b).
(b) Verify that equations (6a,b) and (7a,b) are obtained by expanding (2a,b)

and then linearizing about the steady state (ä, c ).
*(c) In order for linearization to be a valid approximation it is necessary to

assume that the perturbations a' and c' are small. What else must be as-
sumed about the perturbations so that nonlinear terms in (7a,b) can be
neglected? How does this assumption influence the validity of the special
forms (9a,b)?

(d) Verify that equations (14a—c) are obtained from (13).
(e) Explain the reasoning used to deduce condition (16) from equations

(14a—c).
(f) Show that if equations (2a,b) for a (x, t) and c (x, t) have the no-flux

boundary conditions of equations (17a,b) imposed on them, then the per-
turbations a' (x, t) and c' (x, t) must also satisfy the same no-flux
boundary conditions.

*Problems preceded by an asterisk (*) are especially challenging.
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Models for Development and Pattern Formation in Biological Systems	 545

(g) The functions sin x and cos x have periods of 21r. Why then are permissi-
ble values of the wavenumber q given by equation (18) rather than by
q=n(2ar) /L(n =0, 1,2,...)?

2. Which of the following procedures would tend to promote the onset of aggre-
gation?
(a) Placing barriers so that the domain is subdivided into several subregions.
(b) Increasing the ambient cAMP concentration in the initial homogeneous

state.
(c) Causing the amoeba to reproduce vigorously before entering the starved

state.
(d) Raising the temperature.
(e) Adding phosphodiesterase to the medium.

3. For n = 1, inequality (19) can also be written in the form

1 (L /ir) Z < 	1	 (L/rr) 2

f Xi	 k + ( 7r/L) 2D p.

(See Segel, 1980.)
(a) Verify this fact.
(b) Interpret the meaning of each of the four terms in the equation.
(c) Give a verbal interpretation of the above aggregation condition.

4. What quantity in the model discussed in Section 11.3 depicts the size of the ag-
gregation domain? (Observe that the amoeba density does not enter into this
quantity.)

5. Possible modification of the cellular aggregation model
(a) Suggest how such quantities as X, µ, f, and k (assumed constant in the

simplest model) might depend on the variables a and c.
(b) How would equations (2a,b) and (6a,b) change under the assumption that

the parameters in (a) are nonconstant? [You may wish to take general
forms such as X = X(c), k = k(a), f = f(c), and so forth.

(c) How would equations (8a,b) change?
*(d) By assuming small perturbations of the form shown in (9a,b) and pro-

ceeding with a similar analysis, derive a stability condition analogous to
(16).

*(e) Use your result to argue what properties of the functions X, µ, f, and k
might promote aggregation.

6. Generalize the Keller-Segel model to rectangular two-dimensional aggregation
domain of dimensions Lx x L.

7. Lauffenburger and Kennedy (1983) suggest a model for the chemotaxis of
phagocytes (white blood cells) towards high bacterial densities (part of the tis-
sue inflammatory response to bacterial infection). A set of dimensionless equa-
tions that they studied are:
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546	 Spatially Distributed Systems and Partial Differential  Equation Models

äv	 azv	 yv _ uv
^t =P axz+ l+v K+v

au	 z

at axZ—sax u =
x +a(1 +av — u)

where

v = dimensionless bacterial density,
u = dimensionless phagocyte density.
y = ratio of maximum bacterial growth rate to maximum phagocyte

killing rate;
a = ratio of enhanced phagocyte emigration rate to normal "back-

ground" emigration rate;
K = ratio of inhibition effect of increasing bacteria density on bacterial

growth to inhibition effect of killing;
c4 = ratio of phagocyte death rate to maximum phagocytic killing rate.

(See problem 11 of Chapter 10.)
(a) Show that the stability of a uniform steady state to uniform (i.e. space-in-

dependent) perturbations is governed by the Jacobian matrix

y 	 KU	 V

Jr = (1 + V) 2 	(K + v) 2 	x + V
aa 	 —a

(b) What would be the corresponding matrix J governing stability of nonuni-
form perturbations?

(c) For the steady state (ü, v) = (1, 0) show that the eigenvalues of the ma-
trix in part (b) are

1
A , = —pq 2 +y — K,	 A2 =—q 2 —a.

(d) Which mode (i.e. which value of q) is the most likely to cause instabil-
ity? What is the implication?

(e) For the second steady state of the equations, 15>  0, ü = 1 + o1, show
that the stability matrix is

pq 2 + F(v) —H(ü)
,

Sitg 2 +acr —q 2 —a

where

F(v) = 
v(1 + av)(l — K)
(1 + v)(K + v) 2

and

H(V)= v
K + V
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and that eigenvalues have negative real parts provided the following in-
equalities are satisfied:

tr JI - ( 1 + p)q2 < 0,

det J1 + (pq 2 + pa + 8üH(v) — F(i))g 2 > 0.
*(f) Further discuss how diffusive instability might arise in this model. You
may wish to refer to the analysis in Lauffenburger and Kennedy (1983).

8. Cells in the sluglike phase of Dictyostelium discoideum are either prespore or
prestalk, and the two cell classes maintain a definite ratio despite experimental
manipulations such as excision of part of the mass. Use a simple model out-
lined in Chapter 7 to suggest one type of mechanism that might lead to this ra-
tio regulation. Comment on ways of testing such a model.

9. Reaction-diffusion systems
(a) Use Taylor-series expansions for R, and R2 to show that equations

(20a,b) lead to equations (24a,b) for small perturbations.
(b) Show that equations (24a,b) are equivalent to system (26a—d).
(c) Show that by assuming perturbations of the form (27) one arrives at

equations (28a,b).
(d) Verify that equation (30) results.
(e) Use the inequality (33b) directly to reason that diffusion has the capacity

to act as a destabilizing influence [Hint: note the effect of D 1 q 2 on the
self-influencing terms a;i .]

10. (a) Show that the expression on the LHS of inequality (33b) corresponds to
the quantity defined in equation (35).

(b) Demonstrate that H (q Z) has a minimum, and prove that gmin is given by
(36a) (Hint: Set dH/dq 2 = 0 and solve for gin.)

(c) Evaluate H(qi ).
(d) Show that (34) implies (37).
(e) Derive inequality (38) from (37) and (32b).
(f) Verify that (38) can be written in the dimensionless form given in (39).

11. (a) Justify inequalities (40) and (41).
(b) Verify inequality (45). What are the dimensions of T, and -r2? of D 2/r2

and D, /T,?
(c) Explain what is meant physically by the statement that the range of inhi-

bition should be larger than the range of activation.
(d) Show that for (45) to hold it must also be true that D2 > D,.
(e) Explain the deduction that spacing between patterns will be approxi-

mately given by (46) at the onset of diffusive instability.
(f) Suggest what sort of biological influences might bring about the parame-

ter variation that leads to diffusive instability.

*12. The growth rate of a given wavenumber q ; is o, and is given by (30). Describe
how one could use this equation to solve for o,, and find the wavenumber of
the fastest-growing perturbation.
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548	 Spatially Distributed Systems and Partial Differential Equation Models

13. Generalize the physical arguments given in Section 11.6 for the case of activa-
tor-inhibitor systems to the case of positive-feedback systems.

14. Reaction-diffusion in two dimensions
(a) Write out the linearized system corresponding to equations (48a,b).
(b) By explicitly differentiating equation (49) show that these are solutions to

the linearized equations. Obtain a set of algebraic equations in a, and a 2

(involving o-, q„ and other parameters.)
(c) An alternate assumption about perturbations is that they take the follow-

ing form:

C, (x, t) = a,e°` cos (q,x + qzy).

Use a trigonometric identity and boundary conditions (50a,b) to show
that this is equivalent to equation (49).

(d) Verify that equation (53) is obtained for the quantity Q2 characterizing
the most destabilizing perturbations.

15. In the following problems you are given a set of reaction terms R1(ci, cz) and
Rz(c,, C2). Determine whether or not a homogeneous steady state can be ob-
tained and whether the system is capable of giving rise to diffusive instability.
If so, give explicit conditions for instability to arise, and determine which
modes would be most destabilizing.
(a) Lotka-Volterra:	 (e) Van der Pol oscillator:

R, = ac l — bc 1 c2 ,	 c13
R2 = —ecz + dc,cz.	 R, = cz — 3 + c,,

(b) Species competition:	 R2 = —c'•

R, = µ,c, — a,c, z — y,zc,cz,	 (f) Phytoplankton-herbivore sys-
Rz = µzcz — az czz — y2 c,cz,	 tern (Levin and Segel, 1976):

^

µz < yzL µz az R1=ac1+ec12—b1c1c2,
µ1 ai' µ1 y12 R2 = —dcz z + bzcicz.

(c) Glycolytic oscillator:	 (g) Tyson-Fife model for Be-
R, = 6 — kc, — c, C22 ,	 lousov-Zhabotinsky reaction:
R2=kc1 +c,czz—cz .	 R=

(d) Schnakenberg chemical sys- 	
1 c,(1 — c,) — bc,(cz — a)

tern:	 E	 cz + a

Rl = C1 2 C2 — cl + b,	 R2 = c1 — C2.

R2 = —C 1 2 C2 + a.	 (h) Meinhardt (1983) model:
R, = ec, z cz — µc , ,
R2 = eo — eci z cz.

16. In this problem you are asked to explore the mechanism Meinhardt and Gierer
suggested [equations (57a,b)] by using linear stability theory. Set p o = pi = 0
and assume that p' and p are constant.
(a) Suppose diffusion is absent. Draw a phase-plane portrait of the reaction

scheme in equations (57a,b) and show the location of the nullclines and
steady state (Ä, H).
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(b) Using the conditions derived in this chapter, show that diffusive instabil-
ity of a homogeneous steady state (A, H) is possible, and give the neces-
sary conditions on the parameters.

17. (a) Interpret equations (58a,b) of the Gierer-Meinhardt model in terms of a
hypothetical set of interacting chemicals a and h. Show that c, = c2 = c
leads to dimensional inconsistency.

(b) Explain conditions (62a,b) in physical terms.
(c) Verify that (62b) implies (63). (Hint: Consider the equation

x — 1/x = 2 and solve for x.)

18. Interpret the Segel-Jackson equations (66a,b) for a spatially distributed preda-
tor-prey system. Why would the term —CE 2 be described as a "combat" term?
(a) The authors claim that for C = 0 the model will not yield a diffusive in-

stability. Justify and interpret this result.
(b) The assumption M = 0 does not prevent instability from occurring.

Why?
(c) Assume that M = 0, in other words, that predator mortality from

"combat" predominates over that due to other causes. Show that the
equations can be written in the following dimensionless form:

av = (1 + kv)v — aev + S 2 V 2 v,
ät

ae
at

= ev — e 2 + V 2 e,

where e = EC/Ko, v = VB /K0, distances are scaled in units of
(p2 /Ko) -1/2 and time is scaled in units of Ko .

(d) Show that the dimensionless parameters appearing in part (c) are
k = K,/B, a = A/C, and S Z = µ,/µ2 . Interpret the meanings of these
quantities.

(e) Show that the nontrivial steady state of this system is
1

e = v =
a—k

(f) Show that the instability condition is
k — S2 > 2(a — k)'/ 2 ,

and that the wavenumber of the excitable modes is given by

 1
Q 2 = S(a — k) "2

19. Effects of geometry on patterns formed. Consider a rectangle of sides Lx and Ly

where
L,, = L,	 L,, = yL.

(a) Suppose that the boundaries are impermeable (that is, no flux boundary
conditions apply). Show that the wavenumbers q, and q2 of a perturbation
in the x and y directions satisfy (51a,b).
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550	 Spatially Distributed Systems and Partial Differential Equation Models

(b) Suppose that the quantities L, D ;; , and a ;; are kept fixed but that the size
proportion y is gradually decreased. Interpret what effect this would have
on the shape of the domain.

(c) Now assume that the only excitable modes are those satisfying (56). If
initially m = n = 4 and y = 1, determine the succession of modes
(m; , n;) corresponding to a sequence of increasing values of y.

(d) Draw several of these patterns.

20. Effects of boundary conditions on patterns formed. Now suppose that in prob-
lem 19 the boundaries are not impermeable but rather are artificially kept at the
steady-state concentrations C, and C2:

C,(x,y,t) =C, (x=0,x=L,y=0,y= yL),

C2(x,y,t)=C2 (x=O,x=L,y=O,y= yL).

(a) How would this change the assumed form of the perturbations given by
equation (49)?

(b) How would this affect the form of the wavenumbers given by (51a,b)?
(c) What effect would this have on expressions in (54) and (56)?
(d) Now consider mixed boundary conditions: constant concentrations along

the x boundaries and no flux along the y boundaries. Repeat steps (a)
through (c).

(e) In each of the above two cases, assume that y = 2 and that the size of
the region, L 2 , is gradually increased (all else being held constant). De-
scribe the succession of modes you might expect to encounter by drawing
up a table analogous to the one in Figure 11.5.

21. A model for animal coat patterns (Murray, 1981 a) In melanogenesis the pre-
cursor tyrosine is oxidized to dihydrophenylalanine (DOPA) in the presence of
the enzyme tyrosinase. DOPA oxidizes further before the final polymerization
to melanin. Murray (1981 a) proposes that prepattern formation occurs before
the arrival of melanoblasts (precursors of the melanin-producing melanocytes)
at the epidermal surface. He considers two species, a high-molecular-weight
substrate S and a cosubstrate A. For example, the substrate could be associated
with tyrosine or the enzyme tyrosinase, and the cosubstrate might be an in-
hibitor governing melanogenesis initiation. The kinetics are taken to be that of
substrate inhibition of an immobile enzyme. It is assumed that the two reactive
species S and A are maintained at constant concentrations S o and Ao in a reser-
voir. From this reservoir they diffuse through an inactive membrane of thick-
ness L, onto an active membrane of thickness L2. (See accompanying dia-
gram.) The active membrane contains the immobile enzyme tyrosinase, which
allows S and A to react at the following rate:

Vm AS
R (70)

where V., Km, and Ks are assumed to be constant. Murray then suggests the
following reaction-diffusion equations:
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Reservoir of S and A	 Diffusion

L'	 l{/^/ Inactive membrane

L i 	/ Active membrane with enzyme

L

Figure for problem 21. S and A diffuse from a	 undergo an enzyme-catalyzed reaction. [Based on a
reservoir to the active membrane, where they 	 drawing by Marjorie Buff.]

V. AJ	
+ Ds V2J,	 (71a)

Km +S+S 2/Ks

OT
	+ D A O 2 A,	 (71b)

where Ds and DÄ are the diffusion coefficients for S and A in the inactive
membrane, and Ds and DA are the diffusion coefficients for S and A in the ac-
tive layer.
(a) Explain reaction mechanism (70). (Note: You may find it useful to refer

to problem 22 in Chapter 7.)
(b) Explain the various terms in equations (71a,b). [Note: Diffusive flux into

the active membrane from the reservoir is proportional to Ds(So — S) and
DÄ(Ao — A).] Why does the product L,L2 appear in this expression?

(c) Murray assumes that Ds < DA. On what property of the substance S does
he base this assumption? Why is such an assumption necessary?

(d) Define dimensionless variables as follows:

s=Km ,	 a= A	 t*= Ds ,	 V* 2 =L 2 V2 .

Show that equations (71a,b) can be written in the dimensionless form
given by equations (65a,b) of Section 11.8, where

f(s, a) = a(ao — a) — pF(s, a),	 (72a)

as_ DS (so —S) —
aT LL 2

aA _ Dn (A — A) 
Km

—
Vm AS
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g (s, a) = so — s — pF (s, a), 	(72b)

sa
F(s, a) = I+s+KsZ
	

(72c)

(e) What are the dimensionless parameters a, /3, y, K, and p that appear in
equations (65) and (72)? (For example, find that K = Km/Ks, and so
forth.)

(f) Interpret the biological significance of these parameters.
(g) Why is it not possible to obtain a simple analytical solution for the homo-

geneous steady state (s, ä) of this model?
(h) Find the Jacobian matrix

J _ gs ga
fs fa

forf and g given in part (d).
(i) Show that äf/9a <0 and ag/aa < 0. What must be true about of/as

and oag/as at the steady state (s, ä) if this chemical reaction is to exhibit
diffusive instability? Which of the two types of chemical interactions
given in Section 11.6 is consistent with the signs of the partial derivatives
in J?

(j) Show that the requirements found in part (i) are consistent with
7> 1 V. Can you interpret this result biologically?

(k) It is not an easy task to graph the curves corresponding to the nullclines
of this system. However, given that for three different K values the
graphs have the qualitative features shown in Figures 8.6(a), it is a
straightforward process to deduce which of these corresponds to a situa-
tion that implies diffusive instability. Use results of Section 7.8 to make
this deduction.

22. Diffusive predator prey model (Mimura and Murray, 1978). Consider the gen
-eral _model suggested by Mimura and Murray [equations (68a,b)]. Suppose

(P, Q) stands for the homogeneous steady state of these equations.
(a) What are the equations of the _nuliclines in the spatially homogeneous

equations? (What equations do P and Q satisfy?)
(b) Give conditions for stability of this steady state in the absence of diffu-

sion. Determine the possible sign patterns of elements in the Jacobian.
(c) The two nullclines shown in Figure 11.17 intersect to the left of the

hump in the P-nullcline. Is this configuration consistent with diffusive in-
stability?

(d) Give the full condition for diffusive instability in this system.
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