
Partial Differential
Equation Models in Biology

Give me space and motion and I will give you a world
R. Descartes (1596-1650) quoted in E. T. Bell (1937) Men of Mathematics,

Simon & Schuster

Because populations of molecules, cells, or organisms are rarely distributed evenly
over a featureless environment, their motions, migrations, and redistributions are of
some interest. At the level of the individual, movement might result from special
mechanochemical processes, from macroscopic contractions of muscles, or from
amoeboid streaming. On the population level, these different mechanisms may have
less bearing on net migration than other aspects such as (1) variations in the environ-
ment, (2) population densities and degree of overcrowding, and (3) motion of the
fluid or air in which the organisms live.

On the collective level it is often appropriate to make a continuum assumption,
that is, to depict discrete cells or organisms by continuous density distributions. This
leads to partial differential equation models that are quite often analogous to classi-
cal models for molecular diffusion, convection, or attraction.

Historically, biological models involving partial differential equations (PDEs)
date back to the work of K. Pearson and J. Blakeman in the early 1900s. In the
1930s others, including R. A. Fisher, applied PDEs to the spatial spread of genes
and of diseases. The 1950s witnessed several important developments including the
work of A.M. Turing on pattern formation (see Chapter 11) and the analysis of
Skellam (1951), who was among the first to formally apply the diffusion equation in
modeling the random dispersal of a population in nature. Some of these models and
several others drawn from molecular, cellular, and population biology are outlined
in this chapter.
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Partial Differential Equation Models in Biology 437

In Section 10.1 we begin with an account of Skellam's work and his analysis
of spreading populations of animals and plants. Models for the collective motion of
microorganisms are then developed in Section 10.2. There is an underlying parallel
between the equations for moving populations and the conservation equations en-
countered in physical phenomena such as particle diffusion. However, there are
some noteworthy differences; among these are models for density-dependent disper-
sal, which are mentioned in Section 10.3. Two applications of convection equations
to growth in a branching network are described in 10.4.

Many models discussed in this chapter cannot be solved analytically in closed
form. This is particularly true of the nonlinear equations. We must often work with
relatively elementary solutions that do not address the full complexity inherent in the
time-dependent evolution of the system. A standard first approach is to reduce the
problem to one that can be solved, generally by converting the PDEs to ordinary dif-
ferential equations (ODEs) that describe some simpler situation. Two types of solu-
tions can be thus ascertained: steady-state distributions and traveling waves. Meth-
ods for finding such solutions are described in Section 10.5. In Section 10.6 we
apply such techniques to Fisher's equation, which depicts the spread of an advanta-
geous gene in a population. A second example of biological waves emerges from the
study of microorganisms such as yeast growing on glucose. Remarkably, phase-
plane analysis reemerges as a handy tool in this unlikely setting. The phenomenon of
long-range transport of biological substances inside the neural axon is described in
Section 10.7.

In Sections 10.8 and 10.9 our emphasis shifts slightly. Here again we aim to
uncover the generality and power of abstract thinking by demonstrating that familiar
equations can be applied in novel and surprising ways to seemingly unrelated set-
tings. We begin with a calculation due to Takahashi that uncovers a connection be-
tween the aging of a cell and the processes of spatial redistribution previously stud-
ied. The analogy between age distributions and spatial distributions is then more
fully explored. Section 10.9 is a do-it-yourself modeling venture that exploits such
analogies, and Section 10.10 provides references and suggestions for further study.

10.1 POPULATION DISPERSAL MODELS BASED ON DIFFUSION

Among the first to draw an analogy between the random motion of molecules and
that of organisms was Skellam (1951). He suggested that for a population reproduc-
ing continuously with rate a and spreading over space in a random way, a suitable
continuous description would be

aP=9V P + aP. (1)
at

a, called the dispersion rate, is analogous to a diffusion coefficient (also called the
mean square dispersion per unit time). P(x, t) is the population density at a given
time and location.

Skellam was particularly interested in the rate with which the area initially col-
onized by a population expands with time, and quoted two interesting examples
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438	 Spatially Distributed Systems and Partial Differential Equation Models

based on biological data. Here we examine equation (1) in more detail but in a one-
dimensional, rather than a full two-dimensional setting.

The growth term aP not only increases the density locally but also causes a
faster spatial spread in the population than that anticipated by diffusion alone. In-
deed, as Skellam pointed out, the outward propagation of the equipopulation con-
tours (the level curves of the population density) eventually takes place at a constant
radial rate.

To see why this is true, we consider a point release of the species at time t = 0
and location x = 0. Then it can be shown that a solution of equation (1) is

_	 Po 	x 2 \

P(x, t) 	2(1r2t)"2 
exp 

at — 4^t .	
(2)

See problem 3.
To study the lateral population expansion one could observe the translation of

those points x ; for which

P (xi, t) = P; = constant.

(These points are analogous to the equipopulation contours in higher dimensions.)
After initial spreading, the population will have achieved a detectable level at

some distance x from its origin. The outer boundary of the population will continue
to spread so that x will translate outwards. It is of interest to derive some estimate of
this rate of propagation. (Note: We are investigating a one-dimensional setting for
the sake of simplicity. In two dimensions we would be asking a similar question
about the rate of propagation of level curves; see Figure 10.1 for an example.)

In problem 3 it is shown that by setting P (x, t) = P (a constant) in equation
(2) and looking at the large-time behavior, one obtains in the limit,

z = 2(a91)'"2 t,	 (3)

so that the location at which the population density is P travels asymptotically at a
constant speed, 2(ag) 2 . One reason this equation admits a more rapid advance rate
than does a diffusion equation without the growth term stems from the fact that the
birth rate reinforces gradients. Where the population is large, the population gets
larger quickly so that the diffusion process is driven by internal growth.

A similar asymptotic expansion rate holds for radially outwards diffusion in a
two-dimensional distribution; that is, one can verify that for large t, equipopulation
contours expand at the rate

(area)"2 = 2(a^)'12 t.	 (4)

Skellam used this result to demonstrate that the spread of certain populations can be
explained on the basis of a diffusion approximation (in other words, an underlying
random walk of individuals). Particularly noteworthy is his example of recorded
spread of a muskrat population over central Europe after a Bohemian landowner
mistakenly allowed several to escape in 1905. Because of uneven spatial terrain
(presence of towns, for example) the population contours are not particularly regu-
lar. However, Skellam showed that the square root of the area increases linearly
with time, as anticipated from equation (4).
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(a)
	

(b)

Figure 10.1 Spread of muskrats over central
Europe during a period of 27 years described by
Skellam (1951) as a random dispersal. (a)
Equipopulation contours (level curves of p (x, t) for
the lowest detectable muskrat population. A graph
of (area)'!z of the regions enclosed by these curves

reveals linear dependence on time t, as predicted by
the growth-dispersal model of equation (1). [From
Skellam J. G. (1951). Random dispersal in
theoretical populations. Biometrika, 38, figs. I and
2, p. 200. Reprinted with permission of the
Biometrika Trustees.]

Skellam applied similar conclusions to the spread of oak forests over Britain
and by simple calculations argued that small animals must have played an important
role in the dispersal of acorns (see problem 5).

In the recent literature, diffusion-like models for population dispersal have be-
come quite common. The homing and migration of birds, fish, and other animals
have been described by diffusion with a "sticky" target site (see Okubo, 1980, for
survey and references). Smaller organisms such as insects have also been modeled
by diffusion equations. Ludwig et al. (1979) describe the spread of the spruce bud-
worm by the equation

aät =a P +aP( 1— K/ —

ß H2p2pz (5)

where ß is the rate of mortality due to predation, and K is a constant. See problem
2(d) for an exercise in interpreting the equation. Kareiva (1983) applied diffusion
models to data for herbivorous insects under a number of conditions and derived rig-
orous tests for the validity of such approximations.

Aside from the motion of organisms, it has also been recently popular to de-
scribe by diffusion the spread of genes, disease, and other similar properties. A good
general survey of many references is given by Okubo (1980), Fife (1979), and Mur-
ray (1977).
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Partial Differential Equation Models in Biology 	 441

A preoccupation with propagation rates is still quite current. Many recent pa-
pers address these questions, with emphasis on the role of initial conditions and of
growth rates other than simple exponential growth. Another interesting question is
whether equations such as (1) or its various modifications admit traveling-wave solu-
tions (solutions that move in space without changing their "profiles"). Table 10.1
lists some of the results regarding propagation speeds. In a later section we deal at
greater length with traveling-wave solutions.

10.2 RANDOM AND CHEMOTACTIC MOTION OF MICROORGANISMS

Many unicellular organisms have elaborate patterns of locomotion that may include
ciliary beating (synchronous motion of hair-like appendages on the cell surface,) he-
lical swimming, crawling on surfaces, tumbling in three dimensions, and pseudopo-
dial extension (protrusion of part of the cell and streaming of the cellular contents.)
In the absence of overriding external cues, such motion may appear saltatory (jerky)
or random, although of course, it is strictly determined by events on subcellular lev-
els. At the population level, the pseudo-random motion could be approximately de-
scribed as a process analogous to molecular diffusion. A one-dimensional equation
that would represent changes in the spatial distribution of a large population of such
microorganisms would then be

z

ä^=µäb+rb,	 (6)

where

b (x, t) = population density at location x and time t,

µ = coefficient that depicts the motility or dispersal rate of the organ-
isms,

r = growth rate (if positive) or death rate (if negative).

Note that rb is a local source/sink term, previously denoted by a, since it accounts
for local addition or elimination of individuals; note also that equation (6) is a diffu-
sion equation.

Segel et al. (1977) applied equation (6), where r = 0, to the dispersal of bacte-
ria. Based on experimental observations, they calculated a value of p. of 0.2 cm 2 h - '
for Pseudomonas fluorescens. (See Segel, 1984, and problem 6 for a summary.)

Similar equations (with negative r) have been applied to plankton (microscopic
marine organisms) by Kierstead and Slobodkin (1953). Bergman (1983) discusses a
model for contact-inhibited cell division that reduces to a diffusion equation in the
limit of unrestricted cell division.

When the microorganisms depend on some growth-limiting nutrient for their
survival, the relative rate of nutrient diffusion to organism motility may be of some
importance. An example of substrate-dependent growth is given by Gray and Kir-
wan (1974) for yeast growing on solid medium. A recent model for the effects of
random motility on bacteria that consume a diffusible substrate is described by Lauf

-fenburger et al. (1981), who suggest the following equations:
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442	 Spatially Distributed Systems and Partial Differential Equation Models

z
	a^ = µ 7 + [f(s) —	 ke]b,	 (7a)

as
 = 

azs _
at 2 X	 Y f (s)b,
	 (7b)

where

b(x, t) = bacterial density,

s (x, t) = substrate concentration,
Y = the yield (mass of bacteria per unit mass of nutrient),

f(s) = the substrate-dependent growth rate,

ke = the bacterial death rate when s is depleted.

Some details of their model are explored in problem 8.
Keller and Segel (1970, 1971) were among the first to describe a continuum

equation for the phenomenon of chemotaxis in microorganisms, discussed earlier in
Chapter 9. Taxis refers to the purposeful motion of organisms in response to envi-
ronmental cues. Some animals are known to be attracted to brighter light, warmer
temperatures, and higher levels of certain chemical substances (for example,
pheromones or nutrients) while being repelled from potentially damaging influences
(such as toxins, extremes of temperature or extremes of pH).

Keller and Segel applied the idea of attraction and repulsion in deriving their
equation for bacterial chemotaxis:

at = ax \XB fix/ +	 I 
	 (8)

attraction random motion

where

B (x, t) = bacterial density at location x and time t,

X = chemotactic constant.

X depicts the relationship between a gradient in the substance c and the velocity of
migration of the population. In other words, the chemotactic flux is assumed to be
proportional to a gradient ac/ax:

ac
	J chemotactic = XB — •	 (9)

ax

The second term of equation (8) contains, as before, the flux due to random motion

_ aB
	J random = 9 B .	 (10)

Underlying molecular mechanisms that might produce a chemotactic response in mi-
croorganisms have been studied by Segel (1977). The equations have also been ap-
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plied in a model for aggregation of microorganisms that will be described more fully
in Section 11.1.

Certain cells implicated in the immune response of higher organisms are also
able to undergo chemotactic motion in response to substances associated with infec-
tion or inflammation. White blood cells known as polymorphonuclear leukocytes
(PMNs) are responsible for engulfing small foreign bodies in a process called phago-
cytosis. To locate such bodies, PMNs first orient their motion chemotactically in re-
sponse to chemical substances released by damaged tissue (Zigmond, 1977). Lauf

-fenburger (1982) who developed several models for the chemotaxis of PMNs
demonstrated that the accuracy of the response can only be explained by assuming
that cells average local concentrations over a time scale of several minutes. A slight
modification of the Keller-Segel equations has also been applied (Lauffenburger and
Kennedy, 1983) to describe spatial properties of the immune response to bacterial
infection (see problem 11).

Chemotactic equations can be rigorously derived from first principles once cer-
tain assumptions are made about the "choice" of step size and direction of motion of
individuals in a population. Okubo (1980) discusses derivation of such equations
from one-dimensional "biased" random-walk models. Alt (1980) and others have
similarly made the connection in higher dimensions.

10.3 DENSITY -DEPENDENT DISPERSAL

In recent work, Gurtin and MacCamy (1977) have extended the more classical mod-
els to density-dependent population dispersal. They suggest that more realistic as-
sumptions about dispersal might include a nonconstant rate of dispersal that in-
creases when overcrowded conditions prevail. Typically this would lead to a
modified diffusion flux

J = —2(P)VP,	 (11)

or, in one dimension,

J = —21(p) ap •	 (12)

A form the authors use for 2(p) is

26(p) = kpm,	 (13)

where k is positive, and m ? 1. An increase in the population thus causes the dis-
persal rate to increase. In one dimension an equation describing the population
movement would then be

äp = k ä I p'" äx+ F(P),	 (14)

where F is the local growth rate. It is readily shown that an equivalent form is
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444	 Spatially Distributed Systems and Partial Differential Equation Models

at = K az(ap 2+1) + F(P),	 (15)

where K = k/(m + 1). Several interesting and somewhat desirable properties of this
equation include the following: (1) If the population initially occupies a finite region,
it will always occupy a finite region. (2) The size of this region will increase if birth
dominates over mortality; (3) however, if mortality is the stronger influence, the
population will not expand spatially beyond certain bounds.

Similar equations have since been applied to epidemic models in which the dis-
ease spreads with a migrating population (see, for example, Busenberg and Travis,
1983).

A particularly striking extension of the idea of density-dependent dispersal ap-
pears in a recent publication by Bertsch et al. (1985). These authors consider a pair
of interacting populations with densities u (x, t) and v (x, t), in which dispersal is a
response to the total population at a location that is, to [u (x, t) + v (x, t)]. It is as-
sumed that the velocities of motion are proportional to gradients in the total popula-
tion:

q = —k,V(u + v),	 (16a)
w = —k2 V(u + v),	 (16b)

where q and w are velocities, and k, and k2 are constants. This means that individu-
als are moving away from sites of high total population at velocities proportional to
the gradient of u + v. For the case of no net death or growth, the conservation state-
ments are

au = —v ( q),
u	 (17a)

at 

av = —V • (uw),	 (17b)
at

so that in one-dimension the full equations are

au _ 	a r a(u + v) 1	
(18a)

at — k' ax L u 	ax J'

at — k2 ax [V 
a(u 	v)1'	

(18b)

The following interesting result is proved by Bertsch et al (1985). If the initial
populations colonize distinct regions without overlap (that is, if they are segre-
gated), they will remain segregated for all future times by virtue of these interac-
tions. This prediction is independent of k, and k2 and of the details of the initial dis

-tributions, provided only that they are segregated.
Models such as this point to the rather nonintuitive and surprising features of

fairly simple sets of PDEs. In the next chapter we briefly examine two models in
which pairs of PDEs lead to rather interesting predictions.
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10.4 APICAL GROWTH IN BRANCHING NETWORKS

We next consider a pair of related models in which growth of a branching organism
or network is described as a translation of apices, (endpoints of branches, at which
growth takes place). Collectively this kind of growth can sometimes be approxi-
mated as a convection, provided the appropriate definitions of variables are made.

If one is concerned with the spatial distribution of density in filamentous or-
ganisms, it often makes sense to define two densities, which are then used simulta-
neously in describing growth, branching, and other possible interactions (to be men-
tioned later). One model focuses on fungi, which often grow in densely branched
colonies (see Figure 10.2). The model consists of the following variables:

p(x, t) = length of filaments per unit area,

n (x, t) = number of growing apices per unit area.

It is assumed that apical growth Ieads to a constant rate of elongation that makes
apices move at a fixed velocity. Define

v = growth rate in length per unit time.

Using these assumptions, it can be shown that an appropriate system of equations in
a one-dimensional setting is

äP = nv — yp,	 (19a)

an __  a(nv) + or,	
(19b)at	 ax

where y = the rate of filament mortality and a = the rate of creation of new apices
(which occurs whenever branching takes place). More details about this model can
be found in Edelstein (1982), and a detailed derivation of these equations is given as
a modeling exercise in problem 12.

Perhaps underscoring the generality of mathematics is a recent application of
similar equations to the seemingly unrelated phenomenon of tumor-induced blood
vessel growth. Balding and McElwain (1985) have modified (19) to describe the for-
mation and growth of capillary sprouts into a tumor. It is known that a chemical in-
termediate secreted by tumors (called tumor angiogenesis factor, or TAF) promotes
rapid growth of the endothelial cells that line the blood vessels. This leads to the
sprouting of new capillaries, which apparently grow chemotactically toward high
concentrations of TAF. In the model suggested by Balding and McElwain the diffu-
sion of TAF [whose concentration is represented by c (x, t)] and its effect on capil-
lary tip growth and sprouting are represented as follows:

ac	 azc
at = 26 ax 2 '	

(TAF)	 (20a)

a = nv — yp,	 (capillary density)	 (20b)
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446	 Spatially Distributed Systems and Partial Differential Equation Models

(a)

Figure 10.2 Branching organisms such as fungi
grow by extension and ramification of long slender
filaments. Growth can take place in one, two, or
three dimensions. A one-dimensional model also
applicable to other networks such as blood vessels
is given by equations (20a—c). (a) Two stages in the
growth of Coprinus. (b) Stages in the development

of Pterula gracilis. [(a) From A. R. M. Buller
(1931), Researches in Fungi, vol. 4, Longmans,
Green, London, figs. 87 and 88; (b) from J. T.
Bonner (1974), On Development; the biology of
form, fig. 17, reprinted by permission of Harvard
University Press.]D
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an	 _ a(nv) + o,	 (capillary tips)	 (20c)
at =	 ax

where

ac
u = X 

ax '	
(20e)

oo = acp — ßnp.	 (20f)

In these equations, c may be determined independently and leads to a concentration
field that acts as a chemotactic gradient. Equations (20b,c) include capillary-tip
chemotaxis with rate X, sprouting from vessels at a rate proportional to the concen-
tration c, and loss of capillary tips due to anastomosis (reconnections that form
closed networks). The equation for vessels (20b) includes growth by extension of
tips and a rate y of degradation of old vessels. This model illustrates the connection
between the general concept of convective flux (as defined in Section 9.4) and the
particular case of chemotaxis.

10.5 SIMPLE SOLUTIONS: STEADY STATES AND TRAVELING WAVES

Many models described in this chapter cannot be solved in full generality by analytic
techniques, since they consist of coupled PDEs, some of which may be nonlinear. It
is frequently challenging to make even broad generalizations about their time-depen-
dent solutions, and abstract mathematical theory is called for in such endeavors.

We shall skirt these issues entirely and deal only with easier questions that can
be settled by applying methods developed for ODEs to understand certain special
cases. Two types of solutions can be obtained by such means: the first are steady
states (time-independent distributions); a familiarity with the concept of steady states
can thus be extended into the realm of spatially distributed systems. The second and
distinctly new class of solutions are the traveling waves, distributions that move over
space while maintaining a characteristic "shape" or profile. A special trick will be
used to address the question of existence and properties of such solutions.

Nonuniform Steady States

By a steady state c(x) of a PDE model we mean a solution to the equations of the
model that additionally satisfies the equation

ac
	at

	 0.
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448	 Spatially Distributed Systems and Partial Differential Equation Models

If the problem is written for a single space dimension, setting the time deriva-
tive to zero turns the equations into a set of ODEs. Often, but not always, these can
be solved to obtain an analytical formula for the steady-state spatial distribution E(x).

Homogeneous (Spatially Uniform) Steady States

A homogeneous steady state is a solution for which both time and space derivatives
vanish. For example, in one space dimension

ac
0

_	 ac
at — '	 ax=0.

These solutions satisfy algebraic relationships that are often relatively easy to solve
explicitly. They describe spatially uniform unvarying levels of the population. Often
such solutions are less interesting on their own merits but are rather significant for
their special stability properties. The effects of spatially nonuniform perturbations of
such homogeneous steady states forms a separate topic to be discussed in Chap-
ter 11.

Example 1
Find a (nonuniform) steady-state solution of equation (8) for bacterial chemotaxis.

Solution
Setting aB/at = 0 leads to

ax\—
XBäX +µaB)=0.	 (21)

Integrating once then results in

J = constant	 (22)

where J is bacteria] flux, the expression in parentheses in equation (21).
Suppose (21) is confined to a domain [0, L] and that no bacteria enter or leave

the boundaries. Then by equation (22), J = 0 at x = 0 implies that J = 0 for all x.
Thus

8c	 aB _ 	ac  µ(9B
—XB ax +µ ax — 0,	 or	 X	 _ax B ax	 for B # 0 .

Integrating once more leads to

Xc (x) = µ In B (x) + k,	 (23)

where k is an integration constant. Thus

B (x) = k exp 
Xc (x)
	(24)

µ

where k = exp (— k).
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Observe from (24) that a steady-state distribution of bacteria B (x) can be related
to a given chemical concentration c (x). In general, another equation might describe the
distribution of this substance. For a simple example, consider plain diffusion, for
which

ac _ a2c
at =	 axe'	

(25)

c (0) = CO 3 and c (L) = 0. This is an artificial example chosen purely for illustrative
purposes: the chemical concentration is contrived to be fixed at the ends of the tube
while bacteria are not permitted to enter or leave; furthermore, bacteria orient chemo-
tactically according to the c gradient but do not consume the substance.

By results of Section 9.5, a steady-state solution of equation (25) is

x
c (x) = Co t.	 (26)

The corresponding bacterial profile would be

(XML

Coxl
B (x) = k exp	 J	 (27)

From this solution it follows that at every location x the bacterial flux due to chemotac-
tic motion is exactly equal and opposite to the flux due to random bacterial dispersion.
For this reason a nonuniform distribution can be maintained.

Example 2
Find steady states of the density-dependent dispersal equations (18a,b).

Solution
Set au/at = 0 and av/at = 0 in equations (18a,b) to obtain

a	 a(u+„)
ax u ax ] = 0,
	 (28a)

8
ax [v 

a(uax v)1 
= 0.	 (28b)

After integrating once, observe that

a(u + v)u 	
=C1.	 (29a)

ax
a(u + v)v 	 _ 

CZ	 (29b)
ax
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450	 Spatially Distributed Systems and Partial Differential Equation Models

Note that C, and C2 are constants and represent population flux terms for species u and
v respectively. If C, = C2 = 0, then two possibilities emerge:

1. u=0,v=K2 	or	 v=0,u =K 1 ,	 (30)

where K, and K2 are non-negative real numbers; or

2. a(u + v) _	 (31)
ax

where K is a positive constant.
If C, # 0 and C2 # 0, then neither u or v can ever be zero, so that a third result

is obtained:

3,	a(u + v) — C, — C2	
(32)ax	 u	 V

This means that u = (C,/C2)v, so that

(1 +c---= C21ax 	 IZ '

v avJ =
C2f l

dx,
 + C1 /C2

1/z

+ C,/Cz

	

v = (2x	 CZ 	+ K) ,	 (33)1 

where K is a constant.
These solutions are written for the case of infinite one-dimensional domains. If a

finite domain is to be considered, the steady states just given may or may not exist de-
pending on boundary conditions (see problem 15).

It is possible to patch together a mosaic of solutions (of type 1, for example) that
would satisfy the given system of equations at all points save for a few singular loca-
tions where a transition between one species and the next occurs. (The spatial deriva-
tives are undefined at such places.) Such mosaics depict a partitioning of the domain
into separate habitats where either u or v (but not both) prevail. In this situation the
populations are said to be segregated.

We next turn to traveling-wave solutions and indicate how a similar reduction
to ODEs can be made.

Traveling-Wave Solutions

Let f(x, t) be a function that represents a wave moving to the right at constant rate v
while retaining a fixed shape; f is thus a traveling wave. An observer moving at the
same speed in the direction of motion of the wave sees an unchanging picture, which
he or she might describe alternately as F(z). The connection between the stationary
and moving observers is

D
ow

nl
oa

de
d 

05
/3

1/
21

 to
 1

28
.6

.4
5.

20
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



Partial Differential Equation Models in Biology 	 451

F(z) = f(x, t)	 provided	 z = x — Vt.	 (34)

See Figure 10.3. We note that F(z) is now a function of a single variable: distance
along the wave from some point arbitrarily chosen to be z = 0. Using equation (34)
and the chain rule of differentiation, we may conclude that

of _ dF az ^ dF	
(35a)ax dz ax dz'

of — dF az _ — dF
at dz at	 v dz .	 (35b)

f(x, 0)

Stationary
observer

xo

F(z)

Moving
observer

z

(a)

f(x, t)

Stationary
observer

xp	 x

F(z)

Moving
observer

z

(b)

Figure 10.3 Traveling waves in stationary and 	 z = x — Vt (or z r x + vt for motion in the
moving descriptions. A function f(x, t) is a traveling opposite direction). One exploits this fact in
wave if there is a coordinate system moving with 	 converting a PDE in f into an ODE or possibly a
constant speed v such that f(x, t) = F(z) where	 set of ODEs in F. (a) time = 0, (b) time = t.
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452	 Spatially Distributed Systems and Partial Differential Equation Models

Example 3
Consider the equation

z

dap +ap(l—p).ap— (36)

The motivation for this equation is discussed in the next section. Letting

P (z) = p (x, t) (37a)

for
z = x — vt, (37b)

we obtain
z—vdP=	 dP +aP(1—P).

z	 z
(38)

This is a second-order ODE. We shall convert it to a system of first-order ODEs by
making the substitution

—S= 
d

.

z
(39)

The system we obtain is

dP = —S
(40a)

dz

d = + aP(1 — P) —	 S. (40b)

If we can find a way of understanding this system of ODEs, then we can make
a statement about the existence and properties of the traveling-wave solutions. This
is our main topic in the next section.

10.6 TRAVELING WAVES IN MICROORGANISMS AND IN THE SPREAD
OF GENES

In this section we describe two problems that can be approached by applying famil-
iar techniques in a rather novel way. We first deal with a classic model due to Fisher
that illustrates ideas in a simple, clear setting. A second modeling problem is then
handled using similar methods.

Fisher's Equation: The Spread of Genes in a Population

Fisher (1937) considered a population of individuals carrying an advantageous allele
(call it a) of some gene and migrating randomly into a region in which only the al-
lele A is initially present. If p is the frequency of a in the population and q = 1 — p
the frequency of A, it can be shown that under Hardy-Weinberg genetics, the rate of
change of the frequency p at a given location is governed by the equation
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zäP — 26 ä p + ap (1 — P),	 (36)

where a is a constant coefficient that depicts the intensity of selection (see Hoppen-
steadt, 1975). Note that 0 <p < 1. Historically this model elicited considerable in-
terest and was investigated and generalized by a host of mathematicians. Good re-
views of the historical perspective and of the mathematical methods can be found in
Fife (1979), Murray (1977), and Hoppensteadt (1975). We remark that the equation
can also describe a population p (x, t) that reproduces logistically and disperses ran-
domly.

Equation (36) has a variety of solutions depending on other constraints (such as
boundary conditions). Here we shall deal exclusively with propagating waves on an
infinite domain. The goal before us is to ascertain whether a process described by
equation (36) can give rise to biologically realistic waves of gene spread in a popula-
tion.

In Section 10.5 we observed that the strategy behind studying traveling-wave
solutions is that the mathematical problem is thereby reduced to one of solving a set
of ODEs. From example 3 it transpires that if equation (36) has traveling-wave solu-
tions, these must satisfy equation (38), or equivalently the system of equations

dPdZ = —S,	 (40a)

dZ = a P(1 — P) — v S.	 (40b)

This system of ODEs is nonlinear and therefore not necessarily analytically
solvable. However, the system can be understood qualitatively by phase-plane meth-
ods, as follows:

Consider a PS phase plane corresponding to system (40). By our previous methods of
attack we first deduce that nullclines are those curves for which

S = 0,	 (P nullcline)	 (41a)

S = a (1 — P),	 (S nullcline)	 (41b)
v

and that intersections ("steady states") occur at

(P,, S,) _ (0, 0), 	 (42a)

(Pzi Sz) _ (1, 0).	 (42b)

The Jacobian of (40a,b) is

0	 —1
(43a)

_ -(1 — 2P) ---)_
-

so that

	

0	 1

	

J i = (a	 v ,	 (43b)
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454	 Spatially Distributed Systems and Partial Differential Equation Models

0	 —1
J2 =	 a	 v	 (43c)

This makes (P 1 ,) a stable node and (2,2) a saddle point provided
v > 2(a2l)'I2 (see problem 16). The PS phase plane is shown in Figure 10.4(a). On
this figure arrows correspond to increasing z values, since z is the independent variable
in equations (40a,b). A single trajectory emanates from the saddle point and ap-
proaches the node as z increases from –co to +cz. A trajectory that connects two steady
states is said to be heteroclinic. Such trajectories have special significance to our analy-
sis, as will presently be shown.

S

P

(a) (P2, S-))

P (z)

(b)

Figure 10.4 (a) Traveling-wave solutions to
Fisher's equation (36) satisfy a set of ODEs
(40) whose phase plane diagram is shown
here. The heteroclinic trajectory shown
connecting the two steady states (P,, S,) _

(0, 0) and (p2, S2) = ( 1, 0) is the only
bounded positive trajectory. (b) The
qualitative shape of the wave. P(z) — I (for
z – –00) and P(z) –+ 0 (for z -- + co). The
direction and speed of motion is indicated.
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To interpret Figure 10.4(a) in light of propagating waves we must first recall
the interpretation given to the functions P (z) and S (z) . Forfeiting a role previously
played by time t, the variable z stands for distance along the length of a wave. Any
one curve in the PS plane thus depicts the gene frequency (P) and its spatial varia-
tion (S) from one end of the wave (z = -cc) to the other (z = +cc). We are primar-
ily interested in the former, P(z). However, not all the phase-plane trajectories give
reasonable depictions of a biological wave. We consider first the distinguished hete-
roclinic orbit mentioned earlier and observe the following properties of this curve:

P (z) - -  = 1 (z - -cc), (44a)

P(z) - P, = 0 (z -+ +co), (44b)

P, < P(z) <P (-cc <z <+00). (44c)

A sketch of P as a function of z derived exclusively from these observations is given
in Figure (10.4(b). This wave has the shape of a moving front. At large positive z
values P(z) is very small (approaching zero for z - +cc), whereas at large negative
z values P (z) is very close to 1 (approaching 1 for z -* -cc). This means that allele
a has become dominant in the population at the left part of the domain, whereas al-
lele A is still the only gene present towards the right.

Recall that z = x - vt depicts a wave traveling from left to right. The arrow in
Figure 10.4(b) indicates the direction that the given wave would move with respect
to a stationary observer. We observe that the advantageous allele a becomes domi-
nant in the population as the wave sweeps through the domain; that is, allele a
spreads in the population towards fixation at any particular location.

Now examining other phase-plane trajectories shown in Figure 10.4(a) we en-
counter unrealistic features that lead us to reject these as possible candidates for bio-
logical traveling waves. Some of these trajectories tend to infinitely large P values
for z - -oo. This would lead to unbounded levels of P that are inconsistent with the
assumption that P is confined to the interval 0 <_ P < 1. These waves are biologi-
cally meaningless. Other trajectories that lead to negative P values are equally unac-
ceptable. It can be thus established that only the heteroclinic trajectory depicts a
bounded positive wave consistent with a biological interpretation. We conclude the
following:

Biologically meaningful propagating solutions are only obtained if the
phase plane corresponding to traveling waves admits a bounded trajectory
that is contained entirely in the positive population quadrant.

In the Fisher equation (36) the only (nontrivial) bounded trajectory is the hete-
roclinic one. It remains in the positive P half-plane provided v > 2(a2l)'^ 2 (see
problem 16). This means that waves of the shape shown in Figure 10.4(b) must
move at speeds that exceed the minimum velocity

umin _ 2(aß)" 2. (45)—

It is generally true that propagating-wave solutions of PDEs, if they exist at
all, must satisfy constraints on the speed of propagation. Less clear from this result
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is which of the infinitely many possible speeds is most stable; this turns out to be a
rather formidable theoretical question. Fisher's equation is simple enough that an an-
swer to this problem could be given. It was shown by Kolmogorov et al. (1937) that
if suitable initial conditions are assumed, the solution of equation (36) would evolve
into a traveling wave such as that of Figure 10.4(b) and would move at the minimal
wavespeed v,,,,,. Readers interested in learning further details should consult Murray
(1977, sec. 5.3).

Spreading Colonies of Microorganisms

A remarkable attribute of many living things is an ability to grow in size while main-
taining a particular shape or geometry. This property is common in advanced multi-
cellular organisms where strong intercellular communication links are present. It
also occurs in much more primitive settings such as populations of microorganisms,
although the underlying mechanisms might be rather different. Here we consider the
nutrient-dependent growth of yeast cells and determine whether a colony can exhibit
a coordinated spread over space.

Let us focus on the growth of yeast under normal laboratory conditions. A typ
-ical experiment begins with a petri dish containing a small volume of sterile nutrient-

rich medium. Usually the medium is a solidified gel-like substance called agar,
which permits free diffusion of small molecules and provides a convenient two-di-
mensional surface on which to grow microorganisms. A small number of yeast cells
are placed on the agar surface. By absorbing nutrient from below, they grow and
multiply to such an extent that the population gradually expands and spreads over the
surface of the substrate. In many cases, the shape of the colony remains essentially
unchanged as it grows in size.

Gray and Kirwan (1974) introduced a model for the spread of yeast colonies
which, with some modifications, will serve as our example. A colony of yeast usu-
ally takes the form of a glossy disk, visible to the naked eye, that continually en-
larges in diameter. We will find it more convenient to deal with a one-dimensional
model of the colony, as depicted in Figure 10.5. Accordingly we define the follow-
ing:

n (x, t) = density of cells at location x at time t,
g (x, t) = concentration of glucose in medium at location x at time t.

Assuming that yeast cells undergo slight random motion and that they produce
progeny only when glucose is sufficiently abundant, a simple set of equations to de-
scribe the situation would be as follows:

zön = 20 ö n
^	

+ kn (g — g,),	 (46a)
t	 ax

z
ä8 =	 g — ckn(g — g,).	 (46b)

In these equations g, is a constant, representing the minimal amount of glucose nec-
essary for cell proliferation. The yeast reproduction rate is k(g — g,); that is, cells
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m	 +00

Yeast
colony

Nutrient
agar

Figure 10.5 Side view of petri dish with yeast colony.

are assumed to increase proportionately with the amount of glucose in excess of g,.
Glucose undergoes diffusion with rate a and is depleted at a rate proportionate to the
production rate of yeast cells (c units of glucose used per new cell made). Recall
that, although both equations contain diffusion-like terms, these represent on the one
hand the approximate nature of random yeast-cell motion, ao (ä 2n/8x 2), and on the
other hand true diffusion of glucose in a medium in which it is dissolved. (Agar is
90% or more water and permits essentially free diffusion.)

As a first step, let us define k for convenience as

8(x, t) = g(x, t) — g,.

Assuming that the motility of cells is very slow compared with diffusion of glucose
and with the rate of budding of cells, we take the simplified version of the model
proposed by Gray and Kirwan:

on
 =at = kng,	 (47a)

z^
ag = 26ä

2
 ckng.	 (47b)

This step, though recognized by the advanced reader as fraught with pitfalls, will
considerably aid the analysis. In fact, Gray and Kirwan began with equations
(47a,b) and to avoid these pitfalls assumed that yeast cells were nonmotile.

Let us now consider as possible traveling-wave solutions to equations (47a,b)
functions N and G, where

N (z) = n(x, t), 	G (z) = g(x, t),	 z = x — ut,

which satisfy the equations of the model.
Using the identities (35a,b), N and G would then have to satisfy

	—vd = kNG,	 (48a)

—U dG a d i G= 	
_ ckNG.	 (48b)

dz	 dz2

Multiplying (48a) by the constant c and adding to (48b) yields
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z
–vcd – vdG= ad—j-.	 (49)

Equation (49) can be integrated once, resulting in

constant – vcN – vG = 2l dG .	 (50)
z

By considering values of N and G far behind the edge of the colony, it may be
verified that the arbitrary constant introduced by integration has the value cvNo ,

where No is the maximal density of cells in the colony interior. This calculation is
given in the boxed insert.

The system of equations to be considered is therefore

dG 	v	 Ncv vcNo

dz
---=–G+----------,  	 (Sl a)

dN kNG
	dz – – v	

(Sib)

Conditions at z = – oo
Far behind the leading edge of the colony where the colony has existed for a long time
(large t, i.e., z –* –x) we might expect that cells have attained some limiting density
No . (No is in general limited by the amount of available glucose that could be used up).
At z = -- we would also expect G = 0, since glucose has been depleted to its lag
concentration g,. Furthermore, it is reasonable to assume that

	dG  l	 _
0dz	 _m =,

that is, the glucose concentration profile is relatively flat.
Integrating equation (49) from –°o to z we obtain

z
–v f (c dz + dz) dz =	 dm a G dz,	 (52a)

dG I = m
	 (52b)

–vcN(z) + vcN(--) – vG(z) + vG(–o) =
dz
G z – 2 

dz
. (52c)

Now using the conditions at z = --, we obtain

dG lvcNo – vcN(z) – vG(z) _ dz Z 	(53)

Thus equation (51 a) is confirmed.

Thus, for the special solutions in which we are interested, it suffices to explore the
behavior of these two ODEs. Although these are nonlinear by virtue of the NG term,
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again by recourse to phase-plane methods one may obtain qualitative solutions. It is
left as an exercise for the reader to show that the result is the GN phase-plane dia-
gram given in Figure 10.6(a).

It now remains to interpret what the information in Figure 10.6(a) reveals
about N(z) and G (z). Again a single bounded trajectory extends between two points,
(0, No) and (cNo, 0) in the GN plane. This trajectory describes a transition from a sit-
uation in which glucose is absent and cell density is given by No to one in which glu-
cose is at its maximal level cNo and no cells are present. This transition is also de-
picted qualitatively in Figure 10.6(b). As the yeast colony propagates to the right, it
depletes the nutrient that was initially available to it. Gray and Kirwan (1974) draw a
parallel between this biological process of contagion and the propagation of a flame
N in combustion of a fuel G. Further details of the analysis are suggested in prob-
lem 17.

W

cN0

(a)

No

(Cells)
(Glucose)

m
	

+00

(b)

Figure 10.6 (a) Phase plane diagram of equations	 the yeast cell — glucose model. The glucose is
(51a,b) showing a heteroclinic trajectory joining 	 depleted in places over which the yeast colony has
(0, No) with (cNo , 0). (b) Qualitative shape of	 advanced.
traveling-wave solutions corresponding to (a) for
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460	 Spatially Distributed Systems and Partial Differential Equation Models

Some Perspectives and Comments

1. The two examples discussed in this section (Fisher's equation and spreading
microbial colonies) are readily approached by phase-plane analysis. The versatility
of such mathematical methods are thus gratifying, but can they always be expected
to work? Inspection of both examples reveals that our analysis depended crucially on
the fact that traveling waves satisfied a pair of ODEs. In the second example
(spreading colonies of microorganisms) this was only true by virtue of a fortuitous
integration step that reduced the order of equation (49). In many instances this good
fortune does not occur. Higher-order equations or bigger systems of PDEs may have
traveling-wave solutions that satisfy a larger system of ODEs. While the concepts
are the same, the analysis is much harder. For bounded traveling waves, one would
still seek bounded trajectories (but in a higher-dimensional phase space). As we
already know, phase-plane analysis is a well-developed technique only in the plane,
so the problem may be much harder when the ODE system is larger.

2. Both our examples also shared a phase-plane feature, the heteroclinic
trajectory that depicts bounded waves. Two other types of waves can be encountered
that correspond to other bounded trajectories. (a) A homoclinic orbit (one that
emerges from and eventually returns to a single steady state) would result in a wave
that asymptotically approaches the same value for z —4 ±oo• (For example, the
propagating action potential in the nerve axon is a peaked disturbance that tapers off
to the resting voltage both far ahead and far behind its peak.) (b) A limit cycle would
depict an infinite train of peaks or oscillations that propagate over space. (We have
indicated that a train of action potentials can occur in nerve cells, given prolonged
superthreshold stimulation.)

3. Traveling-wave solutions are sometimes abstractions of reality that give a
good general description of the phenomenon of propagation but have unrealistic fea-
tures as well. Both examples we have discussed share the inaccurate prediction that
density of the propagating material (for example, genes or yeast cells) is never actu-
ally zero, even far ahead of the "front." (This stems from the fact that the solutions
only approach zero for z ---> + oo.) In reality, of course, there are sharp transitions at
the edge of an expanding population.

4. The question of wave speed was touched on but not carefully deliberated. In
principle one would like to ascertain which of the possible family of waves (for dif-
ferent velocities) is the most stable. In practice the techniques for establishing this
are rather advanced, and often such problems are too formidable to yield to analysis.
(There are some instances when linear analysis predicts a unique wave speed. This
occurs whenever phase-plane analysis reveals a heteroclinic trajectory connecting
two saddle points. Such trajectories are easily disrupted by slight parameter
changes.)

5. Even if analysis does not lead us to find bounded traveling-wave solutions in
the exact sense described in this section, there may still be biologically interesting
propagating solutions, such as those that undergo very slight changes in shape or ve-
locity with time. In the next section we briefly discuss another biological setting in
which long-range transport is important. A recent model for axonal transport due to
Blum and Reed (1985) has been shown to lead to such pseudowaves (wavelike mov-
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ing fronts of material that propagate down the length of the axon). The analysis of
such examples is generally based heavily on computer simulations.

10.7 TRANSPORT OF BIOLOGICAL SUBSTANCES INSIDE THE AXON

The anatomy of a neural axon was described in Section 8.1, where our primary con-
cern was the electrical property of its membrane. Other quite unrelated transport pro-
cesses take place within the axonal interior. All substances essential for metabolism
and for normal turnover of the components of the membrane are synthesized in the
soma (cell body). Since these are to be used throughout the axon, which may be
many centimeters or even meters in length, a transport process other than diffusion
is called for. Indeed, with the aid of the light microscope one can distinguish motion
of large particles called vesicles (macromolecular complexes in which smaller
molecules such as acetylcholine are packaged). The motion is saltatory (discon-
tinuous rather than smooth), with frequent stops along the way. There seem to be
several operational processes, including the following:

1. Fast transport mechanism(s), which can convey substances at speeds on the
order of I m day - '.

2. Slow transport, with typical speeds of 1 mm day - '.
3. Retrograde transport (movement in the reverse direction, from the terminal

end to the soma), at speeds on the order of 1 m day - '.

There have been numerous hypotheses for underlying mechanisms, mostly
based in some way on the interaction of particles with microtubules. Microtubules
are long cable-like macromolecules that are important structural components of a
cell, and apparently have functional or organizational properties as well. It was held
that microtubule sliding, paddling, or change of conformation might lead to fluid
motion that would carry particles in microstreams within the axon (see Odell, 1977).
Many of the original theories were thus based on bulk fluid flow inside the axon.
There were problems with an understanding of the simultaneous forward and retro-
grade transport that led to rather elaborate explanations, none of which completely
agreed with experimental observations.

A somewhat different concept has been suggested by Rubinow and Blum
(1980) who propose that transport is not fluid-mediated but stems from reversible
binding of particles such as vesicles to an intracellular "track" that moves at a con-
stant velocity. They model this hypothetical mechanism by considering interactions
of three intermediates, P, Q, and S, whose concentrations, p, q, and s, are defined
as follows:

p (x, t) = density of free particles at location x and time t,

q (x, t) = density of particles bound to track at location x and time t,
s (x, t) = density of unoccupied tracks at location x and time t.

It was assumed that particles bind reversibly to tracks as follows:
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462	 Spatially Distributed Systems and Partial Differential Equation Models

nP+S . k'
k2 Q'

The factor n is incorporated as a possible form of cooperativity in binding. Their as-
sumptions lead to two equations:

aP = —k,p"s + k2q,	 (54a)

_  ax° — k2 q + k,p"s.	 (54b)

In these equations bound particles move with the tracks, whereas free particles are
stationary. The authors include diffusion terms that are omitted from (54a,b) and
that were in fact shown to be unimportant in later work. The Rubinow-Blum model
is suggestive, but several conceptual errors made by the authors in analysis of the
model have engendered some confusion in the literature. (For reasons outlined in
their paper, they deduce that cooperativity is essential, so that n ? 2, but the solu-
tions they describe are not biologically accurate.)

In more recent work, Blum and Reed (1985) have corrected some of these er-
rors and produced a more realistic description. The authors propose that particles can
only move along the track if they are bound to intermediates that couple them to the
microtubules. In a curious coincidence, the development of this model and new ex-
perimental observations simultaneously point to similar conclusions. Indeed, new
technology such as enhanced videomicroscopy reveals that all moving particles have
leglike appendages to which they are reversibly bound and which seem to propel
them along the track. These intermediates have been called kinesins.

In their model, Blum and Reed define

e (x, t) = concentration of kinesins ("legs" or "engines"),

and p (x, t), q (x, t), and s (x, t) as previously defined. The assumed chemical interac-
tions are as follows:

1. Binding of kinesins to free particles:

P+nE—C,

where C is the P—nE complex.
2. Binding of C complexes to track(s):

C+mSQ.

3. Binding of kinesins directly to tracks:

E+S.=ES.

4. Binding of free particles to the complex of kinesins and tracks, (ES):

P+m(ES) - ==Q.

By a combination of numerical simulation and analysis Blum and Reed demon-
strated that the above mechanism adequately describes all accurate experimental ob-
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servations for the fast transport system of the axon. (Some discussion of their model
is given as a problem in this chapter.) Of particular interest is their finding that this
system admits pseudowaves. These numerical solutions undergo slight changes in
shape but are virtually indistinguishable in their behavior from traveling waves as
defined earlier.

10.8 CONSERVATION LAWS IN OTHER SETTINGS: AGE DISTRIBUTIONS
AND THE CELL CYCLE

We now turn to processes that have little apparent connection with spatial propaga-
tion or spatial distributions. Here we shall be concerned with age structure in a popu-
lation and with changes that take place in these populations as death and birth occur.
(Recall that such questions were briefly discussed in Chapter 1 within the context of
difference equations and Leslie matrices.)

We begin with a description of cellular maturation and discuss a discrete model
for a population of cells at different stages of maturity. Such problems have medical
implications, particularly in the treatment of cancer by chemotherapy. Agents used
to attack malignant cells are cycle-specific if their effect depends on the stage in the
cell cycle (degree of maturation of the cell). After examining M. Takahashi's model
for the cell cycle we turn to a continuous description of the phenomenon that uncov-
ers a familiar underlying mathematical framework, the conservation equations.

The Cell Cycle

Cells undergo a process of maturation that begins the moment they are created from
parent cells and continues until they themselves are ready to divide and give rise to
daughter cells. This process, known as the cell cycle, is traditionally divided into
five main stages. Mature cells that are not committed to division (such as nerve
cells) are in the Go phase. G, is a growth phase characterized by rapid synthesis of
RNA and proteins. Following this is the S phase, during which DNA is synthesized.
The G2 phase is marked by further RNA and protein synthesis, preparing for the M
phase, in which mitosis occurs. See Figure 10.7.

Figure 10.7 Schematic diagram of the cell cycle.	 DNA synthesis
S

G2

M
Mitosis
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464	 Spatially Distributed Systems and Partial Differential Equation Models

While these events are conveniently distinguishable to the biologist, they
provide only broad subdivisions, since the journey for the cell from birth to maturity
is a continuous one. However, at certain times during this process the cell's suscepti-
bility to its environment may change. This, in fact, forms the basis for cycle-specific
chemotherapy, a treatment using drugs that selectively kill cells at particular stages
in their development.

It is far from obvious how a course of cycle-specific chemotherapy should be
administered. Should it be continuous or intermittent? What frequency of treatments
and doses works best, and how does one base one's appraisal on aspects of a given
system? Here we shall not dwell on clinical problems associated with chemotherapy
design. An excellent survey may be found in articles by Newton (1980) and Aroesty
et al. (1973), who delineate mathematical approaches and their implementations in
oncology (the study of tumors). The following simple discrete model for the cell cy-
cle, which is due to Takahashi, will form our point of departure.

Let us suppose that the cell cycle can be subdivided into k discrete phases and
that N; represents the number of cells in phase j. The transition of a cell from the jth
to the (j + 1)st phase will be identified with a probability per unit time, J1 ; . Further-
more, the likelihood that a cell will die in the jth phase will be assigned the proba-
bility per unit time p,. See Figure 10.8.

Figure 10.8 Transitions through phases of the cell
cycle. 

Transition
probability 

Cycle
S..

phase

Death

During a time interval it the number of cells entering phase j is A;-, N;-, (t)0 t,
and the number of cells leaving is AN(t)it. With the death rate the process can be
described by the equation

ONE
=A,-iN;-t — AjN1 — l, .	 (SSa)

At

Suppose that upon maturity each cell (in phase k) divides into ß new cells of
initial phase j = 1. This leads to a boundary condition for the problem:

^ t = ßAkNk(t) — A 1 N1(t) — g i N,(t).	 (55b)

In problem 21 it is shown that if transition probabilities are all equal, if B = 2,
and if p, = 0, the model can be written in the following way:
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	&V' _ A(Ni-^ — Ni),	 (56a)
dt

dN,_

	

dt — A(2Nk — N,).	 (56b)

The steady-state solution of (56) reveals that the fraction of cells in each stage fol-
lows a IF distribution.

The discrete model leads to a set of k equations, one for each of the cell-cycle
stages. Only the first of these contains a term for birth since we have assumed that,
on cell division, daughter cells are in the initial stage of their cycle.

At this point two options are available: First, one could study these equations
in their present form, as difference equations. A computer simulation program could
then directly use this discrete recipe for generating the phase distributions. Cycle-
specific death rates could optionally be included. However, a second approach
proves rather illuminating in that it leads to insight based on familiarity with other
physical processes. The approach is based on deriving a statement that represents the
process of maturation as a continuous and gradual transition. Instead of subdividing
the cycle strictly into discrete stages, suppose we represent the degree of maturity of
a cell by a continuous variable a, which might typically range between 0 and 1. In-
stead of accounting for the number of cells in a given stage (that is, in one of the k
compartments of Figure 10.8), let us consider a continuous description of cell den-
sity along the scale of maturity a.

We will define a cell-age distribution frequency in the following way:

N(t) = n (a; , t) Aa	 (a; = j ta).

In other words, think of n (a, t) as a cell density per unit age. Then, provided that
the compartment width Aa is small, a formal translation can be made from discrete
to continuous language using Taylor-series expansions. We write

	n(a;-,, t) = n(a; — Da, t)	 57

	

an	 aZn ( 	(Da)2 	a'n	 Da)3	 (
	= n(«; , t) - as o« + a«2 I 2! 	ßa3 

i
I	 3! 	+ ... 

Neglecting cell death, omitting terms of order (Da) 3 or higher, and substituting into
equation (56a) leads to

tan	 an 	 ä2n( (ia) 2
at (a1, t) _ -- D« + ä«

	 2 + ....	 (S8)
	i 	 i

Note that for k equal subdivisions La = 1/k, so that

an	 an I A — a2 n 11 A
at (a

'' t) + as k	 aa l 2 kz +
	 (59)

Now let

	vo=k,	 do= 2 k•
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A somewhat familiar equation results from these substitutions:

i

	^t +v^^a =do ßa2.
	 (60)

This equation contains one term that resembles diffusion and a second that resembles
convective transport. This suggests some kind of analogy between the process of
cellular maturation and physical particle motion. We explore this more fully in the
following subsection and discuss several details in the problems.

Analogies with Particle Motion

To approach the same problem in a more informal way, we abandon temporarily the
detailed discrete derivation and view the process of cellular maturation as a continu-
ous transition from birth to maturity of the cell. It is rather natural to picture cell
maturation as "motion" of the cell along a scale a. We now make the analogy more
precise.

Consider the physical motion of particles in a one-dimensional setting. For
x = the distance and c (x, t) = the density of particles (per unit length) we derived a
conservation equation (24 in Chapter 9) to describe collective particle motion. If par-
ticles move at some velocity v, then the displacement of each individual particle
might be described by

dx _
dt = v(x, t).	 (61)

Collectively, their flux would then be

	J C(x, t) = c(x, t)v(x, t).	 (62)

Now replace (1) physical distance in space by "distance" along a scale of mat-
uration (x -^ a) and (2) density of particles in space by density of cells along the
maturation cycle [c (x, t) — n (a, t)]. Then the velocity of a particle would corre-
spond to the rate of change of cellular maturity:

da
 = v(a, t).	 (63)

dt

In other words, we make the connection that v (x, t) --> v(a, t). This means that the
number of cells that mature through a stage a o per unit time (the cell flux) would be

	J„ = n(a, t)v(a, t),	 (64)

that is, Jc -^ J. Finally, a local loss of particles o,,(x, t) would be analogous to a lo-
cal cellular loss rate v(a, t). This could stem from a mortality µ, where µ might be
a function of the cellular maturity:
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a„(a, t) = —µ(a)n(a),	 (65)

and Qr(x, t) —+ cr (a, t).
Based on these analogies the following connection emerges:

acaJ	 an	 aJn
fit= --

	
ät

particle	
fit= --

a+a°.

particle conser-	 cell conservation
vation equation	 equation

Thus, without further derivation we have arrived at a continuous description of the
maturity distribution of the cell population, given by the equation

an 	 any
at	 as	 µn.	 (66)

See Figure 10.9. This equation merits several comments in light of the somewhat
different result derived from Takahashi's model:

1. The maturation rate v is not assumed to be a constant.
2. The age-dependent death rate is explicitly assumed.
3.	 Most notably, the diffusion term is missing.

Figure 10.9 Analogy between (a) particle motion 	 Speed

through a distance x (at speed v) and (b) cellular 	 Particle distribution °  0 °	 V

maturation through maturity a (at speed v) forms 	 • o,
the basis for the derivation of equation (66).	 I 	0 0 0

Distance x

(a)

Maturation
Cell age	 rate
distribution	 r	 v

ci1 30
Maturity a	 Cell

division
a = 0	 a =

(b)

In many of the more recent models, diffusion terms such as that in the RHS of
equation (60) are often omitted. Note that this term arises formally when maturation
is depicted as a chain of random transitions rather than a deterministic
"unidirectional flow.” It is important to note that the constants vo and do in equation
(60) are not independent! Letting vo -- 0 means that do —* 0 simultaneously. Other-
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wise a curious contradiction is obtained: if vo = 0 and do > 0, the cells appear to
undergo pure diffusion, with some continually getting younger while others increase
in age. Some modified versions of the diffusion term have recently been suggested
to alleviate this conceptual problem, particularly when a terminal age is attained (see
Thompson, 1982).

4. A term for birth of new individuals or increase in the population due to
cell division again merits a separate equation. It cannot be incorporated directly into
equation (66) because cells are only "born into" the lowest maturity class, a = 0.
Thus birth is specified as a boundary condition of the problem. For cells that divide
only at maturity, when a = 1, such birth terms could be given by

n(0, t) = ßn(1, t), (67)

where ß is the number of divisions at mitosis. However, note that (66) could apply
to more general age-structured populations, where n (a, t) is the "density" of indi-
viduals at different ages a (commonly called the age distribution of a population). In
such cases females of different ages may give birth to newborns. Thus the number of
newborns is a sum of all such contributions, given by

n(0, t) = J n (a, t)ß (a) da, (68)
0

where ß is the age-specific fecundity (average number of births from a female be-
tween the ages a and a + da), and n is the number of females. If the initial age dis

-tribution 4(a) is known, equation (66) is supplemented with the initial condition

n(0, a) = 0(a). (69)

Further discussion of equation (66) and its associated conditions is given in problems
23 and 24.

To give some historical perspective to the model for age distributions, a long
list of contributors deserve mention.

Apparently, the first formulation of a PDE for the age distribution of a popula-
tion is due to McKendrick (1926). Much later, Von Foerster (1959) independently
derived a similar equation and applied it to the dynamics of blood cell populations.
(Equations such as (66) are often given his name despite the historical inaccuracy.)
Analytic solutions of such equations were given by Trucco (1965) and Rubinow
(1968), who somewhat generalized the original models.

In the last two decades, PDE models have been applied to problems stemming
from demography. Hoppensteadt (1975) gives a good review of this area. Theoreti-
cal results have proliferated rapidly, many of them involving a considerable depth of
mathematical analysis. Gurtin and MacCamy (1974) dealt with density-dependent
birth and mortality. Reviews of this abstract topic may be found in Webb (1985),
Heijmans (1985), and Metz and Diekmann (1986).

A further direction has been the generalization of the concept underlying the
derivation of the age-distribution equation to rather different problems where vari-
ables other than age are of interest. We shall encounter a second example of this
type in the do-it-yourself modeling problem outlined in Section 10.9.
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A Topic for Further Study: Applications to Chemotherapy

Equations such as (55), (56) and (66) are now commonly applied to modeling the ef-
fect of chemotherapeutic agents on malignant cells. Several references provided in
the "For Further Study" section of the References could be used as the basis for in-
dependent study or further discussion. One example, briefly indicated in the box, is
explored in more detail in problem 25.

Example 4
Bischoff et al. (1971) suggested a simplified model for a particular course of
chemotherapy of the leukemia strain L1210 using arabinose-cytosine. They assumed
that the maturation rate of malignant cells is a constant v and that the drug results in
cell death with rate constant that varies with drug concentration and cell age.

The equations of their model are:

ön
 =	

ön
öt = —v as — µn,	 (70)

where

K,(a, t)c(t)

µ(a,t)=K2(a,t)+c(t)	
(71)

An equation that describes mitosis in their model is

n(0, t) = 2n(1, t).	 (72)

The authors explored the limiting case when cycle specificity of the drug was low
and found an asymptotic solution:

n(a, t) = No(2 In 2)2 -(°- °0 exp f —µ(t') dt'.	 (73)
0

In problem 25 this observation is used in showing that eventually the number of
cells at lowest maturity level a = 0 is a constant fraction of the total population. It is
further shown that equation (70) implies that

dN _
dt — aN — AN	

(74)

where

N= J^n(a,t)da	 and	 a=vin2.
0

Other references, notably those of Newton (1980) and Aroesty et al. (1973), dis-
cuss the role of mathematics in oncology in a much broader setting.

Summary

In this section we observed, by considering the aging of a cell, that conservation
laws apply to a much broader class of problems than described in previous discus-
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sions. Here is a setting in which spatial position and motion in space play no role;
another continuous variable, age, is more important in describing the system. Yet
the ideas of conservation lead to equations that are essentially identical (except for
renaming variables) to spatial balance equations. This stems from the fact that con-
servation equations are "bookkeeping" statements: together with their boundary and
initial conditions, they serve to keep track of all the progeny of some initial popula-
tion of parent cells.

In the next section another application of similar mathematical ideas is sug-
gested. However, rather than spelling out all details, we approach a new problem in
a sequence of reasoning steps in which reader participation is encouraged.

10.9 A DO-IT-YOURSELF MODEL OF TISSUE CULTURE

In this section you are invited to participate in developing a model as an aid for
studying a rather simple biological question. The particular situation to be modeled
is a new one, though some of the concepts presented in previous sections can be
brought to bear on the problem. The derivation of the model is given in a step-by-
step outline; however, you should attempt to use your own inventiveness before con-
sulting the hints in the text.

A Statement of the Biological Problem

Figure 10.10 illustrates a common method for growing certain multicellular organ-
isms. A flask containing nutrient medium is inoculated with numerous small pieces

	'•- 	 Cotton

Nutrient
medium

o	 °o 	° p 	Tissue
clumpsc o io ar

c	 o	 O

Figure 10.10 Tissue culture.

Actively growing
region

Figure 10.11 Enlarged view of cross section of an
idealized tissue clump.
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or clumps of tissue, which may each consist of many cells. Provided conditions are
right (such as plentiful nutrient), each of the pieces will grow. Eventually they may
be harvested and used in performing biological experiments.

Question
Suppose the initial biomass is known. What will be the total biomass at some later
time t?

Step 1: A Simple Case

We start by making some drastically simplifying assumptions about the geometry of
the tissue clumps:

Assumption la. All the clumps are spherical.
Assumption lb. All pieces have the same radius r (see Figure 10.11).

At this point some information about how the tissue pieces grow is required.
(This would generally come from empirical observations.) Often one finds that be-
cause the core of a tissue particle is not exposed to the nutrient medium, active
growth can take place largely at its surface, so that the volume of a single spherical
clump, V(t), changes at a rate that is proportional to its surface area, S(t).

Problem 1 (easy)
Relate this information to the radial growth of the particle.

Answer
Using the formulae for the volume and the surface area of a sphere,

V= 4 7rr 3 ,	 S= 4irr',

and the relation

dV _
dt — kS,

we get

4	 3

3 
dt = 41rkr2.

Differentiating r 3 and cancelling a factor of 41r r 2 from both sides, we get

dr
dt=k.
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We will take this last equation as our basic initial assumption about radial
growth of the particles:

Assumption 1 c. The radial growth rate of each tissue clump is given by

dr

dt = k.	
(75)

Problem 2
Use the previous information to deduce the total volume of tissue after time t if initially
its volume at t = 0 was Vo.

Answer
If there are N particles, their initial radial size is

( 3 Vo l /s

r0 
_

 \41r N

The solution of equation (75) is simply

r(t) = kt + ro ,

implying that the volume at time t is
1/3 3

V(t) = N 43 r 3 (t) = N4.1
 

kt 
+ (T3

ir N) j'

_	 'l'	 '[ ^41r
	kt + V/ 3]	(76)

Conclusion
The total volume increases in a way that is cubic with time. This stems from the as-
sumption that radial expansion is constant.

Step 2: A Slightly More Realistic Case

Rarely is it true that all tissue pieces will have an initially identical size. For exam-
ple, in growing filamentous fungi for the purposes of experimental microbiology, the
initial suspension of particles is prepared by grinding or blending the mycelium (the
vegetative part of the fungus consisting of numerous interconnected branched
filaments and resembling a furry disk). In that case many initial particle sizes are
present in the suspension. As time passes, each small particle indeed grows to re-
semble a spherical clump (or pellet).

We now treat this more general situation of growth when a size distribution is
present. Again, some simplifying assumptions are necessary:

Assumption 2a. All the clumps are spherical (same as assumption la).
Assumption 2b. Initially there is some distribution a(r) of pellet sizes.
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Assumption 2c. Each pellet grows at a constant radial rate as given by equa-
tion (75).

Assumption 2d. There are no pieces smaller in size than some small radius e.

Problem 3
Before continuing, you are encouraged to attempt to define some meaningful variables
and write an equation or equations to describe the situation.

Step 3: Writing the Equations

Hint 1.
Think about the "number density" of particles with radius r at time t. In other
words, define the distribution p (r, t) such that

f
r+Ar 

p(r, t) dr = number of pellets whose radii range between r and r + Ar.

What kind of equation would p satisfy?

Hint 2.
See Figure 10.12.

c(x, t)

k = — *^ + Q
ilr	 ti_Y

o ^` 2

c.. -
U c -
U
G J
O V
U

x
(a)
	

Position

p(r, t)

O

v Q0 o
00

Radial growth rate

dr 	 k
di

r
(b)	 Size

Figure 10.12 (a) The spatial distribution of	 distribution of pellets, p(r, t), changes as each
particles c(x, t), changes as each particle moves 	 pellet grows to a bigger size with rate k.
with rate v along the x axis. (b) The size
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Answer
Using a little imagination, we see that the rate of change of the size of a pellet is some-
what analogous to the speed or rate of change of location of a particle. Thus a direct
translation from the spatial variables of particles to size variables for pellets would be
as follows:

Spatial	 Analogous
Variables	 Size Variables

Position,	 x	 Size,	 r

Particle	 Pellet
spatial	 size
distribution,	 c (x, t)	 distribution	 p (r, t)

Rate of	 Rate of
change of	 change of
position	 dx	 size	 dr
(speed),	 dt = v	 (growth rate), dt = k

Source/	 if	 Source/
sink term	 sink term	 Q

With the above correspondence we deduce that an equation for p (r, t) is:

ap = — apk + v.	 (77)
at	 ör

o, would be present in the equation only if pellets are added (Q > 0) or eliminated
(Q < 0) during growth. We will at present assume that if = 0 and define the mathe-
matical problem as follows:

main equation	
aP = — pk ,	 (77a)
at	 ar

initial condition	 p (r, 0) = a (r)	 (from assumption 2b) 	 (77b)

boundary condition	 p (0, t) = 0,	 (from assumption 2d).	 (77c)

Problem 4
Find a solution to the above set of equations (77a—c).

Hint 1
If you are not familiar with equations such as (77), you might try looking for special
solutions such as p (z) for z = r — ct. This would be equivalent to a pellet size dis-
tribution that shifts to higher sizes without altering its basic shape; recall that in the
context of motion in space such solutions were called traveling-wave solutions.
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Answer
It may be verified by carrying out the appropriate differentiation that the equation

p (r, t) = a (r — kt)	 (78)

solves problem 4 provided the initial distribution a(r) satisfies a(0) = 0 [that is, the
boundary condition (77c) and the initial condition (77b) do not conflict]. This makes
good sense when you remember that pellets are all growing in size at the same rate k.
Figure 10.13 illustrates several successive size distribution profiles at times h, t2, and
so forth, based on the initial distribution at t = 0.

p(r,t)	 t=0	 t =ti	 t=t2

r
0	 Size

Figure 10.13 A traveling-wave solution to 	 that at later times (t, = t and t = t2) the
equations (77a—c); Pellets in an initial size 	 distribution shifts towards larger size, r,
distribution (labeled t = 0) grow uniformly so without undergoing a change in shape.

The Final Step

Now close to our goal, it remains for us to perform several computations to obtain
the mass accumulation. In preparation for this, consider the following definitions of
quantities that are average properties of the tissue culture; in technical terminology
these are moments of the distribution p (r, t):

1. Total number of pellets:

N(t) 
= fo, 

p(r, t) dr.	 (79a)

2. Average radius of a pellet:

R(t) =Nit) o rp (r, t) dr.	 (79b)

3. Average surface area of a pellet:

(t) = 
41t) o r 2p(r, t) dr.	 (79c)

4. Average volume of a pellet:

oV(t) 	3N(t)	
r 3p(r, t) dr.	 (79d)
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Problem 5
Use the fact that equation (78) is a solution to derive the dependence of the total vol-
ume V(t) of the tissue on the moments No, Ro , So, Vo of the initial distribution.

Answer
The computation to be carried out is integration of the following expression:

V(t) = 43 J m r 3 a (r — kt) dr.

This can be done by making the substitution u = r — kt [which implies that du = dr
and r 3 = (u + kt)'] and expanding the cubic expression:

V(t) =43 f (u + kt)3 a (u) du,

= 43 J m [u 3 + 3u 2 (kt) + 3u(kt) 2 + (kt) 3]a(u) du.

After multiplying throughout by a(u), we find that

V(t) = 43 jm u 3 a(u) du + 47r(kt) J m u 2 a(u) du

+ 41T(kt) 2 J ua(u) du + f4 (kt) 3 J a(u) du.
0	 3	 0

The integrals in this equation are moments of the initial size distribution as given in
the definitions (79a—d). Thus the answer to our problem may be stated as follows:

V(t) = I [/o + (kt)So + 41r(kt) 2R0 + 43 (kt) 3JNo ,	 (80)

for 'o, So, Ro (the average volume, surface area, and radius respectively of the initial
pellets in the culture), and No (the initial number of pellets). If the pellets are all of a
single size, you should be able to demonstrate that equation (80) reduces to equation
(76).

Discussion

The assorted computations which were stepping stones to the final answer contained
in equation (80) should not cloud our vision. The single key step in the model is re-
alizing that an equation such as (77a) can be applied to pellet growth as it previously
was applied to cellular aging. This permits generalization of the simple situation of
identical pellets to the more realistic case of many pieces in many sizes.
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10.10 FOR FURTHER STUDY: OTHER EXAMPLES OF CONSERVATION LAWS
IN BIOLOGICAL SYSTEMS

The ideas discussed in Sections 10.8 and 10.9 have appeared in a variety of models
in the recent scientific literature. A small selection of references is given in the "For
Further Study" section of the References. Some of these papers are rather sophisti-
cated mathematically but many would be accessible to readers who have grasped the
basic concepts of our discussion. These references have been subdivided into three
topics, each suitable for further independent study and presentation to the class.

PROBLEMS*

1. Suggest a (set of) partial differential equations to describe the following pro-
cesses:
(a) A predator-prey system in which both species move randomly in a one-

dimensional setting.
(b) A predator-prey system in which the predator moves towards higher prey

densities and the prey moves towards lower predator densities.
(c) A pair of reacting and diffusing chemicals such that species 1 activates

the formation of both substances and species 2 inhibits the formation of
both substances. Design your model so that it has a homogeneous steady
state that is stable.

(d) A population of cells that secretes a chemical substance. Assume that the
cells orient and move chemotactically in gradients of this chemical and
also more randomly. Further assume that the chemical diffuses and is
gradually broken down at some rate.

2. What kinds of processes might be described by the following equations?

(a) of at t) 	 V (fv) — µf	 (f = fish density).

(b) ' = 26,V zp ; + rpi(1 — Pi — ßp)	 (i, j = 1, 2).

ac	 a	 a^
(C) 	c 

__	
[ (c) ac — cvi + rc (1 — c) .

(d) Equation (5) for the spruce budworm population.

3. Consider a population described by the equation
z

äP=2baP+aP,	 (1)

* Problems preceded by an asterisk (*) are especially challenging.
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which at t = 0 is concentrated entirely at x = 0. Then the solution of this
equation is

_	 Po	 x

P(x ' t) 	2(Tr^t)"2 
exp at —
	

(2)

(a) Explain what is being assumed in equation (1).
(b) Verify that (2) is a solution by differentiating and showing that the PDE

is satisfied.
(c) Now consider equipopulation contours: points (x, t) such that

P (x, t) = P = constant.

Show that on such a contour the ratio x/t is given by

x	 [	 2±	 49	 pl]1n= +
t	

4aa — t In t —	 In 2 Tra Po

(d) Show that as t —* oo one can approximate the above by

— = ± 2(ar^)t/2
t

4. Many of Skellam's arguments are based directly on random-walk calculations,
not derived from the continuous PDEs such as equation (1). In his original arti-
cle he defines the following:

a 2 = mean square dispersion per generation,

R = radial distance from point at which population was released,
A = growth rate of the population,
n = number of elapsed generations,
p = proportion of the population lying outside a circle of radius R after

n generations.

He proves that
—R2

p = exp 
nag.

(a) If the population growth is described by

Nn+, = AN",
and initially there is just a single individual, show that the population in
the nth generation is N" = A".

(b) Now consider a region that contains all but a single individual. Show that
the radius of this region at the nth generation is given by

R" _ (na 2 In N") 1 f2 .

[Hint: Why is it true that 1/N" = exp (—R 2/na g) holds for this radius?]
(c) Use parts (a) and (b) to show that

R" = na (ln A)1f2.
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(d) Show that, save for a proportionality factor, this result agrees with the
rate of spread of a population given by equation (4).

5. This problem is based on the formula for R,, derived in problem 4. Skellam
(1951) quotes the following sentence from Clement Reid (1899), The Origin of
the British Flora, Dulow, London:

... Few plants that merely scatter their seed could advance more than a yard in
a year, for though the seed might be thrown further, it would be several seasons
before an oak, for instance, would be sufficiently grown to form a fresh starting
point.

He then illustrates, by a simple calculation, that the dispersal of oaks in Great
Britain was assisted by small animals. The following estimates are used:

i. The generation time of an oak tree is roughly 60 years. This is the ap-
proximate age at which it produces acorns.

ii. The time available for dispersal (from the end of the ice age in 18,000
B.C. until records were first kept in Roman Britain) is roughly 18,000
years, or n generations.

iii. The approximate number of daughter oaks produced by a single parent
during one generation is estimated as 9 million.

(a) Use these estimates to show that after n generations

R„
1,200,

where R„ = the radius that encloses all but a single oak tree, and a 2 =
the mean-square displacement defined in problem 4.

(b) From Reid's data, Skellam estimated that the actual radius of the oak
forests in Roman Britain was 600 miles. What is the value of a (the root-
mean-square distance of daughter oaks about their parents)?

(c) How did Skellam conclude that animals assisted in dispersing the acorns?

6. Segel et al. (1977) calculated the motility coefficients based on equation (6)
(where r = 0) as follows. A capillary tube (cross-sectional area = A) is filled
with fluid. At time t = 0 the open end is placed in a bacterial suspension of
concentration Co and removed at time t = T. The number of bacteria in the
tube is counted. Motility is then computed as follows:

_ IrN 2

A 4CöA Z T'

*(a) Give justification for or derive their formula.
(b) Suppose that (1) the radius of the capillary is approximately 0.01 cm, (2)

the bacterial suspension contains a density Co = (1/7 X 10 -v) bacteria
per milliliter, and (3) the following observations (from Segel et al., 1977)
are made:
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T (min)	 N (bacteria)

2 1800
5 3700
10 4800
12.5 5500
15 6700

What do you conclude about µ?

7. Segel et al. (1977) consider the following more detailed description of bacterial
motion. They point out that bacteria undergo a series of straight swimming
(with average speed v) interrupted by random tumbles in which the orientation
is changed. (See figure.) The mean free path, A (average length of a straight
swim) and the bacterial motility, satisfy the following relationship.

1
= 3vA

[Lovely and Dahlquist (1975)].

Figure for problem 7.

(a) Why is this a reasonable assumption based on dimensional consider-
ations?

(b) Suppose that the speed v of a cell is proportional to the force F that
drives it through a fluid of viscosity rl. Show that

FA 1
µ	 3kri'

where k is a constant depicting frictional effects.
(c) If T is the mean time between turns, show that µ can be written in terms

of r as follows:
'rFZ 1

µ 2kz ^Z

8. In this problem we investigate several details of a model for bacterial motility
and growth proposed by Lauffenburger et al. (1981) [see equations (7a,b)].
(a) A one-dimensional geometry is considered, with bacteria confined to a

tube of length L. In the experiment the substrate level at x = L is kept
artificially constant at concentration s0 . At x = 0 the tube is sealed. What
are the appropriate boundary conditions on b (x, t) and s (x, t)?

(b) For the reproductive rate of the bacteria, Gb, the authors assume that

Gb=Kk+sb—keb,
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and for the rate of consumption of substrate, G S is taken to be

_ 1 ks
b .

GS YK+s

Explain these assumptions and give the meanings of Y, K, k, and ke .
Sketch Gb/b and Gs/b as functions of S.

(c) To simplify the model it is then assumed that a somewhat simpler rela-
tionship holds, namely that

(k — ke)b	 s > sc

Gb

__
 —ke b	 s : Sc ,

G'=
yk b	 s > sc

s	 0	 S C Sc

Explain these approximations and sketch Gb/b and Gs/b as functions
of s.

(d) Use part (c) to explain equations (7a,b) and determine the functional
form for the function f(s) which appears in equations (7a,b).

(e) To reduce the number of parameters, the following dimensionless quanti-
ties are defined:

s	 b	 x	 2tu=SO ,	 v=vo, =L,	 z=LZ,
z	 z

A= µ,	 8= k`L ,	 K= kL ,	 bo = Yso^
kL z ,

F(u)__ 1
	 u?u,

0	 u <u' .

Write the equations and other conditions in terms of these quantities.

9. Consider the Keller-Segel equation for bacterial chemotaxis given by (8). Ex-
plain how the equation would be modified to incorporate the following further
assumptions:
(a) The chemotactic sensitivity increases linearly with the chemical concen-

tration.
(b) The random motion decreases as the cell density increases.
(C) The cell population increases logistically with carrying capacity propor-

tional to the concentration of the chemical.

10. Density-dependent dispersal
(a) Interpret equation (13).
(b) Show that equation (14) is equivalent to equation (15).
(c) Show that if m = I and F(p) = 0, equations (18a,b) are analogous to

equation (14) given that the total population density causes the dispersal
of individuals.

(d) Find biological examples of density-dependent dispersal.

11. Polymorphonuclear (PMN) phagocytes (white blood cells) are generally the
first defense mechanism employed in the body in response to bacterial inva-
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sion. PMN phagocytes are rapidly mobilized cells that emigrate across walls of
venules (small veins that connect capillaries and systemic veins) to ingest and
eliminate microbes and other foreign bodies in the tissue. Lauffenburger and
Kennedy (1983) suggest a model to describe this process. They consider the
density of bacteria (b) and of phagocytes (c) and assume the following:

I. Bacteria, microbes or other foreign bodies disperse randomly (motility
coefficient ab = area/time).

ii. Phagocytes undergo both random motion (with motility coefficient j.)
and chemotaxis towards relatively high bacterial densities (X = chemo-
taxis coefficient).

iii. Bacteria grow at rate f(b) and are eliminated at the rate d(b, c), where
b = bacterial density and c = phagocyte density.

iv. Phagocytes emigrate from venules at the rate sA.(c, b) and die with rate
constant g.

(a) Write a set of equations to describe the motions and interactions of mi-
crobes b and phagocytes c.

(b) Additional assumptions made were that
kb

f(b) = 1 + 8b/K;'	 d(b ' c) Kb + b'

.2(c, b) = ho VCb(l + h1b),

where k8 = bacterial growth rate constant,
kd = phagocytic killing rate constant,
ho = rate of emigration from venules when inflammation is ab-

sent,
h, = inflammation-enhanced emigration rate,

A/V = ratio of venule wall-surface area to tissue volume,

Cb = phagocyte density in the venules.

(1) Explain the meaning of these assumptions.
(2) Define K; and Kb and give dimensions of all parameters above.

(c) By dimensional analysis, it is possible to reduce the equations to the fol-
lowing form:

av _ a"v + yv — UV

aT —P ä 2 	l+ v is+v'
i

äT = a Z — s ad 
u äv\

} 
+ a(1 + o v — u).

where v, u, C, and r are dimensionless varibles.
(1) Find the definitions of the parameters appearing in these equations

in terms of the original parameters.
*(2) Explain the meanings of these parameters.
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(d) Show that the equations in part (c) have two types of uniform steady-state
solutions:
(1) v = 0, u = 1.
(2) v>0, u=1+ov.
Identify the biological meaning of these steady states.

12. In this problem we investigate the model for branching discussed in Section
10.4. (See figure on page 484.)
(a) A given apex is assumed to move a distance vi t during At time units.

This gives rise to elongation of a branch and thus contributes to an incre-
ment of the branch density p by an amount v At. (Note that a filament is
thus deposited in the trail of the moving apex.) Elaborate on this reason-
ing to explain the term nv in equation (19a).

(b) Explain the term — yp in equation (19a).
(c) Now consider equation (19b). Explain the term —a(nv) /ax by defining

flux J„ of the moving particles.
(d) The term o, is actually a difference of two terms:

O' = Qbr — 0mort,

where o br is a branching rate and a•,,,o„ is a loss rate. Explain why such
terms appear in this equation.

(e) Branching can occur in several possible ways, including the following:
(1) Dichotomous branching: One apex produces a pair of daughter

apices.
(2) Lateral branching: A filament produces a new branch apex some-

where along its length.
See Figure (c). Suggest appropriate forms for Qbr in each of these two
cases.

(f) Apices disappear by anastomosis when the end of a filament forms a con-
nection with a neighboring filament. This can happen in one of two pos-
sible ways:
(1) if two ends (apices) come into contact,
(2) if one apex forms a contact directly with a filament.
Suggest appropriate forms for o ,.r, in each of these cases, and others
shown in Figure (c).

13. Explain the Balding-McElwain equations for capillary growth. (See problem
12.)

14. Odell (1980) describes the following model for chemical wave fronts in a sepa-
ration column (see figure on page 485). He defines:

u,(x, t) = concentration of free protein at distance x along the column,
u2(x, t) = concentration of protein bound (reversibly) to stationary

beads at location x,
B = total number of binding sites on beads per unit distance (B is

constant),
P0 = protein concentration in the stock solution (at x = 0.)
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484	 Spatially Distributed Systems and Partial Differential Equation Models

Figure for problem 12. Equation (19a, b) can be
derived by considering changes in length of
branches and in the numbers of apices at a given
location, as shown in (a) and (b). The branching
term v would contain terms that account for the
biological events shown in (c). [From Edelstein,
(1982). The propagation of fungal colonies. A
model for tissue growth. J. Theor. Biol., 98, fig. 1
and Table 1. Reprinted by permission of Academic
Press.]

r--------^
t
I

I

L-
..-------

t

r--------,

I	 I

t

L1i

t+At

(a)

r---------I

%'^ _- ----- ------ä
	';. 	 `Ilk
	r ,., ,	 I

t+At

(b)

Branching	 Biological Type

I!1 Dichotomous branching

Lateral branching

Tip—branch anastomosis

Tip—tip anastomosis

Tip death

Tip death due to
overcrowding

(c)
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.x=0

x

Figure for problem 14.

He derives the following equations for u ; (x, t):
äu g 	ö	 au,	 1
at = x ( D ax — vu,  — [k1(B — u2)ui — k2u2],

au2

at = k,(B — u 2)u 1 — k2u2.

(a) Interpret the terms in these equations and define k,, k2 , D, and v. What
boundary conditions apply at x = 0? (The problem is idealized as a half-
infinite, one-dimensional domain.)

(b) Determine whether the system has nonuniform steady-state solutions.
(c) Determine whether the system has homogeneous steady-state solutions.
(d) Determine whether the system has bounded traveling-wave solutions.

[Note: Readers consulting the original reference should be forewarned of
a mistake in Odell's equation (49), which unfortunately significantly
changes his conclusions.]

15. Discuss the effect of boundary conditions on the existence and nature of steady
states that one might obtain for the density-dependent dispersal model given by
equations (28a,b). Consider a finite domain x E [0, L] and let
(a) J1(0) = J1(L) = J1, J2(0) = J2(L) = .12,

where Land J2 are constants representing fluxes of species 1 and 2.
(b) J1(0) = Jio, J1(L) = JIL	 Jio	 JIL

	J2(0) = Jzo, J2(L) = J2L	 Jio # JL .
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486	 Spatially Distributed Systems and Partial Differential Equation Models

(c) u(0) = 0, u (L) = ü,	 v(0) = 0, v (L) = v,
where ü and v are constants representing species densities.

(d) J1 (0) = J1(L) = Ji,	 v(0) = v (L) = v.
(e) u(0) = u (L) = ü,	 v(0) = v (L) = v.
(Note: Your conclusion for some of these might be that no steady state exists.)

16. Fisher's equation
(a) Show that traveling-wave solutions to Fisher's equation (36) must satisfy

equations (40a,b).
(b) Verify the locations of steady states given in (42a,b) and show that the

Jacobian matrices at these steady states are then given by (43a,b).
(c) Show that (P,, S,) is a stable node and (P2 , S2) is a saddle point provided

that
(v)2a

(d) What happens if the condition in part (c) is not met? (Sketch the resulting
phase-plane diagram and discuss why one cannot obtain biologically real-
istic traveling waves.)

(e) Conclude that the minimum wave speed is

vmi,, = 2(a2) 2 .

17. (a) Show that traveling-wave solutions to equations (47a,b) for yeast cells on
glucose medium would have to satisfy (48).

(b) Verify that these equations lead to the system of ODEs (51a,b).
(c) Find steady states of equations (51a,b), sketch nullclines, and compute

the stability properties of the steady states.
(d) Determine whether there is any constraint on the speed v of the wave.

(Hint: You must determine whether the heteroclinic trajectory always ex-
ists and remains in the positive GN quadrant.)

18. Equations for space-dependent voltage in the membrane of the neural axon
were derived in Section (9.3). Determine what equations would be satisfied by
traveling-wave solutions to these equations. (Note: The ionic current I; is given
in the Hodgkin-Huxley model in Section 8.1). Such solutions correspond to
propagating action potential.

*19. Rubinow and Blum (1980) studied propagating (traveling-wave) solutions P (z)
and Q (z) to equations (54a,b), for z = x — ct.
(a) Find the equations satisfied by P (z) and Q (z).
(b) Sketch the phase-plane diagrams for the case n = 1.
(c) Sketch the phase-plane diagram for the case n = 2 (cooperativity).
(d) Why did they conclude that traveling waves exist only if binding is co-

operative?
(e) Sketch the shape of waves they predicted based on part (c).
(f) Rubinow and Blum claim that the waves described in part (e) could rep-

resent the following observation. Substances normally present (and trans-
ported) by the axon can also be added artifically. (These could be ra-
dioactively labeled and injected into the axon.) One then observes a
propagating front of radioactivity transported down the length of the
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axon. Blum and Reed later found the mistake in this claim. Why are
these traveling-wave solutions not consistent with the biological phe-
nomenon?

20. (a) Write a system of equations for the Blum-Reed model for fast axonal
transport. Assume that only the complex Q can move along the track and
that velocity of motion v is constant.

(b) Show that the total number of units of E in various forms, Eo, remains
fixed.

(c) Similarly show that the total number of tracks in various complexes, So,
remains fixed.

(Note: The Blum-Reed model, like the Rubinow-Blum model admits pseu-
dowaves—propagating solutions—without additional assumptions about co-
operativity.)

21. Takahashi's cell-cycle model. Consider equations (55a,b). Assume that transi-
tion probabilities a; = A are the same for all phases, that cell death is negligi-
ble, and that the cell divides into two daughter cells.
(a) Show that the model can be written in the following way:

'=A(Ni-I—N	
dt

;),	 dN'=11(2Nk —N,).
dt 

(b) Verify that the following f distribution is a solution:
A 	 i-i

,O	 uN^ t — (^ 
— I)! ]

 e .

Note that this is a consequence of the way that cell cycle stages were dis
-cretized in the model, not in the biology.

22. (a) Interpret equation (60) derived on the basis of Takahashi's model. What
are the constants vo and do in relation to the process of maturation?

(b) Verify that
1	 a—votl 2

n (a, t) _ 4 exp — ( 
4dot I '

is a solution of equation (60).
(c) Give a boundary condition for equation (60) which would be analogous

to equation (56b).

23. Equation (66) may be applied to age distributions in populations of cells,
plants, humans, or other organisms. The assumptions about birth, death, and
maturation rates would depend on the particular situation. How would you for-
mulate boundary conditions (and/or change the maturation equation) for each
of the following examples?

Q

Figure for problem 23 (b). 	0 d_ 0
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488	 Spatially Distributed Systems and Partial Differential Equation Models

(a) Bacterial cells divide into a pair of identical daughter cells when they
mature.

(b) In yeast a mature cell undergoes "budding," eventually producing a small
daughter cell and a larger parent cell. The parent cell is permanently
marked by a bud scar for each daughter cell that it has produced. After a
certain number of buds have been made, the parent cell dies.

24. The variable a in equation (66) may be identified with any one of a number of
measurable cellular parameters. How would equation (66) be written if
(a) a = the chronologic age of a cell.
(b) a = the volume of a cell (assuming that the radius grows at a constant

rate per unit time, dr/dt = K),
(c) a is the level of activity of an enzyme required in mitosis. (Assume rate

of activity increases at a rate proportional to the current level of activity.)
(Hint: Consider v(a, t) in each case.)

25. Model for chemotherapy of leukemia. Consider the model due to Bischoff et
al. (1971) given by equations (70) to (72).
(a) What has been assumed about the rate of maturation v?
(b) Assume that cycle specificity of the drug is low, in other words, that A is

nearly independent of maturity. Take

K, (t)c (t)
(t) _ K2(t) + c (t)

Further assume a solution of equation (70) of the form
n (a, t) = No e ß`h (a)e- «O.

Show that

A (t) = f µ(t') dt'

and that boundary condition (72) implies that n (a, t) is given by equation
(73).

(c) Show that eventually the number of cells of maturity a = 0 is a constant
fraction of the total population:

n(0, t) = 2 In 2 N(t).

(Hint: Note that

N(t) = f
o

n(a, t) da.)

(d) Show that if N is the total population, then

dN_ aN _ AN

dt
where a = v In 2 and is defined as in part (b).

(e) Bischoff et al. (1971) estimate that the mean generation time of L1210
leukemia cells is r = 14.4 h. (What does this imply about v, the matura-
tion speed?) The authors further take the parameters for mortality due to
the chemotherapeutic drug arabinose-cytosine to be

K, = 0.25h- ',	 K2 = 0.3 µg ml-'.
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How long would it take for the cells to fall off to 10 -3 of their initial pop-
ulation if a constant drug concentration of c(t) = 15 mg kg - ' body
weight is maintained in the patient?

26. Other modeling problems related to tissue cultures
(a) Suppose a tissue culture is grown in a chemostat, with constant outflow

at some rate F. Give a set of equations to describe the problem.
(b) If particles of size rm,, always break apart into n identical particles of size

r5, how would the problem be formulated?
*(c) Suppose now that pellets can diminish in size due to shaving off of

minute pieces (such as single cells) as a result of friction or turbulence.
Assume this takes place at a rate proportional to the pellet radius. How
would you model this effect in the following two situations?
(1) All minute pieces can then grow into bigger pieces (participate in

the overall growth).
(2) All fragments die.

27. Plant-herbivore systems and the quality of the vegetation. In problem 17 of
Chapter 3 and problem 20 of Chapter 5 we discussed models of plant-herbivore
interactions that considered the quality of the vegetation. We now further de-
velop a mathematical framework for dealing with the problem. We shall as-
sume that the vegetation is spatially uniform but that there is a variety in the
quality of the plants. By this we mean that some chemical or physical plant
trait q governs the success of herbivores feeding on the vegetation. For exam-
ple, q might reflect the succulence, nutritional content, or digestibility of the
vegetation, or it may signify the degree of induced chemical substances, which
some plants produce in response to herbivory. We shall be primarily interested
in the mutual responses of the vegetation and the herbivores to one another.
(a) Define

q (t) = quality of the plant at time t,
h (t) = average number of herbivores per plant at time t.

Reason that equations describing herbivores interacting with a (single)
plant might take the form

dt = f(q, h),	 dt = g(q, h) = hr(q, h).

What assumptions underly these equations?
(b) We wish to define a variable to describe the distribution of plant quality

in the vegetation. Consider
p (q,t) = biomass of the vegetation whose quality is q at time t.

Give a more accurate definition by interpreting the following integral:

f
q+Oq

 P(q,t)dq

(c) Show that the total amount of vegetation and total quality of the plants at
time t is given by
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490	 Spatially Distributed Systems and Partial Differential Equation Models

m

P (t) =	 p (q, t) dq,
0

Q (t) = o qp (q, t) dq.

What would be the average quality Q (t) of the vegetation at time t?
*(d) Suppose that there is no removal (death) or addition of plant material.

Write down an equation of conservation for p (q, t) that describes how the
distribution of quality changes as herbivory occurs (Hint: Use an analogy
similar to that of Sections 10.8 and 10.9.)

(e) Suppose that the herbivores are only affected by the average plant qual-
ity, Q (t). What would this mean biologically? What would it imply about
the equation for dh/dt?

(f) Further suppose that the function f(q, h) is linear in q. (Note: This is
probably an unrealistic assumption, but it will be used to illustrate a
point.) Assume that

f(q, h) = .fi (h) + qf2(h).

Interpret the meanings of f, and f2.
*(g) Show that the model thus far can be used to conclude that an equation for

the average quality of the vegetation is

dQ = f1(h) + fz(h)Q•

[Use the assumptions in parts (d) and (f), the equation you derived in (d),
and integration by parts.]

(h) Explore what this model would imply about average quality and average
number of herbivores per plant if f and r are given by

f(q, h) = K i — K2 qh (h — ho),

r(q, h) = K3(l — K4h/Q).

[Hint: See problem 20 of Chapter 5 where 1(t) —p h (t).] Interpret your
results.

(Note: This problem is based on Edelstein-Keshet, 1986. It can be extended
into a longer project for more advanced students.)

PROJECTS

1. Extended project. Analyze the model given in problem 8, referring to methods
outlined in the paper by Lauffenburger et al. (1981).

2. This project is suitable only for mathematically advanced students. Discuss the
qualitative behavior of the traveling-wave solutions described in problem 18.
For references, see Jones and Sleeman (1983), sec. 6.2, and other references
in Rinzel (1981) .

3. Write a short simulation program incorporating the discrete Takahashi model
for the cell cycle, given the following assumptions:
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(a) For A, = A = constant,

_ k1c
k2 + c

(b) For A, = Aa,(1 — a,),
K i (a)c

µ =	 Ki(a) = 1 — e- "•
K2 + c'

(c) For any other set of assumptions that are of biological relevance.
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