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6 Differential Equation Models for Infectious Disease

To those familiar with the manifold complexities of real

infections in real populations, our “basic models” may seem

oversimplified to the point of lunacy.

Roy Anderson and Robert May (1992, p. 9)

The aims of this chapter are the same as those stated by Anderson and May (1992)
for their monograph Infectious Diseases of Humans: to show how relatively simple
models can help to interpret data on infectious diseases, and to help design pro-
grams for controlling them. We begin with some classic examples, but end with
some very recent developments: models for the emergence and management of
drug-resistant disease strains, and models for disease progression within the body
with particular reference to HIV/AIDS. The study of infectious diseases is one of
the most mature applications of dynamic models in biology, so we can present
some real and important “success stories” for simple dynamic models. We limit
ourselves here to human diseases, but very similar models are also used for animal
and plant disease dynamics (see, e.g., Hudson et al. 2002, Campbell and Madden
1990, and the papers discussed in the Preface), an issue of increasing importance
as climate change and other anthropogenic stressors render natural populations
increasingly susceptible to disease.

This chapter introduces no new mathematics. Rather, following our general
approach, it serves to indicate the enormous scope of potential applications for
differential equation models. Previous chapters have examined differential equa-
tion models at the within-cell (enzyme kinetics, gene regulation) and whole-cell
(neuron excitation) levels. Now we go up to the level of human populations,
but the model structures and the tools for their analysis—rescaling, eigenvalues,
bifurcations, and so on—are the same.

6.1 Sir Ronald Ross and the Epidemic Curve

Sir Ronald Ross (1857–1932) received the 1902 Nobel Prize in medicine for deter-
mining the life cycle of the malaria parasite, in particular the role of mosquitos in
the parasite life cycle and as vectors for its transmission between humans. From
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that humble beginning he went on to found the modern application of dynamic
models to the study of infectious diseases.

Ross (1916) gave two motivations for modeling epidemic dynamics. First, he
noted that infectious diseases could display three different temporal patterns:

1. Endemic: relatively small fluctuations in monthly case counts, and only slow

increase or decrease over the course of years (Ross listed leprosy and tuberculosis

in this category)

2. Outbreak: constantly present but flaring up in epidemic outbreaks at frequent

intervals (measles, malaria, dysentery)

3. Epidemic: Intense outbreaks followed by disappearance (plague, cholera)

Ross (1916, p. 205) asked “To what are these differences due? Why, indeed,
should epidemics occur at all, and why should not all infectious diseases belong
to the first group and remain at an almost flat rate?”

Ross’s second motivation was to explain the characteristic shape of the epidemic
curve for diseases in the third class. The epidemic curve is the time course of
disease incidence, the number of new cases per unit time. Figures 6.1 and 6.2 show
a few examples. The characteristic features are a symmetric or nearly symmetric
rise and fall, with the outbreak terminating before all individuals susceptible
to the disease have become infected. Because susceptibles still remain in the
population when outbreaks terminate, it was argued by some at the time that
outbreaks terminate because the pathogen loses infectivity; others hypothesized
that the uninfected individuals must have been less susceptible to the disease.

Ross’s (1916) model was a partial success, allowing him to show that the shape
of epidemic curves could be explained without either of these hypotheses. His
other goal, to explain different patterns of disease dynamics, was tackled a decade
later by Kermack and McKendrick (1927). Current models are largely based on
Kermack and McKendrick’s modified versions of Ross’s models, so we will consider
those here. The models (SIR models) are formulated at the level of the available
data: the numbers of individuals reported to contract the disease. Individuals are
classified as being either Susceptible to the disease, Infected by it, or Recovered or
Removed. R-stage individuals are neither infectious nor infectable: either dead,
or having immunity (permanent or temporary) against the disease.

The first of Kermack and McKendrick’s basic models described a disease out-
break in a closed population of constant size:

dS/dt = −βSI

dI/dt = βSI − γ I

dR/dt = γ I .

[6.1]

Initial conditions are S(0) = S0 ≈ N, I(0) = N − S0 ≈ 0, R(0) = 0 where N is the
total population size. Since dS/dt + dI/dt + dR/dt = 0 the total population size
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Figure 6.1 Examples of epidemic curves. (a) Phocine distemper virus in Northern Ireland 1988/89

(data from Figure 4 of Hall et al. 1992, provided by John Harwood). (b) An outbreak of influenza

in Fort Benning, Georgia in 1995 (data from Davidson 1995). (c) Recurrent outbreaks of measles

in Rekyavik, Iceland (data provided by Andrew Cliff, Department of Geography, University of

Cambridge).

remains constant at N. The population is closed in the sense that no new sus-
ceptibles are added by births or immigration, and so long as R individuals are
counted the population size is constant. Thus the assumption of constant popu-
lation size is really that the only changes in population size are disease-induced
deaths. The fraction of infected individuals, I(t)/N, is called the prevalence of the
disease.

The first equation in model (6.1) is disease transmission resulting from contact
between susceptibles and infectives. Ross (1916) justified this transmission rate as
follows. Each infected individual transmits the pathogen to b individuals per unit
time, but new cases arise only if the recipient individual is susceptible. Assuming
a constant population of size N, the number of new cases per unit time is therefore
bI(S/N) = βSI where β = b/N. This form of transmission is called “mass action”
(by analogy with the Law of Mass Action in chemical reactions) or “proportional
mixing” (Anderson and May 1992). Mass action has been and still remains the
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Figure 6.2 Deaths per week from plague in the island of Bombay from

December 17, 1905 to July 21, 1906 (from Kermack and McKendrick

1927). The solid line is an approximate solution to their model for

a disease with permanent removal—death or immunity—in the rat

population on the island. It is compared with data on the human

death toll on the assumption that “plague in man is a reflection of

plague in rats.”

most widely used transmission model; McCallum et al. (2002) review alternative
models and empirical studies about the validity of the mass action model.

In the second equation, γ is the rate at which infected individuals recover from
the disease (or die), at which point they transfer to the Recovered class. The exit
rate γ can be interpreted biologically as the inverse of the mean residence time in
the compartment; this interpretation is very important for fitting these models
to empirical data.

Whether Recovered individuals are dead versus alive and immune is in one
sense irrelevant for the future course of the epidemic, because in either case they
have no impact on future infections. However, change in the number of living
individuals invalidates Ross’s (1916) derivation of the disease transmission rate.
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If the living population is not constant, then to justify the βSI in [6.1] we have to
assume that the rate of contacts per individual is proportional to the population
size—if you double the number of people on the subway, then the kid with the
runny nose infects twice as many people. If so, then the rate of new infections
is (bN)I(S/N) = βSI with b = β.

6.2 Rescaling the Model

What is the resulting shape of the epidemic curve? At first sight, it appears that
we would need to see how the shape and behavior of solutions depend on three
parameters: β, γ , and N. However, by rescaling the model (as in Chapter 4) we
can reduce to a single parameter.

The benefit of rescaling is that the model becomes simpler just by chang-
ing the units of measurement for time and state variables. Usually the most
effective rescalings are ones that render all variables in the rescaled model di-
mensionless. For example, S, I , R, and N are all “population size,” measured in
units like individuals/km2 or individuals/m2. The numerical values of these
variables depend on the choice of units. However, if we look at the ratios
X = S/N, Y = I/N, Z = R/N, their values will be the same regardless of the units
used for population size. X, Y , Z are called dimensionless variables because their
numerical values do not depend on the units of measurement.

The dynamic equations for our rescaled variables are easily derived:

dX/dt = (1/N)dS/dt = −βSI/N

= −(βN)(S/N)(I/N)

= −bXY ,

and similarly

dY/dt = bXY − γ Y

dZ/dt = γ Y .

This gets us down to two parameters: γ and the new composite parameter b =
βN. We can get rid of one more parameter by defining a rescaled time variable
τ = γ t . Recall that the mean duration of infection is 1/γ , so a unit increase in
τ corresponds to real elapsed time equal to the mean duration of infection. We
then have

dX/dτ = dX/(γ dt) = (1/γ )dX/dt

= −(βN/γ )X.
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The step from dX/dτ to (1/γ )dX/dt follows from the chain rule, (dX/dτ) ×
(dτ/dt) = dX/dt , but the heuristic calculation in the last equation gets the right
answer.

The conclusion is that dx/dτ depends on the single parameter combination
R0 = βN/γ . Doing the same with the other state variables we get the rescaled
model

dX/dτ = −R0XY

dY/dτ = R0XY − Y

dZ/dτ = Y

[6.2]

with initial conditions X(0) = X0 ≈ 1, Y(0) = Y0 ≈ 0, Z(0) = 0.
An immediate prediction from this model is a threshold condition for an epi-

demic to occur. At time 0, dY/dτ = Y(R0X0 − 1) ≈ Y(R0 − 1), for a disease intro-
duced at low incidence into the populations. Consequently, the disease preva-
lence increases if and only if R0 > 1. Since X(τ ) can only decrease over time, if Y
is not increasing at time 0 it can never increase later, so the disease must die out.

The quantity

R0 = βN/γ [6.3]

is called the “basic reproductive rate” of the disease, and can be interpreted as
the expected number of new infections produced by a single infected individual
introduced into a population of N susceptibles: βN infections per unit time,
multiplied by the expected time 1/γ in the infectious stage. It therefore should
be (and is) a very general property of epidemic models that a disease can be
maintained in a population only if its R0 (defined appropriately for the model)
is greater than 1. Measures that reduced R0 below 1 would then eradicate the
disease, such as quarantine of infectives to reduce β or vaccination to reduce the
number of susceptibles.

We can also show that epidemics in the model terminate before all susceptibles
have become infected—thus achieving one of Ross’s goals—and determine how
many susceptibles remain.

In model [6.2] any individual who contracts the disease winds up eventually
in Z. Since Z can only increase over time but can never go above 1, it must
approach some limiting value Z∞ = limt→∞ Z(t), which is therefore the fraction
of all individuals who contract the disease before it dies out. Z∞ can be found
by deriving a one-dimensional differential equation for Z(t). By the chain rule
dX/dτ = (dX/dZ)dZ/dτ so

dX/dZ = (dX/dτ)/(dZ/dτ) = −R0X;

hence X(Z) = X(0)e−R0Z. Using this expression for X and Y = 1 − X − Z, the third
line of [6.2] becomes
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Figure 6.3 Graphical illustration that equation [6.5] has a unique so-

lution between x = 0 and x = 1. The solution gives the approximate

fraction of the population that contracted the disease over the course

of an epidemic (Z∞) in the Kermack-McKendrick SIR model, when

the epidemic starts with a small number of infectives and the rest of

the population susceptible.

dZ/dτ = 1 − X(0)e−R0Z − Z. [6.4]

As Z(t) → Z∞, dZ/dτ decreases to 0, marking the end of the outbreak. When that
occurs, since X(0) ≈ 1 we must have (approximately)

Z∞ = 1 − e−R0Z∞ .

Thus Z∞ is the positive solution of the equation

x = 1 − e−R0x. [6.5]

We see graphically that [6.5] has a unique solution between 0 and 1 so long as
R0 > 1 (see Figure 6.3), representing the fraction of the population that contract
the disease before the outbreak collapses. The line y = x has slope 1 and increases
without limit. The curve y = 1 − e−R0x has slope R0 at x = 0 but saturates to a
limiting value of 1 as x increases. Thus the curves must intersect at some point
Z∞ between 0 and 1.

The relationship between Z∞ and R0 can be obtained by solving [6.5] for the
inverse function, giving

R0 = − 1
Z∞

ln(1 − Z∞).
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Figure 6.4 Epidemic curves (number of new cases per unit time) calculated from

numerical solution of the Kermack-McKendrick model for a disease without

recovery in a closed population of constant size. The plot shows R0X(τ )Y(τ )

as a function of scaled time τ .

There is also an interesting approximation to [6.5] for R0 near 1. In that case x is
small, and we can use a two-term Taylor expansion x ≈ 1 − (1 − R0x + (R0x)2/2)

to obtain

Z∞ ≈ 2(R0 − 1)/R0
2 ≈ 2(R0 − 1) when R0 ≈ 1.

This provides a possible explanation for occasional large outbreaks of a disease
that is usually rare: small changes in infectivity as a result of conditions becom-
ing more favorable for disease transmission can produce an epidemic affecting a
significant fraction of the population. The approximation is actually an overes-
timate, but not by much. For example, the exact solution for R0 = 1.2 is for 31%
of the population to be infected before the epidemic burns out.

Finally, numerical solution can be used to find the shape of the epidemic curve
predicted by the model [6.2], as a function of the single parameter combination
R0, for initial conditions X(0) ≈ 1, Y(0) ≈ 0, Z(0) = 0. The epidemic curve is de-
fined as the rate at which new cases appear, that is, R0X(τ )Y(τ ). Figure 6.4 shows
that the model does indeed produce reasonable-looking epidemic curves. Higher
values of R0 naturally lead to a shorter and more intense epidemic, in addition to
a higher final infected fraction Z∞. Recall that τ measures elapsed time in units of
the mean duration of infection, so the solutions show that if R0 = 5 the epidemic
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only lasts about twice as long as the duration of the infection, while if R0 = 1.05
it last for over ten times the duration of infection.

Exercise 6.1. An isolated village in Iceland experiences an outbreak of influenza in
which 812 of the 1100 residents contract the infection. Estimate R0 assuming that
the outbreak started with a single case contracted from outside the village, with all
others susceptible at the start of the outbreak.

Exercise 6.2. Find Z∞ for [6.2] when R0 = 10, 20, and 100.

6.3 Endemic Diseases and Oscillations

We turn now to Ross’s second goal, understanding differences in dynamic pat-
terns of incidence among endemic diseases. Consider, for example, two child-
hood diseases in New York City (measles and chickenpox) prior to the availabil-
ity of vaccine (Figure 6.5). Both diseases show a pronounced annual cycle, most
likely reflecting the higher transmission among children when schools are in
session. However, statistical analysis confirms the presence of roughly two-year
and three-year periodicities in measles, while the only significant periodicity in
chickenpox is the annual cycle. What accounts for this difference?

In order for a disease to persist indefinitely there must be a supply of fresh
susceptibles, either through recovery without immunity or through births. The
simplest example is an SIS model with constant population size:

dS/dt = −βSI + γ I

dI/dt = βSI − γ I .
[6.6]

The acronym “SIS” indicates that when infected individuals recover they return
to the susceptible class: there is no immunity conferred by infection. Gonorrhea,
which we consider below, is a disease of this type.

This model is simple enough to solve. First, we can rescale it in the same way
as the SIR model, getting

dX/dτ = −R0XY + Y

dY/dτ = R0XY − Y .

[6.7]

Second, since the X + Y = 1 we can replace X by 1 − Y in dI/dt to obtain
dY/dτ = R0Y(1 − Y) − Y . Then with a bit of algebra this re-arranges to

dY/dτ = rY(1 − Y/K) [6.8]

where r = R0 − 1, K = (R0 − 1)/R0. This is the well-known logistic equation. If
R0 < 1 the disease dies out. For R0 > 1 the qualitative behavior of solutions is
easy to determine by graphing dY/dτ as a function of Y : a parabola with its peak
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Figure 6.5 Monthly case report totals for measles and chickenpox in New York City prior to vac-

cination, plotted on square-root scale, and power spectra of the case report time series. The power

spectrum of a time series represents the relative importance of different oscillation frequencies in

the data. The spectra shown here confirm that chickenpox is dominated by a simple annual cycle,

while measles shows a mix of annual, two-year, and three-year cycles.

at Y = K/2. From this we see that Y(t) → K from any initial value Y(0) > 0. We
can also infer the qualitative shape of solutions. When x(t) is below K/2, as x
increases, dx/dt also increases: the second derivative is positive, hence x(t) is
concave up. Between K/2 and K, further increases in x leads to a decrease in
dx/dt so x(t) is concave down.
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Because it reduces to a one-variable model, [6.7] always has a monotonic ap-
proach to steady state and cannot account for persistent oscillations in endemic
diseases. Oscillations require a model in which the population passes through
more disease states. The simplest example is an SIR model in which constant
population size is maintained by a balance between births and deaths:

dS/dt = µN − βSI − µS

dI/dt = βSI − (γ + µ)I

dR/dt = γ I − µR.

[6.9]

Because population size is constant we only need the first two equations in
(6.9). Following Anderson and May (1992) we rescale the variables to X = S/N
and L = βI . X is the fraction of susceptible individuals in the population, and L is
the “force of infection”—the probability per unit time of becoming infected, for
a susceptible individual. Because we are interested in the period of oscillations,
we do not rescale time. The rescaled model is then

dX/dt = µ(1 − X) − LX

dL/dt = (γ + µ)L(R0X − 1)

[6.10]

where R0 = βN/(γ + µ). R0 has the same meaning as before: the mean number of
new cases produced by a single newly infected individual added to a population
of N susceptibles.

Exercise 6.3. What is the qualitative behavior of solutions to [6.8] starting from
x0 > K?

6.3.1 Analysis of the SIR Model with Births

The dynamics predicted by the SIR model with births are derived from linear
stability analysis of steady states (X̄, L̄). There is always a disease-free steady state
(X̄0, L̄0) = (1, 0). An endemic steady state (L̄1 > 0) requires R0X̄ = 1 (from setting
dL/dt = 0); hence

X̄1 = 1/R0. [6.11]

Then setting dX/dt = 0 we find

L̄1 = µ(1 − X̄1)/X̄1 = µ(R0 − 1). [6.12]

Since X < 1 holds at all times (why?), the endemic steady state is biologically
meaningful only when R0 > 1, as expected from the meaning of R0.

The endemic susceptible fraction X̄1 = 1/R0 is a very general prediction, and
will be true whenever an infective’s rate of disease transmission is proportional to
the susceptible fraction. By definition, a single newly infected individual dropped
into a population with X = 1 (all susceptible) directly produces R0 new infections,
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on average. At an endemic steady state, each newly infected individual must be
exactly replacing itself, that is, producing 1 new infection rather than R0—hence
the susceptible fraction must be 1/R0.

The Jacobian matrix for [6.10] is

J(X, Y) =
⎡
⎣ −µ − L −X

(γ + µ) LR0 (γ + µ) (R0X − 1)

⎤
⎦ . [6.13]

For the disease-free steady state we have

J(1, 0) =
⎡
⎣ −µ −1

0 (γ + µ) (R0 − 1)

⎤
⎦ [6.14]

with eigenvalues −µ and (γ + µ)(R0 − 1) (using the fact that the eigenvalues of a
triangular matrix are the diagonal entries in the matrix). The disease-free steady
state is therefore stable if R0 < 1 and an unstable saddle if R0 > 1. The stable
eigenvector in the latter case is (1, 0)—the X axis, which is also the stable man-
ifold. If the population initially consists entirely of susceptible and recovered
individuals, it converges to the disease-free steady state as recovered individuals
die and are replaced by susceptibles.

The Jacobian for the endemic steady state is

J(X̄1, Ȳ1) =
⎡
⎣ −µ R0 −R0

−1

(γ + µ) µ (R0 − 1) R0 0

⎤
⎦ . [6.15]

Since R0 > 1 is necessary for this steady state to exist, the determinant is positive
and the trace is negative, implying that the steady state is stable whenever there
is an endemic steady state. To see if it is a spiral or a node, we compute the
eigenvalues using the formula for a 2 × 2 matrix from Chapter 2:

λ = T ± √
T2 − 4D
2

where T = trace( J) and D = det( J). Applying this to [6.15] we get eigenvalues

λ1,2 = −1
2

µR0 ± 1
2

√
µ2R0

2 − 4 (γ + µ) µ (R0 − 1). [6.16]

This expression can be understood using two approximations. First, if R0 is
just slightly above 1, the (R0 − 1) term within the square root will be dominated
by µ2R2

0 so both eigenvalues are real, implying that the steady state is a node.
However, endemic diseases typically have R0 well above 1; for that situation recall
that µ is the mortality rate and γ is the rate of recovery from the disease. To put
it another way: µ = 1/(mean lifetime) and γ = 1/(mean duration of the disease)
so we typically have µ � γ. Consequently, in the square root in [6.16] the terms
involving µ2 are dominated by the term involving µ, namely, −4γµ(R0 − 1) < 0.
Dropping the µ2 terms we obtain the approximate eigenvalues
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λ1,2 ≈ −1
2

µR0 ± i
√

γµ(R0 − 1). [6.17]

These are complex conjugates, implying that the endemic steady state becomes
a spiral when R0 is large, and the approach to steady state will be oscillatory.

The eigenvalues also give us the (approximate) period of the decaying oscil-
lations. With complex conjugate eigenvalues λ = a ± ib, the solutions to the
linearized equations are a linear combination of eat cos(bt) and eat sin(bt), thus
having period T = 2π/b. For [6.17] we therefore have the period

T ≈ 2π/
√

γµ(R0 − 1) = 2π
1√
γ

1√
µ(R0 − 1)

. [6.18]

1/γ is the mean duration of the disease. µ(R0 − 1) is the force of infection at the
endemic steady state, the probability per unit time of moving from susceptible
to infectious. Its inverse is therefore the mean time an individual spends in
the susceptible class, which is the mean age at infection in this model since
all individuals are born as susceptibles. Calling these δ and α, respectively, we
therefore have

T ≈ 2π
√

αδ. [6.19]

For comparisons with data we need to estimate the model parameters. Some
are easy to come by. N is the total population size; for example, for New York in
the prevaccination era we could take 5 million as a representative value. 1/γ is
the mean disease duration. For measles this is estimated at 12 to 14 days, so with
time measured in years we could estimate γ ≈ 365/13 ≈ 28.

Estimating β is harder. The transmission rate involves the frequency of con-
tacts, and the fraction of contacts that actually lead to disease transmission. Nei-
ther of these is easy to observe or estimate directly. In addition, different kinds
of contacts (social, in school, within the family, on public transportation, etc.)
each occur at different rates and with a different chance per contact of disease
being transmitted.

An alternative approach is calibration, which means adjusting parameters to
make model solutions correspond to the data as well as possible. With calibra-
tion, we use the model and data on state variables to infer the value of model
parameters. This assumes that the model is valid, a dangerous assumption because
we are unlikely to have independent tests of the model’s validity. Nonetheless cal-
ibration is very widely used because it is rare to have a complex biological model
in which all parameters can be estimated from direct data on process rates.

Here, we can use calibration to estimate β as follows. Assuming a disease at
steady state with constant force of infection, we derived above that µ(R0 − 1) =
1/α where α is the mean age at infection. Rearranging, we get

R̂0 = 1 + 1
αµ

= 1 + mean lifespan
mean age at infection

[6.20]
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and then the resulting estimate β̂ = R̂0(γ + µ)/N. The mean age at infection can
be inferred from age-specific case reports, assuming a roughly even age distri-
bution (e.g., Grenfell and Anderson 1985); for measles in England and Wales
1948–1968, this gave α ≈ 5 years.

Anderson and May (1992) suggested that the oscillations about the endemic
steady state in the SIR model with births could account for the observed dynamics
in measles and other endemic childhood diseases. Although cycles in the model
are damped, Anderson and May (1992) argued that a number of mechanisms
would continually perturb the system, leading to sustained oscillations at periods
similar to [6.18]. Two suggested mechanisms were finite-population effects—
the “coin-tossing” nature of disease transmission, especially when the number
of infecteds is low—and seasonal variation in transmission rate due to school
vacations. This hypothesis was tested by comparing predicted periods against
periodicities observed in the data for a number of diseases (Anderson and May
1992, Table 6.1), and in many cases the fit is good. For example, for measles
in developed countries they estimated mean age at infection of 4–5 years, and
disease duration of 12 days, giving approximate period 2π

√
4.5(12/365) = 2.4

years. This compares well to the observed two- and three-year periodicities (Figure
6.5). However, for chickenpox they estimate mean age at infection of 6–8 years,
and disease duration 18–23 days, giving predicted periods of 3.4–4.5 years, for
which there is no evidence in the data. So the damped-cycles hypothesis is only
part of the story.

There is an enormous and still growing literature about the processes un-
derlying dynamic patterns in endemic diseases. For childhood diseases it ap-
pears that multiple factors are involved, including those raised by Anderson and
May (1992): seasonal variation in transmission rates and demographic stochas-
ticity. Neither of these alone is sufficient. Models without seasonal varia-
tion in transmission cannot reproduce the clear annual periodicity observed
in virtually all childhood diseases (Schaffer et al. 1990; see Figure 6.6). De-
terministic models with seasonal forcing require unrealistically high levels of
seasonal variation in order to mimic, through deterministic chaos, the com-
plex multiannual patterns seen in measles (Ellner et al. 1995). But models
incorporating both finite-population effects and plausible levels of seasonal vari-
ation have been able to account for the main features of the pre-vaccination
oscillations in measles (Ellner et al. 1998; Finkenstad and Grenfell 2000;
Grenfell et al. 2002), and for effects of vaccination on spatiotemporal pat-
terns in measles and pertussis (Rohani et al. 1999). In addition, variation
in birth rates and population size may contribute to changes over longer
time scales, such as the transition in the New York measles data from more
complex dynamics to a regular biennial oscillation (Ellner et al. 1998; Earn
et al. 2000).
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Figure 6.6 Output from a finite-population SEIR model with parameters ap-

propriate for pre-vaccination dynamics of measles in a city of 1 million, but

without any seasonal variation in the transmission rate.

6.3.2 Summing Up

We can now return to the biological questions posed at the start of this chapter:
what accounts for differing patterns of dynamics in infectious diseases? We have
seen that differences in epidemic dynamics emerge from biological differences in
the interactions between different pathogens and their host that are reflected in
the basic structure of the appropriate model:

• A highly infectious disease with permanent removal or immunity (S → I → R

model without births, [6.1]), leads to a classic epidemic curve and terminates

before all susceptibles are infective.

• A disease where immunity following infection is temporary (S � I model, [6.6])

leads to a stable endemic state.

• A less infectious disease with permanent removal or immunity (S → I → R model

with birth and death, [6.9]) can lead to an endemic state with oscillations.

That is not to say that every endemic disease is adequately described by one of
these simple models. The essential message is that qualitative properties at the
level of individual hosts and pathogens create qualitative differences at the whole-

This content downloaded from 
�������������96.248.68.89 on Sun, 18 Jul 2021 13:27:20 UTC�������������� 

All use subject to https://about.jstor.org/terms



January 18, 2006 16:07 m26-main Sheet number 220 Page number 198

198 Chapter 6

population level, and the connection between these is made by the dynamic
models.

Exercise 6.4. What happens in [6.16] if R0 becomes really, really large? Is this a
realistic possibility—that is, just how large must R0 be to change our conclusions
about the steady state? [Hint: if R0 is “really, really large” then (R0 − 1)/R0 ≈ 1.]

Exercise 6.5. Starting with the constant-population SIR model with births, equation
[6.9], suppose that newborns are vaccinated, with the result that a fraction p ≤ 1 of
all newborn individuals are born as removed rather than susceptible (i.e., we consider
here a disease where removed individuals are alive but immune).

(a) Write down the resulting system of differential equations. Note that the population size

should still be constant, and that when p = 0 your model should reduce to equation

[6.9].

(b) Show that as p is increased from 0, the number of infectives at the endemic steady

state decreases until it eventually reaches Ī = 0 at some value p < 1. This is sometimes

called herd immunity : even though some individuals have not been immunized by

vaccination, the disease cannot sustain itself in the population as a whole.

Exercise 6.6. Starting again from [6.9]:

(a) Modify the model to include vertical transmission, meaning that offspring of an infected

parent have probability v of being born as infected rather than susceptible.

(b) Use linear stability analysis of the trivial steady state (S = N, I = R = 0) to study how

vertical transmission affects the conditions for persistence of the disease.

Exercise 6.7. Starting once again from [6.9]:

(a) Add a latent phase (E) of individuals who have been infected but are not yet infective—

they carry the disease but do not transmit it to others—and write out the resulting

system of differential equations. This is called the SEIR model.

(b) Derive the expression for R0 in this model.

(c) Write a script file to solve this model numerically, for a disease with R0 = 15 (as estimated

for measles) in a population of 3,000,000 and with the latent and infectious stages each

lasting one week. Do numerical experiments on this model, with seasonal variation

in contact rate, to test the claim that the latent proportion E(t)/(E(t) + I(t)) remains

roughly constant. Describe your

• methods: describe the simulations that you conducted;

• results: give a verbal summary of the results;

• conclusions: Was the claim valid?
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Figure 6.7 Compartment diagram for discrete-event SIR

model.

Include a few well-chosen and well-designed graphs to support your claims. [Note:

seasonal variation in contact rate is often modeled by β(t) = β̄(1 + φ cos (2πt)) with

time measured in years. Values of φ between 0.1 and 0.3 are considered credible

for measles, depending on who you ask. Routines for numerically solving differential

equations may have trouble for larger values of φ, especially if you start with S(0) ≈ N

so that there is a massive initial outbreak.]

Exercise 6.8. This exercise involves constructing a discrete-event SIR model; an in-
troduction to discrete-event models and how to simulate them is given in the online
Computer Lab materials. Figure 6.7 shows the compartment diagram for an SIR
model in a population of constant size N. Here L is the force of infection given by
β(t)(I + I0), β(t) = β̄(1 + φ cos (2πt)), where I0 represents an external pool of infec-
tives (cousins in Connecticut, etc.) whose presence keeps the disease from ever dying
out completely. Constant population size is maintained by having each death (from
R) balanced by birth of a new susceptible. The corresponding transition matrix for an
individual with time step dt = 1 day is

A =

⎡
⎢⎢⎣

1 − L 0 µ

L 1 − γ 0

0 γ 1 − µ

⎤
⎥⎥⎦ . [6.21]

(a) Write a script file to simulate a discrete-event version of the model for 50 years with time

step dt = 1 day, and produce a plot of the daily number of new cases, using parameter

values (for time measured in days) N = 1, 000, 000, µ = 0.015/365, R0 = 16, γ = 1/12,

I0 = 1, φ = 0.01.

(b) Can your model explain the qualitative difference between measles and chickenpox dy-

namics prior to vaccination—that is, the presence of persistent multiannual periodicities

in measles but not in chickenpox? Assume R0 = 16 for measles, 10 for chickenpox, and

the disease durations are 12 days for measles, 21 days for chickenpox. For purposes

of this exercise accept the current view that φ < 0.25, with smaller values being more

plausible. Nothing is really known about I0. Turn in a write-up explaining how you

obtained your answer to this question, with well-chosen graphs or tables to support
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your arguments. Some case-report data are available from this book’s web page, but

remember that only a fraction of cases are reported.

Exercise 6.9. Modify the model (as a second script file) to eliminate the randomness
due to finite population size. That is, any Binomial(N, p) random variable is replaced
by its expected value Np, making the model a deterministic difference equation with
a time-step of 1 day. Can this model explain the difference between measles and
chickenpox?

6.4 Gonorrhea Dynamics and Control

In the 1970s Herbert Hethcote and James Yorke used epidemic models to study the
control of gonorrhea in the United States. Their work illustrates how qualitative
insights derived from simple models can have important practical implications.
Bringing models and data into contact also led to an important conceptual ad-
vance that now plays an important role in HIV/AIDS research and public health
policy, and also has been applied to the spread of computer “viruses.” This sec-
tion is largely based on their monograph (Hethcote and Yorke 1984).

The bacterium causing gonorrhea, Neisseria gonorrhoeae, lives only on mucus
membranes and dies within seconds outside the human body. In one sexual
exposure an infected woman has a 20–30% chance of transmitting the disease,
while an infected man has a 50–70% chance. Gonorrhea incidence in the United
States tripled between 1965 and 1975, and by the early 1980s there were roughly 1
million cases reported per year, implying roughly 2 million actual cases based on
estimated reporting rates. Gonorrhea is a public health concern mainly because
of its consequences in women: it is a major cause of pelvic inflammatory disease,
infertility, and ectopic pregnancy, and facilitates the transmission of HIV. No
vaccine against gonorrhea is available.

6.4.1 A Simple Model and a Paradox

A simple model for gonorrhea can be based on three basic properties. First, infec-
tion does not confer immunity. Second, the latent period can be omitted because
it is very short (1–2 days) compared to the average duration of infection (about 1
month). Third, because there is only weak seasonal variation in the case reports,
it is not necessary to include seasonal variation in the contact rate. The simplest
model is therefore an SIS model with constant population size, which reduces to
a single equation for the number of infectives,

dI/dt = βI(N − I) − γ I . [6.22]

As noted above, this is a logistic model whose solutions converge to the steady
state I = N(1 − 1/R0) whenever R0 > 1.
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The paradox comes from the fact that, as usual, the endemic fraction of sus-
ceptibles in model [6.22] is 1/R0. The endemic fraction of susceptible therefore
provides an estimate of R0. Hethcote and Yorke (1984) reasoned as follows:

We estimate that the actual yearly incidence of gonorrhea in the United States is

2.0 million and that the population at risk is approximately 20 million. If the average

duration of infection is one month, then the number of cases at any given time is

166,667 which is less [than] 1% of the active population.

So 1 < R0 < 1.01, which portrays gonorrhea as a disease on the brink of extinc-
tion. That does not square well with its long-term persistence and its three-
fold increase in incidence within a decade. In addition, a rough estimate of
the actual value of R0 was obtained from the effects of a screening program in
1973–1975 (Yorke, Hethcote, and Nold 1978). It was estimated that the pro-
gram decreased the average infectious period (and thus R0) by 10%, and resulted
in a 20% reduction in the rate of new case reports. The fraction infectious
at any given time was therefore reduced by a fraction (0.9)(0.8) = 0.72. Thus,
1 − 1/(0.9R0) ≈ 0.72(1 − 1/R0), giving R0 ≈ 1.4. But if R0 is this large and most
of the population is susceptible, the disease should be very rapidly increasing—
tripling within a year rather than a decade.

6.4.2 The Core Group

How can we reconcile this contradiction? In order for the disease to be at steady
state or slowly growing, the fraction of susceptibles among individuals contacted
by an infected individual must be close to 1/R0. If we accept that R0 ≈ 1.4, then
1/R0 ≈ 0.7 so the disease incidence must be about 30% among individuals contacted
by an infective.

Since disease incidence in the general population is much lower than 30%,
mixing between susceptibles and infectives cannot be random. Instead, Het-
hcote and Yorke concluded, there must be a core group of individuals, mostly
transmitting the disease to each other, in which the disease is at much higher
incidence than in the general population.

The importance of the core group had an immediate impact on programs for
gonorrhea control (e.g., St. John and Curran 1978, WHO 1978, quoted by Het-
hcote and Yorke 1984). At that time, the main control measure in the United
States was mass screening of women at public health clinics in order to identify
asymptomatic carriers, who were considered to be the main reservoir for the dis-
ease. The presence of a core group implied that control programs should target
the core group rather than the general population. The question, then, is how
to do that most effectively.

The simplest model that could be used to examine control strategies is an SIS
model that distinguishes between core (group = 1) and noncore (group = 2) sub-

This content downloaded from 
�������������96.248.68.89 on Sun, 18 Jul 2021 13:27:20 UTC�������������� 

All use subject to https://about.jstor.org/terms



January 18, 2006 16:07 m26-main Sheet number 224 Page number 202

202 Chapter 6

populations:

S1 � I1

S2 � I2 .

[6.23]

This model ignores a good bit of reality—for example, it does not distinguish men
from women, or symptomatic from asymptomatic infectives—and it is simplistic
to posit a sharp division between core and noncore. However, it is the natural
first step.

Assuming constant size for the core and noncore subpopulations, [6.23] reduces
to a pair of differential equations for the number of infecteds in each group:

dI1/dt = (λ11I1 + λ12I2)X1 − γ I1

dI2/dt = (λ21I1 + λ22I2)X2 − γ I2.

[6.24]

Here λij is the number of effective (pathogen-transmitting) contacts per unit time
of a group-j individual with persons in group i, and Xi = Si/Ni is the fraction
of susceptible individuals in group i. This is Ross’s mass action model, where
each infected individual has a constant number of contacts, and the rate of new
infections is limited by the fraction of contactees already infected.

To use the model we have to specify its parameters, including the as-always
unobservable contact rate parameters λij. To reduce the number of parameters,
Hethcote and Yorke made the so-called proportionate mixing assumption, that fre-
quencies of contact between individuals are proportional to their activity levels ai,
defined as the average number of effective contacts per unit time for an individ-
ual in group i. The fractional activity level of group i is then bi = aiNi/A, where
A = a1N1 + a2N2. Note that the b’s only depend on the relative population sizes
and activity levels:

bi = aiNi

/∑
j

ajNj = 1

/ ∑
j

(aj/ai)(Nj/Ni). [6.25]

The proportionate mixing assumption is that each individual (of either group)
has encounters with core versus noncore individuals in proportions b1:b2.

Proportionate mixing simplifies things considerably—we then have

dYi/dt = ai

⎛
⎝∑

j

bjYj

⎞
⎠ Xi − γ Yi. [6.26]

That is, the rate at which group i susceptibles contract the disease is given by the
product of their activity level ai—their rate of effective contacts—and the fraction
of contacts who are infected,

∑
j bjYj.

The model is thus specified by the activity levels ai, the relative sizes of the
two groups, and the mean disease duration. Some idea of the core group’s size
and parameters can also be determined, if the core is identified as individuals
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having repeated infections in a relatively short time period. For example, one
study cited by Hethcote and Yorke (1984) found that 6.7% of 7347 patients at
venereal disease clinics fit this description, and were responsible for over 22% of
the cases seen at the clinic.

The importance of the core group results from the fact that the product b1Y1

appears in the transmission rate for all groups. If the core is especially active
(a1 � a2) and consequently has a much higher disease prevalence (Y1 � Y2), the
core group can be the primary source of new cases even if they are a small fraction
of the population.

Exercise 6.10. This exercise illustrates the potential importance of a small but active
core group. Suppose N1 = N2/50 and a1 = 10a2, with the overall contact rate such
that the steady-state prevalence in the noncore population is 3%.

(a) By solving [6.26] for the endemic steady state, show that steady-state prevalences Ȳi

scale with activity level according to

Ȳi

1 − Ȳi
= ai Ȳ/γ

where Ȳ = ∑
j bj Ȳj is the average fraction of infected contacts.

(b) Use the result of (a) to show that Ȳ1 = 10Ȳ2/(1 + 9Ȳ2).

(c) Show that the fractional activity levels are b1 = 1/6, b2 = 5/6, and hence 5/6 of all

contacts are with noncore individuals.

(d) Contacts with infecteds in core versus noncore occur in the ratio (b1Ȳ1):(b2Ȳ2). Combine

the results of (c) and (d) to show that this ratio is > 1; hence most infections are

contracted from a core group member.

6.4.3 Implications for Control

The two-group model can now be used to evaluate alternative control measures by
adding each to the model, and comparing their effects on disease incidence. For
example, a strategy of randomly screening individuals in the at-risk population,
and treating those infected, would be modeled as

dYi/dt = ai

⎛
⎝∑

j

bjYj

⎞
⎠ Xi − γ Yi − gYi [6.27]

where g is the screening rate. Hethcote and Yorke (1984) developed similar mod-
els for other strategies:

• Rescreening: Treated individuals are rescreened a short period after recovery from

the disease, and retreated if necessary.
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• Contact tracing: When a case is treated, try to identify the persons to whom the

patient may have given the disease (potential infectees) or from whom they may

have gotten it (potential infectors), and treat any who are infected.

Which of these works best? To find out, Hethcote and Yorke (1984) went
through the exercise of estimating parameters for these models insofar as possible,
and considering a range of possibilities for unknown parameters. They then did
the same for a far more complex model with twelve state variables: susceptible,
symptomatic infected, and asymptomatic infected among men and women in
the core and noncore groups. But those efforts were hardly necessary, because
the results can be inferred from how successful each strategy is at finding core
group members:

• General random screening finds core versus noncore individuals in proportion to

the group size N1:N2, and so does a bad job of treating the core.

• Rescreening finds core versus noncore individuals in proportion to their disease

incidence, I1:I2 = N1Y1:N2Y2.

• Potential infectee tracing finds core versus noncore individuals in proportion to

their activity levels, b1:b2 = N1a1:N2a2.

• Potential infector tracing finds core versus noncore individuals in proportion to

the rate at which they transmit the disease to susceptibles, b1Y1:b2Y2.

(The difference between infectee and infector tracing is that potential infectees
may or may not have been infected, whereas Hethcote and Yorke assumed that an
infected individual will know who gave them the disease.) Because Y1 > Y2 and
a1 > a2 we see that rescreening and infectee tracing will both outperform general
screening, and (by similar comparisons) infector tracing will outperform both
of these. Hethcote and Yorke’s (1984) simulations confirmed these conclusions:
infector tracing was found to be the most effective by far, for all parameter sets
considered.

The concept of a core group and the importance of targeting the core for treat-
ment was a major factor in the 1975 revision of U.S. control measures for gonor-
rhea. The new programs emphasized contact tracing and rescreening of people
identified as core group members on the basis of frequent reinfection. The result
was an immediate and long-lasting reversal of the increase in gonorrhea incidence
(Figure 6.8), indicating that the new measures were substantially more effective.

Later models have relaxed the assumption of a sharp distinction between core
and noncore, in two ways. The first is to allow multiple groups. Anderson
and May (1992, Chapter 11) review models for HIV with an arbitrary number
of groups, where group-j individuals constitute a fraction P( j) of the population
and have effective contacts at rate aj = aj. They derived the important formula

R0 = aT(E[ j] + Var( j)/E[ j]). [6.28]
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Figure 6.8 Reported gonorrhea rate (cases per 100,000 population) in the United States (from CDC

2000)

Here T is the mean duration of infection, and E[ j] and Var( j) are the mean and
variance of the frequency distribution of contact rate: E[ j] = ∑

j jP( j), Var( j) =∑
j P( j)

(
j − E[ j])2

. As always the disease persists if R0 > 1, so [6.28] implies that
individuals in the upper tail of the activity level distribution have a dispropor-
tionate effect on disease persistence.

The second generalization is modeling epidemics on social networks, where
each individual is explicitly linked to a finite number of other individuals, and
an infected individual has a constant probability per unit time of infecting indi-
viduals to whom it is linked. This is a very active research area now; Newman
(2003) and Moreno et al. (2002) are good introductions. As in multiple-group
models, persistence of the disease can be strongly influenced by the fact that
individuals differ greatly in their rate of contacts with others in the population.

Exercise 6.11. We said above that rescreening finds core and noncore individuals in
proportion to disease incidence in each group. Why is this? Similarly, give a verbal
justification for the expressions given above for the proportions of core versus noncore
individuals found by the infector tracing and infectee tracing strategies.

Exercise 6.12. What happens if gonorrhea-infected individuals can’t always identify
correctly the person who infected them? Propose a model for this situation and
discuss its implications.
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Exercise 6.13. Consider a power-law distribution for the activity rate in the multi-
group HIV model, P( j) = Cj−(2+γ), which has been suggested by some recent inves-
tigations. Show that for 0 < γ ≤ 1, R0 is infinite. What would this imply about HIV
persistence? How does it relate to the idea of targeting the core group for treatment?

Exercise 6.14. Explain why the model in the previous exercise is unrealistic for a finite
population, and suggest how it might be modified. Does this change the model’s
implications for disease control strategies, and if so, how?

6.5 Drug Resistance

Antimicrobial and antiviral drugs have drastically reduced the impact of infec-
tious diseases on humans in developed countries, but their effectiveness is being
challenged by the emergence of drug-resistant strains. For example, between
1991 and 1996 the rate of penicillin resistance increased by more than 300%;
the rate of cefotaxime resistance in Streptococcus pneumoniae, one of the main
causes of ear infections in children, increased by more than 1000% (Butler et al.
1996). Within an individual receiving drug treatment, the drug creates an envi-
ronment where drug-resistant strains are at an advantage. As a result, if treatment
fails—for example, if the patient does not comply with the treatment regime or
does not complete it—that individual may then be carrying and transmitting
drug-resistant strains of the disease. The U.S. Centers for Disease Control and
Prevention has identified antibiotic resistance as a significant public health prob-
lem and has initiated a National Campaign for Appropriate Antibiotic Use aimed
at reducing the spread of antibiotic resistance.

Two current concerns are multidrug resistant (MDR) tuberculosis, and an-
tiretroviral resistant HIV. Tuberculosis (TB) is a major global public health bur-
den, with over 9 million cases per year and ∼ 25% mortality; untreated or drug-
resistant cases would have ∼ 50% mortality rate (Dye et al. 2002). TB strains are
classified as MDR if they are resistant to the two main first-line drugs used to treat
TB, isoniazid and rifampicin. In 2000 only 3.2% of all new TB cases were esti-
mated to be MDR, but MDR prevalence of 10–14% has been estimated for specific
regions in Eastern Europe, Asia, and Africa (Dye et al. 2002). The incidence of
TB is currently increasing by about 2%/year, and there is concern that this might
reflect the emergence of MDR strains that could lead to a significant global rise
in TB prevalence.

Combination antiretroviral (ARV) therapies for HIV, involving simultaneous
treatment with three or more different drugs, are currently the most effective
available treatment. In use since 1996, these have substantially decreased the
death rate from AIDS (Blower et al. 2001). However, strains resistant to the three-
drug “cocktail” have emerged and have been sexually transmitted. Blower et al.
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Figure 6.9 Compartment diagram from Blower et al. (2000) for their model

for HIV transmission dynamics in the presence of antiretrovivral therapy, with

both resistant and non-resistant strains circulating in the population.

(2000, 2001) used a relatively simple model to evaluate the magnitude of the
threat posed by ARV-resistant HIV strains, and to evaluate possible responses.

The model (Figure 6.9) describes the transmission dynamics of HIV in the pres-
ence of antiretroviral therapy, with resistant and nonresistant strains being trans-
mitted. In structure it is an SIR model with two complications: distinguishing be-
tween treated and untreated cases, and between resistant and nonresistant strains
of the disease. Dropping the recovered population as usual, the state variables
are the numbers of susceptible individuals (X), and four classes of infected indi-
viduals (Y) with S and R indicating drug-sensitive versus drug-resistant strains,
and T and U indicating treated versus untreated individuals. The λ’s are the force
of infection, calculated from the number of infected individuals in each category
and the infectiousness (β) of each type of infection. Parameters σ and g represent
the rates of individuals entering and leaving treatment. Untreated drug-resistant
infections revert to drug sensitive at rate q, while treated drug-sensitive infections
acquire drug resistance at rate r.

Data-based estimates for several model parameters were available for the San
Francisco gay community, while others parameters were less certain and prob-
ability distributions were used to represent the relative likelihood of different
possible values. For example Blower et al. (2001) allowed the rate r at which
ARV drug resistance develops in treated cases to range between 10% and 60%
per year. Because little is known about ARV resistant strains, and in particular
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about their transmissibility relative to drug-sensitive strains, they allowed the
relative transmissibility to vary between 1% and 100% of the transmissibility of
the drug-sensitive strain.

Given this wide range of uncertainty, model predictions were generated for a
large number of random draws of parameter values according to the distributions
representing parameter uncertainty, and then studied statistically as if they were
the results of an experiment—which in a sense they are. Blower et al. (2001) were
able to compare model predictions with empirical estimates through 1999; data
published later allowed comparison out to 2001 (Blower et al. 2003, Figure 6.10).

A surprising prediction from the model is that the transmission of resistance
is low, and will remain low at least in the short run: for 2005, it was predicted
that most new infections will still be by drug-sensitive strains (median 84.4%,
interquartile range 72–94%). Thus, the main source of drug-resistant cases is con-
version of drug-sensitive to drug-resistant cases: individuals with a drug-resistant
infection are at risk themselves, but do not pose a major threat to the general
population. This prediction has some important practical applications. First, it
says that combination ARV will remain effective on most new infections, and can
continue to be used on newly diagnosed cases. Second, efforts to limit the spread

Figure 6.10 Fraction of new HIV infections that are resistant to combination ARV

treatment: theoretical predictions versus empirical data for San Francisco (from

Blower et al. 2003). Model simulations were run over the time period 1996–2005,

with initial conditions corresponding to estimated values for 1996. Boxes enclose

the interquartile range (25th to 75th percentiles) of model outcomes and bars show

outlier cutoffs; the bars inside the boxes are the median values. Triangles show resis-

tance to non-nucleoside reverse transcriptase inhibitor, and crosses show resistance

to protease inhibitor, in a study of 243 newly infected individuals in San Francisco

from 1996 to 2001 who had no previous exposure to ARV drugs.
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of drug-resistant strains should focus on minimizing the rate of conversion from
sensitive to resistant cases—by delaying treatment as long as possible, and trying
to enforce strict compliance with the treatment program. Finally, the lack of re-
sources to monitor patient compliance in developing countries implies that drug
resistance is likely to be more of a problem than in developed countries.

6.6 Within-Host Dynamics of HIV

Models for infectious diseases at the population level have recently been adapted
to model the proliferation of viral diseases within a single host (Nowak and May
2000). In this section we present some relatively simple models that were de-
veloped to analyze clinical studies of HIV. Results from these models provided
the first inkling of the massive battle waged by the immune system against HIV
during the chronic period of infection, and had a major impact on the treatment
of HIV infection.

The primary targets of HIV-1 are CD4-positive T-lymphocytes. Infection begins
when a viral particle (virion) encounters an activated T-cell, and the viral envelope
binds with the CD4 receptor on the cell membrane. The cell membrane and viral
envelope fuse, and the viral core enters the cell. The host cell’s genetic machinery
is commandeered and it begins making multiple copies of the viral RNA. New
virions form within the cell and then bud off, carrying along some of the host
membrane as a new viral envelope.

Disease progression after HIV infection, if untreated, has three phases. An
initial acute phase is marked by high viral loads and flu-like symptoms. The
second phase is largely asymptomatic: viral loads fall to a quasi-steady-state and
remain there for a period of a few months to a decade. During this time T-cells
slowly decline. Finally, there is immune system failure followed by death from
opportunistic infections (Figure 6.11).

Because viral and T-cell levels change very slowly, the asymptomatic stage was
assumed to be a period when the virus was relatively inactive and nothing much
was happening. The development of antiretroviral drugs made it possible to test
this assumption. Ho et al. (1995) and Wei et al. (1995) treated chronically infected
patients with then newly developed drugs (reverse transcriptase and protease
inhibitors) which prevent the virus from infecting additional cells. The surprising
result was an extremely rapid exponential decay in viral load (Figure 6.12).

The simplest model to explain these findings posits that viral production is
totally shut down by drug treatment. Then

dV/dt = −cV [6.29]

where V is the viral load and c the virion clearance rate. The value of c is then
the slope of log V versus t , and was estimated by fitting a straight line to the
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Figure 6.11 Schematic depiction of the typical course of HIV infection in an adult.

The early peak in viral load corresponds to the primary infection or “acute” phase.

Also shown are T-cell dynamics (from Perelson and Nelson 1999).
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Figure 6.12 Decay of plasma viral load in two patients following treatment with a protease inhibitor.

Treatment is initiated at t = 0 (from Perelson and Nelson 1999, using data from Ho et al. 1995).

exponential decay phase of the data (Figure 6.12). The viral half-life is then
t1/2 = log 2/c. Ho et al. (1995) estimated t1/2 = 2.1 ± 0.4 days based on 20 patients,
and Wei et al. (1995) estimated t1/2 = 1.8 ± 0.9 days based on 22 patients. These
estimates revealed that the asymptomatic stage is actually very dynamic, with
rapid virus production balanced by rapid clearance.

However, the simple model [6.29] confounds two processes: the clearance of
existing free virions, and the clearance of infected cells that are producing new
virus. Estimating both clearance rates required a model in which both processes
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are explicitly represented (Ho et al. 1995, see also Perelson and Nelson 1999;
Nowak and May 2001):

dT/dt = λ − dT − kVT

dT∗/dt = kVT − δT∗

dV/dt = NδT∗ − cV

[6.30]

where T are uninfected T-cells, T∗ are productively infected cells, and V repre-
sents free virus. This is essentially an SI model for the spread of infection in a
population of T-cells, with infection occurring through contacts between suscep-
tible T-cells and free virions. T-cells are “born” at rate λ, have per capita mortality
rate d, and are infected at rate kVT—a “mass action” model for contacts between
susceptible cells and virus. Infected cells die or are cleared at a rate δ. Virus V is
generated at a rate Nδ per infected T-cell T∗ and cleared at a per capita rate c. N is
called the “burst size” and represents the total number of free viral particles pro-
duced by an infected cell over its lifetime. Since the mean lifetime of an infected
cell is 1/δ, the burst size N corresponds to an instantaneous virion production
rate of Nδ.

Perelson et al. (1996) applied this model to clinical data. Five patients re-
ceived a protease inhibitor, and their HIV-1 RNA concentrations were measured
frequently over the next 7 days. Protease inhibitors cause infected cells to pro-
duce noninfectious virions. In the presence of a protease inhibitor (assumed for
simplicity to be 100% effective), the model becomes

dT/dt = λ − dT − kVIT

dT∗/dt = kVIT − δT∗

dVI/dt = −cVI

dVNI/dt = NδT∗ − cVNI .

[6.31]

Here VI is infectious virus, and VNI is noninfectious virus. Both are cleared at
rate c.

Given the short duration of the experiment and assuming a relatively large
pool of uninfected cells T , it was assumed that T remained at its steady state
value T0 for the duration of the study. The model then reduces to

dT∗/dt = kVIT0 − δT∗

dVI/dt = −cVI

dVNI/dt = NδT∗ − cVNI .

[6.32]

This can be solved by matrix methods, or sequentially as follows. Prior to treat-
ment all virus is infectious, that is, VI (0) = V0, therefore

VI (t) = V0 exp(−ct).
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Assuming that the patient was at steady state prior to treatment, the second line
of [6.31] implies that

kV0T0 = δT∗
0 . [6.33]

Substituting these into the equation for T∗ yields

dT∗/dt = −δT∗ + δT∗
0 exp(−ct) [6.34]

with initial condition T∗(0) = T∗
0 . Since this equation is linear it can be solved

explicitly (as outlined in exercises below), to obtain

T∗(t) = T∗
0

(c − δ)
· [c exp(−δt) − δ exp(−ct)].

The equation for noninfectious virus can be solved similarly, after substitut-
ing in the expression for T∗ and imposing the initial condition VNI (0) = 0. The
resulting expression for the total free virus V(t) = VI + VNI is then

V(t) = V0 exp(−ct) + cV0

(c − δ)
·
{

c
(c − δ)

· [exp(−δt) − exp(−ct)] − δt exp(−ct)
}
. [6.35]

Values of c and δ were estimated for each patient by fitting this equation to
the measurements of plasma viral load (Figure 6.13). The clearance rate of free
virus c was found to be relatively rapid, with the half-life estimated to be 0.24 ±
0.06 days. Thus, half the virion population is replaced every 6 hours. Death of
productively infected cells T∗ was found to occur more slowly, with an estimated
half-life of 1.55 ± 0.57 days.

During the approximate steady state prior to treatment, virus production must
balance the clearance, cV . Using their estimate of c and measured steady-state
viral loads V0, Perelson et al. estimated that 10.3 × 109 free virions were produced
per day prior to drug treatment. This was an order of magnitude higher than the
original estimates by Ho et al. (1995) and Wei et al. (1995).

The implication for treatment was that HIV has the potential to evolve very
rapidly in response to selection imposed by the immune system, or by drug
treatment. Combining turnover rate estimates with estimates of genome size
and mutation rate, Coffin (1995) concluded that all possible point mutations
in HIV arise thousands of times each day in a chronically infected adult. This
provided a simple mechanistic explanation for the rapid development of resis-
tance to single-drug treatments. The current practice of administering three-drug
cocktails—which would require simultaneous mutations at three different sites
to confer drug resistance—arose directly from these conclusions. As noted in the
last section, multidrug resistance is developing much more slowly.

Exercise 6.15. Here is one way to find the solution to [6.34]. General theory
for first-order linear differential equations tells us to expect a solution of the form
T ∗(t) = A exp ( − ct) + B exp ( − δt) for some constants A and B. Find the solution by
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Figure 6.13 Viral load data (symbols) versus model predictions (solid line) dur-

ing first phase of viral decay after onset of treatment (t = 0) (from Perelson and

Nelson 1999, after Perelson et al. 1996).

substituting this trial form into [6.34] and finding A, B to satisfy the initial conditions
and the differential equation.

Exercise 6.16. Here is another. Equation [6.34] can be rearranged as

dT ∗/dt + δT ∗ = δT ∗
0 exp ( − ct).

(a) Let x(t) = exp (δt)T ∗(t) and use the chain rule to show that exp ( − δt)dx/dt = dT ∗/dt +
δT ∗.

(b) Using the result of part (a) show that x(t) satisfies a differential equation of the form

dx/dt = f (t), which implies that x(t) = x(0) + ∫ t
0 f (s)ds.

(c) The rest is algebra: plug in x(0) = T ∗(0), use [6.33] and simplify, to derive [6.35].

6.7 Conclusions

Infectious disease models provide some of the best examples of the practical value
of simple dynamic models. Simple models, deliberately stripped down to bare
essentials so that they could be fully understood, led to qualitative insights, such as
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• endemic steady-states of diseases with permanent immunity will be spirals,

• contact tracing is the best way to target the core group of gonorrhea carriers,

• rapid turnover of HIV-1 allows it to rapidly evolve resistance to any single-drug

therapy.

In principle these insights could also be gleaned from more complex and realistic
models, that would presumably make the same predictions. But complex models
can be as hard to understand as the real-world system that they represent. Simpler
models are then an essential starting point for disentangling the complexities of
complex models and complex real-world systems.

Infectious diseases also provide examples of situations where complex mod-
els are essential because the quantitative details matter—such as predicting just
how rapidly drug-resistant HIV will spread, deciding what control measures will
be sufficient to halt the spread of foot-and-mouth disease (as described in the
Preface), or determining which individuals should be given highest priority for
limited vaccine supplies. Our next two chapters are devoted to some of the com-
plexities that we have so far ducked. The next adds space, where the variation in
state variables across location as well as across time must be taken into accout.
After that we look more closely at models that try to represent the complexity of
biological systems by modeling at the level of individual agents, and therefore
can only be studied by computational methods.
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