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5 Dynamical Systems

This chapter is a mathematical interlude about dynamical systems theory of or-
dinary differential equations. The goal of this theory is to describe the solutions
of these systems in geometric terms. The theory classifies patterns that are found
in simulations of many models and gives a mathematical justification for why
these particular patterns are observed. We emphasize the descriptive language
developed by the theory and the associated concepts, but this chapter can only
give the briefest of introductions to this rich theory. The second half of the chap-
ter explores the dynamics of the Morris-Lecar model introduced in Chapter 3 as
a case study for application of the theory.

The conceptual picture at the center of dynamical systems theory is that of
points moving in an abstract phase space according to well-defined rules. For
deterministic systems, we assume that where points go is determined by their
current position in the phase space. The path through the phase space that a
point takes is called its trajectory. Usually, we will be interested in the asymptotic
or limit behavior of the trajectories, where they go after long times. A common
behavior is for regions of trajectories to approach the same limit set. This limit set
is called an attractor for the system. In the case of the bistable switch considered
in Chapter 4, the phase space is the positive quadrant of the plane, and the
system has two attractors, both equilibrium points or steady states. The number
and types of attractors that exist may vary with changes in system parameters.
These changes are called bifurcations of the system and its attractors.

This chapter restricts its attention to systems with one- and two-dimensional
phase spaces. The phase spaces of these systems are easier to visualize than those
of higher-dimensional systems, and their attractors have a simpler structure than
the chaotic attractors which are possible in higher dimensions. Pictures that
divide the phase spaces into regions with different limit sets are phase portraits.
Generic planar dynamical systems have attractors that are equilibrium points and
periodic orbits. We will describe how to systematically compute the attractors
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of generic planar systems and the regions of trajectories tending toward them,
using the Morris-Lecar system as a case study. Computer algorithms are used
to find equilibrium points and compute trajectories in determining these phase
portraits. Qualitative differences in the phase portraits for two sets of parameter
values signal that a bifurcation occurs if one follows a path in parameter space
joining them. We describe the bifurcations that one expects to encounter in such
investigations—there are only a small number of different types that occur as a
single parameter is varied. In this analysis, we shall encounter the algebra of
eigenvalues and eigenvectors once again.

The chapter begins with a description of one-dimensional systems. The next
section introduces general terminology and considers mathematical foundations.
The third section discusses linear systems of differential equations and how these
are used to study properties of a system near an equilibrium point. This is fol-
lowed by a section that gives guidelines for analyzing nonlinear two-dimensional
systems. These guidelines are applied to the Morris-Lecar example in the fifth sec-
tion. The sixth section describes several bifurcations and gives illustrations from
the Morris-Lecar model. The final section of the chapter gives a brief discussion
of some of the issues that arise in numerically computing trajectories.

5.1 Geometry of a Single Differential Equation

We begin our discussion of dynamical systems in one dimension. A single differ-
ential equation

ẋ = f (x) [5.1]

defines the motion of a point on the line. The function x(t) describes the posi-
tion x of the point at each time, and f (x) gives the velocity at which the point is
moving. We want to determine the limit of x(t) as t → ∞. Geometrically, what
can happen is pretty simple. The values of x at which f (x) = 0 are equilibrium
points: if f (x0) = 0 the constant function x(t) ≡ x0 is a solution to the equation.
The equilibrium points divide the line into intervals on which f (x) is positive
and intervals on which it is negative; see Figure 5.1. In an interval on which
f (x) is positive, x(t) increases, while in an interval on which f (x) is negative, x(t)
decreases. If f is itself a differentiable function of x, trajectories do not cross the
equilibrium points. Each trajectory that is not an equilibrium then either in-
creases or decreases. Moreover, each trajectory will tend either to an equilibrium
or to ±∞ as t → ∞. This is a simple example of a phase portrait for a dynamical
system. The line is the phase space of the system and the solution trajectories
move along the line. The equilibrium points identify the asymptotic behavior
of trajectories: where they go as t → ±∞. In slightly more technical terms, the
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Figure 5.1 The phase line of a one-dimensional differential equation with three

equilibrium points. The values of the vector field are plotted as the graph of a

function and arrows show the direction of the vector field along the line.

limit set of a bounded trajectory is an equilibrium point. Similarly, the backward
limit set of a trajectory that is bounded as t → −∞ is an equilibrium point.

The classical logistic model for density-dependent population growth is defined
by the one-dimensional vector field

ẋ = rx
(
1 − x

K

)
. [5.2]

Here x represents the size of a population whose per capita growth rate declines
with population size, decreasing linearly from a value r at very small population
sizes to 0 at population size K. This equation can be solved explicitly, but we
choose to represent its solutions graphically in Figure 5.2. This figure gives a
different perspective on the phase line of this equation as a dynamical system.
The vertical direction is the phase line of the system. The graphs of solutions
show how they move up or down along the phase line as a function of time. As
t → ∞, the trajectories that are shown approach the equilibrium point at x = K.
As t → −∞, the two lower trajectories approach the equilibrium point 0. The
upper trajectory tends to ∞ as t decreases, “reaching” ∞ in finite time. Observe
that x increases when ẋ as given by the equation is positive and decreases when
ẋ is negative.

Exercise 5.1. Compare the graph of f (x) = rx(1 − x/K ) with Figure 5.2. What is the
relationship of the maximum values of f (x) to the trajectories of the differential equa-
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Figure 5.2 Plots of solutions x(t) to the differential equation ẋ = 2x(1 − x/3).

The equilibrium points are at x = 0 and x = 3. Solutions in the interval (0, 3)

approach 3 as t → ∞ and 0 as t → −∞. Solutions with x > 0 also approach 3

as t → ∞ but tend to ∞ as t decreases.

tion plotted in Figure 5.2? How will Figure 5.2 change if the values of r and K are
changed in the equation?

Exercise 5.2. Imagine a population in which deaths exceed births when the popu-
lation is small, but per capita reproductive rate increases with population size. This
might happen, for example, if it is easier to find a mate in a larger population. If the
differential equation describing growth rate of this population is

ẋ = rx
(
−1 + x

K

)
, [5.3]

analyze what can happen to trajectories with x(0) > 0.

5.2 Mathematical Foundations: A Fundamental Theorem

Dynamical systems are defined by systems of ordinary differential equations that
express the rates at which a collection of dependent variables (x1, x2, . . . , xn) vary
in time. The dependent variables can represent any quantities, and we write xi(t)
to denote the function that describes how the ith dependent variable changes in
time. We will also collect the dependent variables into an n-dimensional vector
x = (x1, x2, . . . , xn) and write x(t) for the function that describes how the vector
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changes in time. We use Rn to denote the set of all n-dimensional vectors. When
n = 2 or 3, we think of the vector x(t) as a point moving in the plane or in space.
When n > 3, visualization of the vector x strains our imagination and we often
resort to looking at simultaneous plots of the functions xi(t). Nonetheless, we still
regard x(t) as a moving point that sweeps out a curve. The differential equations
themselves take the form

ẋi = fi(x1, x2, . . . , xn), [5.4]

expressing the rates of change of each dependent variable in terms of the cur-
rent values of all the dependent variables. In this equation, we write ẋi for the
derivative of xi with respect to time.1 We also gather the equations together in
the vector form ẋ = f(x).

The equations [5.4] define a vector field that assigns the vector f(x) to the point
x.2 In this setting, the set of all x at which f is defined is called the phase space
of the vector field and the solutions are called trajectories. This is most readily
visualized in the case n = 2 when the phase space is the plane, and we can inter-
pret the vector field as assigning an arrow to each point of the plane. Figure 5.3
shows an example of a two-dimensional vector field, the arrows giving the values
of the vector field on a grid of points and the heavy solid curves showing three
solutions to the system of differential equations

ẋ = 1/2,

ẏ = x.

[5.5]

Most of this chapter will deal with vector fields in the plane.
A vector field “points the way” for trajectories of [5.4], giving the tangent vec-

tors to the solution curves. It is plausible (and true if f is itself differentiable) that
there is exactly one solution beginning at each location of phase space at time
t = 0. This is the content of the existence and uniqueness theorem for ordinary
differential equations.

If f : Rn → Rn is a differentiable function defined on the domain U and x0 ∈ U, then there

is an a > 0 and a unique differentiable function x : [−a, a] → Rn such that x(0) = x0 and

ẋ(t) = f(x(t)) for −a ≤ t ≤ a.

Solving the differential equations produces the curve x(t). The vector field
determines trajectories, but an initial point x(0) must be chosen to specify a

1The equations [5.4] are called autonomous because the functions fi do not depend upon t . One can study
nonautonomous equations in which the fi may depend upon t , but the geometric interpretations of their solutions
are more complicated.

2The terms vector and point are sometimes used interchangeably and sometimes in distinct ways. When both
refer to x, we call f (x) a tangent vector to distinguish it from x. Some authors call the quantities x points and the
quantities f (x) vectors. We have tried to avoid confusion by making minimal use of the term vector to describe
either x or f (x).
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Figure 5.3 A “quiver plot” of the vector field defined by the differential equations [5.5]. The solid

curves are the solutions of the equations passing through the points (0, 0), (0, −0.5), and (−1, 0).

The vector field arrows are tangent to the solution curves passing through the tail of the arrows.

unique trajectory. The solutions fit together: if the solution x(t) arrives at the
point y0 at time s, then the solution y beginning at y0 follows the same path as the
trajectory that began at x(0). In a formula, the trajectories satisfy y(t) = x(s + t).

The resulting picture is that the phase space is partitioned into curves. Through
each point there is a curve, and different curves never intersect. These curves
constitute the phase portrait of the system and they are the main object that we
want to study. Dynamical systems theory seeks to describe the phase portraits
geometrically and determine how the phase portraits change as the underlying
vector field varies. The theory has developed a language to describe the patterns
displayed by phase portraits and a mathematical perspective that explains the
ubiquity of some of these patterns. The complexity possible in these pictures
depends upon the dimension of the phase space. One dimension allows few
possibilities; two dimensions provide room for a richer set of alternatives. For
systems with more than two dependent phase space variables, chaotic trajectories
that combine unpredictability with surprising order may occur. We shall restrict
attention in this chapter to models with just two dependent variables.
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5.3 Linearization and Linear Systems

5.3.1 Equilibrium Points

Equilibrium points play a special role in the analysis of one-dimensional vec-
tor fields. This is also true in higher dimensions. The location and analysis of
equilibrium points is a starting point for the mathematical description of phase
portraits. In this section, we study the properties of a vector field near an equi-
librium point by linearization of the vector field at the equilibrium. We describe
how to compute the linearization as the Jacobian matrix of derivatives at the
equilibrium, and how to solve the linear system with elementary functions in
terms of its eigenvalues and eigenvectors. More complete developments of this
theory can be found in many texts on differential equations, for example, Blan-
chard et al. (2002); Hirsch et al. (2004). At the end of the section, we discuss
the relationship between the flow of a vector field near an equilibrium and its
linearization.

We begin our discussion of linearization with dimension one. A one-
dimensional vector field is defined by a single differential equation ẋ = f (x). This
equation has an equilibrium point at x0 if f (x0) = 0. The derivative f ′(x0) is the
slope of the best linear approximation to f at x0. The linearization of the differ-
ential equation at x0 is defined to be the equation ẏ = ay with a = f ′(x0). The
solutions of the linearized equation have the form y(t) = c exp(at) where the
constant c is determined by initial conditions. If a < 0, then the solutions of
the linearized equation tend to 0 as t → ∞, while if a > 0, the solutions of the
linearized equation tend to 0 as t → −∞. This behavior carries over to the origi-
nal equation in the following way. If f ′(x0) < 0, then f is positive in an interval
immediately to the left of x0 and negative in an interval immediately to the right
of x0. Thus, there is an interval containing x0 so that all solutions in the interval
tend to x0 as t → ∞. Similarly, if f ′(x0) > 0, there is an interval containing x0 so
that all solutions in the interval tend to x0 as t → −∞. Thus, the stability of the
equilibrium point is determined by the linearized vector field when f ′(x0) 
= 0.

Exercise 5.3. Can anything be said in geneneral about the stability of an equilibrium
x0 where f ′(x0) = 0? Consider the behavior of the systems defined by ẋ = x2, ẋ = x3,
and ẋ = −x3 in the vicinity of the origin.

We turn now to the n-dimensional vector field defined by ẋ = f(x). Equilibrium
solutions are solutions x(t) ≡ x0 with f(x0) = 0. Finding equilibria is one of the
first steps that we undertake in computing phase portraits. Stable equilibria can
be located as the limits of trajectories, but we desire methods that will directly
locate all the equilibria. Iterative root-finding algorithms are used for this purpose.
Newton’s method is the most frequently used root-finding algorithm, and one of
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the simplest. We describe here how it works. Newton’s method uses the Jacobian
of f, defined as the matrix Df whose (i, j) entry is

Dfi,j =
(

∂fi

∂xj

)
. [5.6]

If u is a vector at which f(u) is pretty small, the linear approximation of f near
u is f(u) + Df(x − u) with Df evaluated at u. Assuming that Df has a matrix
inverse, we solve the system of equations f(u) + Df(x − u) = 0 to obtain x =
u − (Df)−1f(u). Newton’s method uses this value of x as the next guess for a
solution of f(x) = 0. It iterates this procedure by defining the discrete map N(u) =
u − (Df)−1f(u). Beginning with an initial vector u0, one defines u1, u2, . . . by
u1 = N(u0), u2 = N(u1), and generally uj+1 = N(uj). If f(x0) = 0, Df(x0) has a
matrix inverse, and u0 is close enough to x0, then the iterates ui of the Newton
map converge to x0 very rapidly. The method doesn’t always work, either because
the Jacobian has no inverse or because u0 was not close enough to a root of
f. Newton’s method is fast enough that it can be tried repeatedly with many
randomly chosen initial vectors u0. As a cautionary note, it is always a good
idea to check your answer to a problem—even if the answer was produced by a
computer. The most direct way to check whether you have found an equilibrium
is to evaluate f(x). No computer method is guaranteed to find all of the equilibria
of all systems, so do not be surprised if a software package fails sometimes in this
task.

Exercise 5.4. Compute the equilibrium points of the repressilator and toggle switch
models of Chapter 4 with Newton’s method: write a script that takes an initial point
as input, iterates the Newton map N, and checks to see whether each iterate has
converged to a specified tolerance. If it has, then the script should return this value.
If convergence is not obtained after a chosen number of iterates, the script should
return an “error” message.

5.3.2 Linearization at Equilibria

Having located an equilibrium x0 for the vector field defined by ẋ = f(x), its
linearization at x0 is the system ẏ = Ay where A is the Jacobian matrix Df at x0:

(Aij) = ∂fi

∂xj

∣∣∣∣ x0. [5.7]

Here, y represents the displacement x − x0 from equilibrium. Computing the
matrix (Aij) of the linearization is an exercise in differentiation. On large systems,
this may take too long to carry out “by hand” and people are error-prone, so
automated methods are often used. The simplest method is to use the finite-
difference approximation

∂fi

∂xj

∣∣∣∣ x0 ≈ 1
h

(fi(x0 + hej) − fi(x0)) [5.8]
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where ej is the jth unit vector, in which all components are 0 except for a 1 as
the jth component. However, there is a subtlety in obtaining highly accurate
values of the Jacobian through suitable choices of the increment h. The issue
involves the balance between “round-off” and “truncation” errors. Truncation
error refers to the fact that the difference quotient on the right-hand side of [5.8]
is only an approximation to the derivative, with an error that is comparable
in magnitude to h. Round-off error occurs because computer arithmetic is not
exact. To limit memory requirements, computers normally round numbers to
a fixed number of leading binary “digits.” Call this number k. So, when we
compute products or more complex arithmetic expressions, there is usually a
round-off error that occurs after k significant digits. This is likely to happen when
we compute f(x0) and f(x0 + hej). The difference fi(x0 + hej) − fi(x0) subtracts
two numbers that are almost equal, each of which has only k significant digits.
When we perform the subtraction, leading significant digits cancel and the result
has fewer significant digits than either term. When we divide by h, the error is
amplified. If h is small enough, this amplified round-off error may be larger than
the truncation error. The best approximation achievable with finite-difference
approximation using [5.8] is typically half the number of digits of precision used
in the computer arithmetic. A better approximation can be obtained from a
centered finite difference

∂fi

∂xj

∣∣∣∣ x0 ≈ 1
h

(
fi

(
x0 + h

2
ej

)
− fi

(
x0 − h

2
ej

))
[5.9]

but this requires more function evaluations.

Example.
We illustrate the accuracy of finite-difference calculations with a simple example.
Consider the quadratic function f (x) = 1 + x + 3x2. The derivative of f is f ′(x) =
1 + 3x. Let us approximate f ′(1) with finite-difference approximations

g(h) = f (1 + h) − f (1)

h
[5.10]

and evaluate the residual r(h) = g(h) − f ′(1) = g(h) − 7. A bit of algebra gives the
exact value of the residual as r(h) = 3h. This is the truncation error in calculating
the derivative with the finite-difference formula. It suggests that the smaller
we take h, the more precise our approximation of the derivative. In practice,
that’s not what happens when we use a computer to evaluate the finite difference
formula [5.8]! Figure 5.4 shows a log-log plot of the absolute value of r(h) versus
h, calculated with Matlab by substituting h into the formula (1/h)(1 + (1 + h) +
3(1 + h)2 − 5) − 7. The figure shows that the best accuracy is obtained for values
of h that are approximately 10−8 and that the accuracy which is achieved is also
about 10−8. What is happening is that for smaller values of h, the round-off
error in calculating the numerator (f (1 + h) − f (1) of g has magnitude roughly
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Figure 5.4 A log-log plot of the residual (error) |r(h)| obtained in calculating the derivative of the

function f (x) = 1 + x + 3x2 with a finite-difference formula.

10−16.3 Dividing this round-off error by h, makes the error grow. If h = 10−k,
then the error has magnitude roughly 10k−16. When k > 8, the round-off error
becomes larger than the truncation error. Bottom line: If it is easy to use an
explicit formula for the derivative of a function f , do so.

Exercise 5.5. Compute the linearization of the equilibrium points of the toggle switch
model of Chapter 4 in two ways: with analytical formulas for the derivatives and with
finite differences. Do this twice, once for parameter values for which there is a single
equilibrium and once for parameter values for which there are three equilibria.

5.3.3 Solving Linear Systems of Differential Equations

We want to extend results from one-variable calculus to solve the linear system
ẏ = Ay. Recall that the solutions of the scalar equation ẏ = ay are y(t) = c exp(at).
The value of c is typically determined by an initial condition. If y0 = y(t0) is the
initial condition, then c = exp(−at0)y0. These formulas can be extended to work

3The smallest number larger than 1 that can be represented in “double-precision” floating-point arithmetic is
approximately 1 + 10−16.
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with matrices. If v is an eigenvector of A with real eigenvalue λ, recall that then
Av = λv. This implies that y(t) = c exp(λt)v is a solution of the linear system
ẏ = Ay for any value of c, as is verified by differentiating y(t) to obtain

ẏ = c exp(λt)λv = c exp(λt)Av = Ay(t). [5.11]

The system ẏ = Ay is linear because sums and scalar multiples of solutions are
also solutions. In formulas, if y(t) and w(t) are solutions and c is a scalar, then
y(t) + w(t) and cy(t) are also solutions. This, too, is verified by substitution into
the equation. Some matrices A have n distinct real eigenvalues λi. If vi are their
eigenvectors, then every vector y can be written in exactly one way as a sum
y = ∑

civi for suitable constants ci. (This says that the vi are a basis of Rn.) Using
the linearity of the differential equation, we find that y(t) = ∑

ci exp(tλi)vi is a
solution. In the case of n distinct real eigenvalues, all solutions can be written this
way. To solve the initial value problem with y0 = y(t0) specified, we solve y0 =∑

ci exp(t0λi)vi for the ci. This is a system of n linear equations in n unknowns
that has a unique solution since the eigenvectors vi are linearly independent.

The signs of the eigenvalues have a large impact on the qualitative properties of
the solutions to the linear system ẏ = Ay. In the directions of eigenvectors having
negative eigenvalues, the solutions tend toward the origin with increasing time,
while in the directions of eigenvectors having positive eigenvalues, the solutions
tend away from the origin. Let us examine the possibilities for n = 2:

• Two negative eigenvalues—stable node: The origin is an attractor. All solutions tend

toward it.

• One negative, one positive eigenvalue—saddle: Solutions tend toward the origin

along one eigenvector and away from it along the other.

• Two positive eigenvalues—unstable node: The origin is a repellor. All solutions tend

away from it.

Figure 5.5 shows plots of phase portraits of a stable node and a saddle. The phase
portrait of an unstable node looks exactly like the phase portrait of a stable node
except that the direction of motion is away from the origin. In each case, the
matrix A is diagonal and the equations for the coordinates x and y have the
form u̇ = λu. The eigenvalues for the stable node are −1 for x and −5 for y.
The function exp(−5t) decreases much more rapidly than exp(−t), so the ratio
y(t)/x(t) → 0 and trajectories approach the origin along the x-axis. The y-axis
is the exception since x(t) remains 0 along this line. For the saddle shown in
Figure 5.5b, the eigenvalues are 1 for x and −2 for y. The coordinate axes are
invariant under the flow. The trajectories on the y-axis approach the origin,
the ones on the x-axis tend away from the origin. All of the other trajectories
approach the x-axis as t → ∞ and the y-axis as t → −∞.
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(a) (b)

Figure 5.5 Phase portraits of two-dimensional linear vector fields with (a) a stable node and (b) a

saddle.

If the eigenvectors of a linear system are not orthogonal as in the previous
example, then the phase portraits shown above can be significantly distorted.
Figure 5.6 shows phase portraits of vector fields with the matrices

A =
[

−5 4

0 −1

]
, B =

[
1 −3

0 −2

]
. [5.12]

The matrix A has eigenvalues −1 and −5 with eigenvectors (1, 1) and (1, 0). Its
phase portrait is displayed in Figure 5.6a. All trajectories converge to the origin,
but for many the distance to the origin increases for some time while the trajectory
approaches the line of slope 1. As in the previous example, the trajectories flow
roughly parallel to the eigenvector of the “fast” eigenvalue −5 and then approach
the origin along the eigenvector of the “slow” eigenvalue −1. The matrix B has
eigenvalues 1 and −2 with the same eigenvectors (1, 0) and (1, 1) as A. Its phase
portrait is displayed in Figure 5.6b. The trajectories flow toward the x-axis while
moving away from the line of slope 1. Points on the line of slope 1 approach the
origin, while all other trajectories are unbounded as t → ∞.

These pictures illustrate the flow of linear two-dimensional vector fields with
two real, nonzero eigenvalues. However, many matrices have complex eigenval-
ues and we want to solve these systems as well. A fundamental example is the
matrix

A =
[

a −b

b a

]
. [5.13]

By direct substitution into the equation ẏ = Ay, we find that the functions

y(t) = exp(at)

(
cos(bt)

sin(bt)

)
, y(t) = exp(at)

(
− sin(bt)

cos(bt)

)
[5.14]
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Figure 5.6 Phase portraits of two-dimensional linear vector fields with (a) a stable node and (b) a

saddle with eigenvectors that are not orthogonal.

are solutions. The general solutions are linear combinations of these two:

y(t) = c1 exp(at)

(
cos(bt)

sin(bt)

)
+ c2 exp(at)

(
− sin(bt)

cos(bt)

)
. [5.15]

The behavior of the phase portraits depends upon the value of a. There are three
cases:

• a < 0—stable focus: The origin is an attractor. All solutions spiral toward it.

• a = 0—center: Solutions lie on circles, and points in the phase plane rotate around

the origin at uniform velocity.

• a > 0—unstable focus: The origin is a repellor. All solutions spiral away from it.

Figure 5.7 displays phase portraits for (a, b) = (−0.1, 1) and for (a, b) = (0, 1). The
general case of a 2 × 2 matrix with complex eigenvalues can be reduced to this one
by linear changes of coordinates. When the eigenvalues are purely imaginary,
the trajectories are ellipses that need not be circles.

The remaining cases of 2 × 2 matrices that we have not yet discussed are those
with a zero eigenvalue and those with a single eigenvalue of multiplicity 2. Along
the eigenvector of a zero eigenvalue, there is an entire line of equilibrium points.
If the second eigenvalue is negative, all trajectories approach the line of equilibria
along a trajectory that is parallel to the second eigenvector.

Cases with a single eigenvalue are somewhat more complicated. Consider the
matrix

A =
[

λ a

0 λ

]
. [5.16]
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Figure 5.7 Phase portraits of two-dimensional linear vector fields with (a) a stable focus and (b) a

center.

When a 
= 0, this matrix has only one eigenvalue, namely, λ, and a single eigen-
vector along the x-axis. The general solution of the equation ẏ = Ay is

y(t) = (c1 + c2at) exp(λt)

(
1

0

)
+ c2 exp(λt)

(
0

1

)
. [5.17]

When a 
= 0 and λ < 0, these curves all tend toward the origin tangent to the x-
axis. This is typical of what happens for systems with a single negative eigenvalue
that has only one eigenvector. Contrast this with the behavior of the system
when a = 0 and λ < 0 . Then every vector is an eigenvector and all trajectories
flow radially toward the origin. Similarly, when λ > 0, all of the solutions flow
from the origin tangent to the x-axis (a 
= 0) or radially (a = 0). When λ = 0 and
a 
= 0 trajectories are lines parallel to the x-axis, while if λ = 0 and a = 0, A = 0
and all points are equilibria.

Exercise 5.6. Draw phase portraits for the following matrices that illustrate the three
cases discussed in the previous paragraph:

A =
[

0 0

1 −1

]
, B =

[
−1 5

0 −1

]
, B =

[
−1 0

0 −1

]
. [5.18]

This completes our discussion of linear vector fields in dimension two. We
comment briefly on the solution of linear systems in dimensions larger than
two. The first step is to find the eigenvalues of the matrix A, both real and
complex. Theoretically, the eigenvalues are roots of the characteristic polynomial
of A, a polynomial of degree n. Complex eigenvalues therefore come in complex
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conjugate pairs a ± bi. Each pair of complex eigenvalues has a two-dimensional
plane and a basis for this plane in which the origin is a focus (a 
= 0) or a center
(a = 0). When there are no multiple roots of the characteristic polynomial, Rn

has a basis consisting of eigenvectors, including the basis vectors in the planes
of complex eigenvalues. When there are multiple eigenvalues, a more refined
analysis that determines the Jordan normal form of the matrix is required. In all
cases, the solutions can be written explicitly as elementary functions and the
solution of the initial value problem can be found with linear algebra.

5.3.4 Invariant Manifolds

We continue our discussion of the general linear system ẏ = Ay. A linear subspace
V ⊂ Rn is a set that is closed under scalar multiplication and vector addition: if
v, w ∈ V and a, b ∈ R, then av + bw ∈ V . The subspace V is an invariant subspace
of A if v ∈ V implies Av ∈ V . In addition, trajectories with initial point in an
invariant subspace V remain entirely within V . One dimensional invariant sub-
spaces are just lines through the origin in the direction of eigenvectors. Finding
the invariant subspaces of A is a problem in linear algebra, one whose solution
we do not describe here. Nonetheless, we will make use of particular invariant
subspaces that have dynamical meaning. The stable manifold Es of A is the largest
invariant subspace so that all the eigenvalues of A restricted to Es have negative
real parts; i.e, the eigenvalues are a < 0 or a + bi with a < 0. Similarly the unsta-
ble manifold Eu is the largest invariant subspace so that all the eigenvalues of A
restricted to Eu have positive real parts. The center manifold Ec of A is the largest
invariant subspace so that all the eigenvalues of A restricted to Ec have zero real
parts. It is a theorem of linear algebra that Rn is the direct sum of Es, Eu, and Ec;
that is, every vector v ∈ Rn can be written in a unique way as v = vs + vu + vc

with vs ∈ Ws,vu ∈ Wu and vc ∈ Wc. If Rn has a basis of eigenvectors of A, then
each lies in the stable, unstable, or center manifold depending on whether its
real part is negative, positive, or zero. Each of these manifolds then has a basis
consisting of eigenvectors of A.

The dynamical significance of the stable manifold Es is that the trajectories in
Es are the ones that approach the origin as t → ∞. Moreover, the convergence
happens at an exponential rate: if there are no eigenvalues with real parts in the
interval [−a, 0), a > 0, then there is a constant c so that

|y(t)| ≤ c exp(−at)|y(0)|

for all trajectories in Es and t > 0. The trajectories in Eu approach the origin
in negative time as t → −∞. Trajectories in Ec do not tend to the origin in
either forward or backward time. Thus the “splitting” of Rn into stable, unstable,
and center subspaces contains the stability information about trajectories. In
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particular, the origin is an asymptotically stable equilibrium of a linear system if
and only if all of its eigenvalues have negative real parts.

For a nonlinear system with an equilibrium x0, we would like to use the lin-
earization at x0 to deduce stability information about the nonlinear system in a
region around x0. This can be done successfully except in the case of the center
manifold directions. An equilibrium that has no center directions is called hyper-
bolic. For hyperbolic equilibria, the stable manifold theorem asserts the existence
of nonlinear counterparts of the stable and unstable manifolds of the linearized
system. Specifically, it proves that there are maps hs : Es → Rn and hu : Eu → Rn

whose images are invariant under the flow of the nonlinear system and tangent
to Es and Eu. The nonlinear stable manifold of x0 consists of points that flow
to x0 as t → ∞, while the nonlinear unstable manifold of x0 consists of points
that flow to x0 as t → −∞. In particular, equilibria whose eigenvalues all have
negative real parts are asymptotically stable. Equilibria whose eigenvalues all
have positive real parts are sources, with all nearby trajectories tending to the
equilibria as t → −∞.

In two-dimensional systems, an equilibrium with one positive and one nega-
tive equilibrium is a saddle with one-dimensional stable and unstable manifolds.
Each of these manifolds is formed by a pair of trajectories, called separatrices. Tra-
jectories near the stable manifold, but not on it, approach the equilibrium and
then depart near one of the two separatrices comprising the unstable manifold.
The separatrices play a central role in dividing the phase plane into regions with
similar asymptotic behavior as t → ±∞.

The linearization of an equilibrium does not determine stability of the non-
linear system in center directions. Consider the one-dimensional system ẋ = x2.
The origin is an equilibrium point, and its eigenvalue is 0. Except at 0, ẋ > 0, so
trajectories with negative initial conditions approach 0 as t → ∞ while trajecto-
ries with positive initial conditions tend to ∞. Thus, the origin is an equilibrium
that is stable from one side of its central direction and unstable from the other.

5.3.5 Periodic Orbits

The technique of linearization can be applied to periodic orbits as well as equi-
libria. Recall that a periodic orbit of period T is a trajectory with x(t + T) = x(t)
for all times t . The flow map φT is defined by following trajectories for T time
units from each point: φT (y) is x(T) where x(t) is the trajectory with initial con-
dition x(0) = y. A periodic orbit with period T consists of fixed points of the
flow map φT . To study the periodic orbit containing the point y, we compute
the Jacobian derivative DφT of φT at y. The map φT is normally computed by
numerical integrating trajectories, so we expect to use numerical integration to
compute DφT as well. The eigenvalues of DφT give stability information about
the periodic orbit. There is always an eigenvalue 1 with eigenvector in the flow
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direction. This direction is also tangent to the periodic orbit. If there are n − 1
eigenvalues with magnitude smaller than one, then the periodic orbit is an at-
tractor with nearby trajectories tending toward it. If there is an eigenvalue with
magnitude larger than one, then the periodic orbit is unstable and some nearby
trajectories tend away from it. There is a version of the stable manifold theorem
for periodic orbits, but in two dimensional systems the situation is quite simple
since there is only one direction transverse to the periodic orbit. Unless 1 is a
double eigenvalue of DφT , the periodic orbit is either an attractor (eigenvalue
with magnitude smaller than one) or repellor (eigenvalue with magnitude larger
than one).

5.4 Phase Planes

We turn now to two-dimensional vector fields with phase space the plane. Chap-
ter 4 introduced the example

u̇ = −u + αu

1 + vβ

v̇ = −v + αv

1 + uγ

[5.19]

and discussed some of its properties. In particular, we found parameters for the
model for which there were two stable nodes and one saddle. Our goal here is
to learn how to draw the phase portraits of systems like this in a systematic way,
relying upon numerical methods for three basic tasks: finding equilibrium points,
computing individual trajectories, and computing eigenvalues of matrices. While
individual trajectories can be approximated with numerical methods, we want
more than individual trajectories. We want enough information that we can
predict qualitatively what all the trajectories look like, after computing only a
few of them. This task is easy for one-dimensional systems: nonequilibrium
trajectories are increasing or decreasing functions of time that tend to equilibria
or ±∞. When the phase space is two dimensional, we can still give a pretty
complete “recipe” for determining phase portraits with rather mild assumptions.

The key to drawing phase portraits of two-dimensional systems is to determine
where trajectories go as t → ±∞. This idea is embodied in the concept of the limit
sets of a trajectory. The (forward or ω) limit set of a trajectory is the set of points
that the trajectory repeatedly gets closer and closer to as t → ∞. The (backward
or α) limit set of a trajectory is the set of points that the trajectory repeatedly
gets closer and closer to as t → −∞. Periodic orbits and equilibrium points are
their own forward and backward limit sets. One objective in determining a phase
portrait is to find the limit sets, and for each limit set to find the points with that
limit set. The plane is divided into subsets, so that all of the trajectories in each
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subset have the same forward limit set and the same backward limit set. Once
we know these subsets, when we select an initial point for a trajectory, we know
where the trajectory is going and where it came from. An especially important
type of system is one in which all trajectories have a single equilibrium point x0 as
forward limit. In this case, x0 is said to be globally attracting. The origin is globally
attracting for a linear system in which all of the eigenvalues have negative real
part. Figures 5.5a and 5.7a show examples.

Limit sets of flows in the plane are highly restricted because trajectories do not
cross each other. The key result is the Poincaré-Bendixson theorem which states
that a limit set of a bounded trajectory is either a periodic orbit or contains an
equilibrium point. Figure 5.8 gives an example of a limit set in a two-dimensional
vector field that is more complicated than a single equilibrium point or a peri-
odic orbit. The Poincaré-Bendixson theorem leads to a systematic procedure for
finding the phase portrait of the vector field

ẋ = f (x, y)

ẏ = g(x, y)

[5.20]

in the plane. There are three steps.

1. Locate the equilibrium points and determine their stability by linearization. A
graphical procedure for finding the equilibria is to draw the nullclines. The x
nullcline is the curve f (x, y) = 0 on which the vector field points vertically up
or down; the y nullcline is the curve g(x, y) = 0 on which the vector field points
horizontally. The equilibrium points are the intersections of the nullclines. The
matrix of partial derivatives

A =

⎡
⎢⎢⎢⎢⎣

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

⎤
⎥⎥⎥⎥⎦

evaluated at an equilibrium point is its Jacobian. When the eigenvalues of A
are neither zero nor pure imaginary, the equilibrium is hyperbolic. As we saw
in Section 5.3.4 the eigenvalues determine the qualitative features of trajectories
near the equilibrium.

2. Compute the stable and unstable manifolds of any saddle equilibria. To compute
the unstable manifold, we numerically compute two trajectories with initial con-
ditions that are slightly displaced from the equilibrium along the direction of the
eigenvector with positive eigenvalue. For the second trajectory, we start on the
opposite side of the equilibrium point from the first initial point. To compute
the stable manifold, we compute two trajectories backward in time, starting with
initial conditions slightly displaced from the equilibrium along the direction of
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Figure 5.8 The heavy triangle is the forward limit set of the spiraling trajectory. There are three saddles

at the vertices of the triangle. Each side of the triangle is a heteroclinic trajectory that lies in the stable

manifold of one vertex and the unstable manifold of another.

the eigenvector with negative eigenvalue. The forward limit set of each of the
two trajectories in the unstable manifold will be a stable equilibrium, a stable
limit cycle, a saddle point (perhaps the same one!) or the trajectory will be un-
bounded. Similarly, the backward limit set of each of the two trajectories in the
stable manifold will be an unstable equilibrium, an unstable limit cycle, a saddle
or the trajectory will be unbounded in backward time. Knowing this, we make
sure to integrate for long enough that the limit behavior of the trajectories is
apparent.

3. Search for periodic orbits. Every periodic orbit must contain an equilibrium
point in its interior. Continuing to assume that no eigenvalues at equilibria are
zero or pure imaginary, there must be an interior equilibrium point that is not a
saddle.4 This prompts us to look for periodic orbits by numerically integrating

4This statement is proved by studying the index of a vector field along closed curves. The index of the vector field
on a curve without equilibrium points measures the number of times that the vector field rotates around the origin
while traversing the curve.
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trajectories that start near attracting or repelling equilibrium points. We compute
trajectories forward in time from the neighborhood of an unstable equilibrium
and backward from the neighborhood of a stable equilibrium. If none of these
trajectories converges to a periodic orbit, then there are none. If we do find
periodic orbits, then we want to continue searching for more. There may be
two or more periodic orbits that are nested inside each other, with the inner and
outer ones forming a ring. The stable and unstable periodic orbits in such a nest
will alternate. Between two adjacent periodic orbits, the trajectories will flow
from the unstable periodic orbit to the stable periodic orbit. Once we have found
one periodic orbit γ in a nest, we can search for the next one by numerically
integrating a trajectory with initial conditions that start on opposite side of γ ,
but near it. If γ is unstable, we compute trajectories forward in time; if γ is stable,
we compute trajectories backward in time. Each time we find a new periodic orbit
as the limit of a trajectory, we search for the next by integrating a trajectory that
starts on the opposite side. When we find a trajectory that does approach a
periodic orbit, we have found all the orbits in the nest. This procedure works so
long as there are a finite number of periodic orbits.5

That’s it. Once we have found the equilibria, the periodic orbits and the stable
and unstable manifolds of the saddles, we can see what the the forward and
backward limits of all the other trajectories must be. These objects divide the
phase plane into different regions, and the trajectories in each region will have
the same forward and backward limit sets. Since trajectories cannot cross one
another, there is no ambiguity about what are the limit sets for each region. To
make this discussion concrete, we now analyze the dynamics of a model system.

Exercise 5.7. Draw phase portraits of the toggle switch model of Chapter 4. There are
no periodic orbits, so the main task beyond those of previous exercises is to compute
the stable and unstable manifolds of the saddle point, when there is a saddle point.

5.5 An Example: The Morris-Lecar Model

Recall from Chapter 5 that the Morris-Lecar equations are a model for the mem-
brane potential of a barnacle muscle, defined by the following equations:

C
dv
dt

= i − gCam∞(v)(v − vCa) − gKw(v − vK) − gL(v − vL)

τw(v)
dw
dt

= φ(w∞(v) − w)

[5.21]

5Some systems have continuous families of periodic orbits, something that is impossible to verify rigorously by
numerical integration.

This content downloaded from 
�������������96.248.68.89 on Sun, 18 Jul 2021 13:26:35 UTC�������������� 

All use subject to https://about.jstor.org/terms



January 18, 2006 16:07 m26-main Sheet number 177 Page number 155

Dynamical Systems 155

m∞(v) = 0.5
(

1 + tanh
(

v − v1

v2

))

w∞(v) = 0.5
(

1 + tanh
(

v − v3

v4

))

τw(v) = 1
cosh((v − v3)/2v4)

The variables are the membrane potential v and a gating variable w that represents
activation of a potassium current. Here we have made the assumption that the
calcium activation variable m is always at its voltage-dependent steady state. This
makes m an explicit function of voltage rather than a phase space variable and
reduces the dimension of the system from three to two.

The Morris-Lecar system displays a variety of dynamical phenomena (Rinzel
and Ermentrout 1998). We examine two sets of parameter values, chosen for
illustrative purposes rather than their biological significance. The two sets of pa-
rameters give qualitatively different phase portraits and are listed in Table 5.1.6

We follow the procedure described in the previous section for constructing the
phase portraits. Figure 5.9 shows the nullclines for these two sets of parameter
values. For parameter set 1, the nullclines have a single point of intersection
and the Jacobian at this point has complex eigenvalues whose values are approx-
imately −0.009 ± 0.080i. Thus, this equilibrium is a stable focus. For parameter
set 2, there are three intersections of the nullclines. From lower left to upper
right, the eigenvalues at these equilibria are approximately (−0.025 ± 0.114i),
(−0.046, 0.274), and (0.076 ± 0.199i). The equilibria are a stable focus, a saddle,
and an unstable focus, respectively. The computation of the equilibria and their
stability completes the first step in determining their phase portraits.

Figure 5.10 is a phase portrait for the set of parameters with a single equilib-
rium point. Since there are no saddle points, we proceed to look for periodic
trajectories. We begin by computing a backward trajectory with initial point
near the equilibrium. This is seen to converge to a periodic orbit. We next select
an initial point on the outside of this unstable periodic orbit and compute its
trajectory forward. This converges to another (stable) periodic orbit. Trajectories
outside the stable limit cycle tend to ∞, as seen by computing backward from an
initial point just outside the second periodic orbit. Five trajectories are plotted
in Figure 5.10. The triangle is located at the stable equilibrium point. The two
bold trajectories are the periodic orbits: the small periodic orbit is unstable and
the large periodic is stable. The figure also shows two trajectories, one that flows
from the outside of the unstable periodic orbit to the stable periodic orbit and
one that flows from the unstable periodic orbit to the equilibrium point.

6The two parameters that differ between the two sets are gCa and φ. Experimentally, gCa can be reduced with
substances that block calcium channels, while φ changes with temperature.
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Parameter Set 1 Set 2

gCa 4.4 5.5

gK 8 8

gL 2 2

vCa 120 120

vK −84 −84

vL −60 −60

C 20 20

φ 0.04 0.22

i 90 90

v1 −1.2 −1.2

v2 18 18

v3 2 2

v4 30 30

Table 5.1 Parameter values for the Morris-Lecar system.

Figure 5.11 overlays graphs of v(t) and w(t) along the large periodic orbit. The
graph of v shows v rising from a membrane potential of approximately −50 mV
to a threshold near −20 mV and then abruptly increasing to a membrane poten-
tial of approximately 30 mV. The membrane then repolarizes with its potential
returning to its minimum of about −50 mV. The gating variable w oscillates in
response to these changes in membrane potential. As the membrane potential
v rises and falls, w evolves toward its “steady-state” value w∞(v). However, the
rate at which it does this is slow enough that it seldom reaches its instantaneous
steady state value before v changes substantially. Thus, the changes in w “lag”
behind the changes in v, with w reaching its minimum and maximum values
after v has reached its minimum and maximum values.

We can use the phase portrait Figure 5.10 to determine the limit set of all
other trajectories for parameter set 1. Initial points that lie inside the unstable
periodic orbit tend to the equilibrium point as time increases, spiraling as they
do so because the equilibrium is a focus. As time decreases, these initial points
tend to the unstable periodic orbit. Initial points between the two periodic orbits
converge to the stable periodic orbit as time increases and the unstable periodic
orbit as time decreases. Initial points outside the stable periodic orbit tend to the
stable periodic orbit as time increases and tend to ∞ as time decreases.

Figure 5.12 shows the phase portrait of the Morris-Lecar model for the param-
eters with three equilibrium points. The two parameters gCa and φ have changed
their values from the previous set. We have determined that there are three equi-
librium points, each with different stability. The next step in computing the
phase portrait is to compute the stable and unstable manifolds of the saddle.
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Figure 5.9 Nullclines for the Morris-Lecar model for parameter values given in Table 5.1.
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Figure 5.10 Phase portrait of the Morris-Lecar model. There are two periodic or-

bits (bold curves) and a stable equilibrium (triangle). One trajectory flows from

the small unstable periodic orbit to the large stable periodic orbit; the remain-

ing trajectory flows from the small unstable periodic orbit to the equilibrium

point. Parameter values are given by Set 1 in Table 5.1.
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Figure 5.11 Time series of (v, w) for the large periodic orbit of the Morris-Lecar

model shown in Figure 5.10. The graph of v is drawn bold.

This content downloaded from 
�������������96.248.68.89 on Sun, 18 Jul 2021 13:26:35 UTC�������������� 

All use subject to https://about.jstor.org/terms



January 18, 2006 16:07 m26-main Sheet number 181 Page number 159

Dynamical Systems 159

−40 −30 −20 −10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

v

w

Figure 5.12 Phase portrait of the Morris-Lecar model. There is one periodic

orbits (bold curve) and a three equilibrium points, one stable (triangle), one

saddle (plus) and one source (square). The stable and unstable manifolds of

the saddle are shown. Parameter values are given by Set 2 in Table 5.1

This is done by choosing four initial conditions near the saddle along the eigen-
vectors of the linearization. We compute two trajectories backward from the
initial conditions that lie on opposite sides of the saddle in the direction of the
stable eigenvector, and we compute two trajectories forward from the initial con-
ditions that lie on opposite sides of the saddle in the direction of the unstable
eigenvector. We observe that one of the trajectories in the unstable manifold
tends to the stable equilibrium but that the other accumulates at a stable pe-
riodic orbit, shown in bold. Both branches of the stable manifold tend to the
unstable equilibrium point as t → −∞. The final step in determining the phase
portrait is to look for additional periodic orbits. Periodic orbits cannot occur
inside the periodic orbit we have found because every closed curve inside the
periodic orbit either (1) does not surround an equilibrium point or (2) intersects
the stable or unstable manifold of the saddle. Thus, the only possible location
for another periodic orbit is outside the one we have found. However, backward
trajectories with initial points outside this periodic orbit tend to ∞, as we verify
by integration. We conclude that there is a single periodic orbit.

Exercise 5.8. Estimate the ratio by which the distance to the unstable equilibrium
point increases each time a trajectory spirals once around the equilibrium point in
Figure 5.10.

This content downloaded from 
�������������96.248.68.89 on Sun, 18 Jul 2021 13:26:35 UTC�������������� 

All use subject to https://about.jstor.org/terms



January 18, 2006 16:07 m26-main Sheet number 182 Page number 160

160 Chapter 5

The two phase portraits shown in Figures 5.10 and 5.12 have different numbers
of equilibrium points and periodic orbits. If we vary the parameters continuously
from the first set in the Morris-Lecar example to the second set, i.e., gCa from 4.4
to 5.5 and φ from 0.04 to 0.22, then we must encounter bifurcations at which the
phase portraits make qualitative changes. Comparing the two phase portraits, we
must encounter parameters at which the number of equilibrium points increases
and parameters at which the unstable periodic orbit of the first phase portrait
disappears. The next section discusses rudiments of bifurcation theory, a subject
that systematically studies qualitative changes in phase portraits.

Exercise 5.9. Compute another phase portrait for the Morris-Lecar model with pa-
rameter values v1 = −1.2, v2 = 18, v3 = 2, v4 = 30, gCa = 5.5, gK = 8, gL = 2, vK =
−84, vL = −60, vCa = 120, C = 20, φ = 0.22, and i = 91. Only the parameter i has
changed from those used in Figure 5.12. In what ways does the phase portrait differ
from those displayed in Figures 5.10 and 5.12?

5.6 Bifurcations

The previous two sections discussed how to compute the phase portraits of two-
dimensional vector fields. We implicitly emphasized the properties of structurally
stable vector fields. A vector field is structurally stable if all small enough pertur-
bations of the vector field have qualitatively similar phase portraits. For planar
vector fields, structurally stable vector fields are characterized by the following
properties:

1. Equilibrium points are hyperbolic, i.e., their linearizations have no zero or pure

imaginary eigenvalues.

2. Periodic orbits are hyperbolic, i.e., their linearizations each have an eigenvalue

different from 1.

3. There are no saddle connections: trajectories that lie in both the stable manifold

of a saddle and the unstable manifold of a saddle (possibly the same saddle).

When a system depends upon parameters, like the the Morris-Lecar model, we
expect to find regions in the parameter space with structurally stable vector fields
separated by boundaries yielding vector fields that are not structurally stable. The
two different parameter sets we examined in the Morris-Lecar model are each
structurally stable, but they are qualitatively dissimilar, with different numbers
of equilibria and periodic orbits. Here we investigate how we get from one phase
portrait to another as we vary parameters in a model system. This is the subject
of bifurcation theory.
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Bifurcation theory looks at the typical behavior of families of vector fields that
depend upon parameters. We designate a certain number of parameters as ac-
tive parameters and examine how the phase portraits of the system change as the
active parameters are varied. For example, there are thirteen parameters in the
Morris-Lecar system, but we might designate gCa and φ as active parameters and
look just at variations of these. We think in terms of determining phase portraits
for the system across ranges of values for the active parameters. In a laboratory
experiment, imagine running a series of experiments with different values of the
active parameters. For each set of parameters, we do one or more experiments in
which we allow the system time to reach its limit state. We may use initial con-
ditions from the final state of a previous experiment or reset them. Numerically,
we compute trajectories for different values of the active parameters as well as
different initial points. In applying root finding algorithms to locate equilibrium
points, we can try to track the position of the equilibria as continuous functions
of the parameters.

Experience with many experiments and computations of this type suggests that
there are modes of bifurcation that occur repeatedly in different systems. These
modes have been mathematically analyzed and classified by ways in which vector
fields may fail to be structurally stable. For two dimensional vector fields with
one active parameter, the list of typical bifurcations is rather short, with just five
types:

1. Saddle-node bifurcation: The Jacobian at an equilibrium point has a zero eigenvalue.

2. Hopf bifurcation: The Jacobian at an equilibrium point has a pair of pure imaginary

eigenvalues.

3. Saddle-node of limit cycle bifurcation: A flow map Jacobian at a periodic orbit has

double eigenvalue 1.

4. Homoclinic bifurcation: There is a trajectory in both the stable and unstable

manifold of a single saddle.

5. Heteroclinic bifurcation: There is a trajectory in both the stable manifold of one

saddle and the unstable manifold of another saddle.

The changes in phase portraits that occur with each type of bifurcation have
also been characterized. We use examples to illustrate these patterns of bifurca-
tion, but do not fully discuss their generality. We begin with the saddle-node
bifurcation. The family of two-dimensional vector fields defined by

ẋ = µ + x2

ẏ = −y
[5.22]

has a saddle-node bifurcation when µ = 0. We are interested in how the phase
portraits of this system change as µ varies. The system is separable: the equation
for ẋ is independent of y and the equation for ẏ is independent of x. Moreover,
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the behavior of the y variable is always the same, approaching 0 as t → ∞. Thus
we restrict our attention to x and its dynamical behavior. The x-axis is invariant:
trajectories with initial points on the x axis remain on the axis. There are equi-
librium points along the curve µ = −x2. When µ < −x2, ẋ < 0 and x decreases,
and when µ > −x2, ẋ > 0 and x increases. The equilibrium points and trajectory
directions are shown in Figure 5.13. You should think of this figure as a “stack”
of phase lines for the x-axis, one for each value of µ. When µ < 0, there are
two equilibrium points at x = ±√−µ. The negative equilibrium is stable and the
positive equilibrium is unstable. When µ > 0, there are no equilibrium points,
x → ∞ as t → ∞ and x → −∞ as t → −∞. When µ = 0, there is a single equi-
librium point at (x, y) = (0, 0). It is the forward limit set of trajectories that start
with x < 0 and the backward limit set of trajectories that start with x > 0 and
y = 0. At a general saddle-node bifurcation, a pair of equilibrium points coalesce
and disappear, producing a qualitative change in the phase portrait. In order
for saddle-node bifurcation to happen, there must be a zero eigenvalue at the
bifurcating equilibrium point.7

Let us examine saddle-node bifurcation in the Morris-Lecar model with ac-
tive parameter gCa. The equations that locate the saddle-node bifurcation are
v̇ = 0, ẇ = 0, det(A) = 0 where A is the Jacobian of the vector field at (v, w). The
dependence of these equations on v is complicated and messy, but the depen-
dence on w and gCa is linear. We can exploit this observation to solve v̇ = 0, ẇ = 0
for w and gCa, obtaining

w(v) = w∞(v) = 0.5
(

1 + tanh
(

v − v3

v4

))

gCa(v) = i − gKw(v − vK) − gL(v − vL)

m∞(v)(v − vCa)

[5.23]

at an equilibrium point. Note that we allow ourselves to vary the parameter
gCa to find an equilibrium at which v has a value that we specify. We substitute
these values into det(A). With the help of the computer algebra system Maple,
we compute the value of det(A) as a function of v, using these substitutions
for w and gCa. Figure 5.14 plots these values. It is evident that there are
two values of v for which det(A) = 0. The approximate values of gCa at these
saddle-node points are 5.32 and 5.64. Figure 5.15 shows the nullclines for these
two parameter values. This figure illustrates that the saddle-node bifurcations of a

7The implicit function theorem implies that an equilibrium with no zero eigenvalues varies smoothly with respect
to parameters. The determinant of a matrix is the product of the eigenvalues, so a defining equation for a saddle-node
bifurcation is that the determinant of the Jacobian vanishes. Notice that the curve of equilibria in (x, µ) space is a
smooth parabola, defined by µ + x2 = 0. However, at the bifurcation, we cannot solve for the equilibrium point as
a function of the parameters. Numerical continuation methods designed to track the curve of equilibria follow the
curve around its “turning point” rather than incrementing the parameter and searching for equilibrium points at
each fixed parameter value.
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Figure 5.13 The dynamics of system [5.22] along the x-axis for varying µ. The

equilibrium points are the parabola, with the saddle-node point at the ori-

gin. The trajectories are horizontal, with their directions shown by the arrows.

Above the equilibrium curve trajectories flow right, while below the equilib-

rium curve trajectories flow left.
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Figure 5.14 The values of w and gCa have been determined when there is an

equilibrium point at a specified value of v. The determinant of the Jacobian at

the equilibrium is plotted as a function of v. Saddle-node bifurcations occur

when this function vanishes.
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Figure 5.15 Nullclines for the Morris-Lecar system for saddle-node parameter values.
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two-dimensional vector field occur when nullclines have a point of tangency. As
the parameter gCa decreases from 5.32, the nullclines of v and w separate near the
upper intersection where they are tangent. Simliarly, when gCa increases from
5.64, the nullclines of v and w separate near the lower, tangential intersection.
When gCa is between the bifurcation values, the nullclines have three points of
intersection.

Exercise 5.10. Compute phase portraits of the Morris-Lecar system for the saddle-
node parameter values. Pay particular attention to the region around the saddle-node
points.

Hopf bifurcation occurs when an equilibrium of a vector field depending upon
a single active parameter has a pair of eigenvalues that cross the imaginary axis
as the parameter changes. An example of a vector field which undergoes Hopf
bifurcation is

ẋ = (µ − (x2 + y2))x − y

ẏ = (µ − (x2 + y2))y + x.

[5.24]

This system has an equilibrium point at the origin for all µ, and its Jacobian is[
µ −1

1 µ

]
. [5.25]

When µ = 0, this system has a pair of purely imaginary eigenvalues. To analyze
the dynamics of the system, we investigate how the function ρ(x, y) = x2 + y2

varies along trajectories. Differentiating with the chain rule, we obtain

ρ̇ = 2(xẋ + yẏ) = 2(µ − (x2 + y2))(x2 + y2) = 2ρ(µ − ρ). [5.26]

When µ < 0, ρ̇ is negative everywhere but the origin and all trajectories approach
the origin. When µ > 0, the circle ρ = µ is a stable periodic orbit that is the
forward limit set of all trajectories except the equilibrium at the origin. The
family of periodic orbits emerges from the origin as µ increases from 0. In general,
the emergence of a family of periodic orbits, with amplitude

√
x2 + y2 growing

like
√

µ − µc, is characteristic of Hopf bifurcation occurring at µc. This Hopf
bifurcation is supercritical: the periodic orbits emerging from the equilibrium
point are stable (Figure 5.16). The family

ẋ = (µ + (x2 + y2))x − y

ẏ = (µ + (x2 + y2))y + x
[5.27]

has a subcritical Hopf bifurcation (Figure 5.17). The periodic orbits are circles
−µ = x2 + y2 which exist for µ < 0, and they are unstable. Linearization does not
determine whether a Hopf bifurcation is subcritical or supercritical. A definitive
quantity can be expressed in terms of the degree-3 Taylor series expansion of

This content downloaded from 
�������������96.248.68.89 on Sun, 18 Jul 2021 13:26:35 UTC�������������� 

All use subject to https://about.jstor.org/terms



January 18, 2006 16:07 m26-main Sheet number 188 Page number 166

166 Chapter 5

y

0.1 0.2 0.3 0.4 0.5 0.6 0.7

x

−0.3 −0.2 −0.1 0

0.4

0.3

0.2

0.1

0

−0.1

−0.2

0.5

(a)

y

0.2 0.4 0.6 0.8

x

−0.6 −0.4 −0.2 0

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

0.6

(b)

Figure 5.16 Phase portraits of the supercritical Hopf bifurcation for (a) µ = −0.1 and (b) µ = 0.2.
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Figure 5.17 Phase portraits of the subcritical Hopf bifurcation for (a) µ = −0.2 and (b) µ = 0.1.
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Figure 5.18 Phase portrait of the Morris-Lecar model. There is a single periodic

orbit (bold curve) and an unstable equilibrium (square). Trajectories inside the

periodic orbit flow from the equilibrium to the periodic orbit. Parameter values

are v1 = −1.2, v2 = 18, v3 = 2, v4 = 30, gCa = 4.4, gK = 8, gL = 2, vK = −84,

vL = −60, vCa = 120, C = 20, φ = 0.02 and i = 90.

the vector field at the equilibrium point, but the simplest way to assess whether
a Hopf bifurcation is subcritical or supercritical is to compute a few trajectories
numerically.

In the Morris-Lecar system, we investigate Hopf bifurcation with active param-
eter φ when gCa = 4.4. For these parameter values, there is a single equilibrium
point near (v, w) = (−26.6, 0.129). As φ varies, the equilibrium does not move,
but its eigenvalues change. A Hopf bifurcation occurs when φ is approximately
0.0231. For larger values of φ the eigenvalues have negative real part and the
equilibrium is a stable focus. For smaller values of φ the eigenvalues have pos-
itive real part and the equilibrium is an unstable focus. As φ decreases from its
value 0.04 in Figure 5.10, the smaller periodic orbit shrinks. At the Hopf bifurca-
tion value of φ, this unstable periodic orbit collapses onto the equilibrium point.
Thus, this is a subcritical Hopf bifurcation in which a family of unstable periodic
orbits surrounds a stable equilibrium point, shrinking as the equilibrium becomes
unstable. Figure 5.18 shows the phase portrait of the system for φ = 0.02.

Exercise 5.11. Investigate the periodic orbits of the Morris-Lecar model in the vicinity
of the bifurcating equilibrium. Plot how their amplitude (diameter) varies with φ.
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Saddle node of limit cycle and homoclinic bifurcations involve changes in the
number of periodic orbits. These bifurcations are global in that we must integrate
trajectories in order to locate the bifurcations, as contrasted with the local saddle-
node and Hopf bifurcations that can be determined from locating equilibrium
points and their linearizations. At saddle node of limit cycle bifurcations, a pair
of periodic orbits coalesce and disappear. In homoclinic bifurcations, there is an
equilibrium point x0 with a trajectory x(t) that lies in both its stable and unstable
manifolds. Thus, x(t) → x0 both as t → ∞ and as t → −∞, In a system under-
going homoclinic bifurcation, there is a family of periodic orbits that terminates
at the homoclinic orbit. As it does so, its period becomes unbounded.8

We use the Morris-Lecar system to illustrate saddle-node of limit cycle and
homoclinic bifurcations. Starting with the parameters in Figure 5.10 (gCa = 4.4),
the two periodic orbits move toward each other as we increase the parameter
φ from 0.04. When φ reaches a value slightly larger than 0.52, the periodic
orbits coalesce with one each other and disappear. For larger values of φ the
stable equilibrium point is a global attractor: it is the limit set of all trajectories
(Figure 5.19).

To look for homoclinic orbits in the Morris-Lecar system, we need to choose
parameter values for which there is a saddle point. Thus we set gCa = 5.5 and vary
φ. We find that there is a homoclinic orbit that forms a loop “below” the saddle
when φ is approximately 0.202554. Figure 5.20 shows phase portraits of the
system when φ = 0.202553 and φ = 0.202554. Observe that for φ = 0.202553,
there are two periodic orbits, one an unstable orbit that almost forms a loop
with a corner at the saddle. One branch of the stable manifold of the saddle
comes from this periodic orbit, while both branches of the unstable manifold
of the saddle tend to the large stable periodic orbit. For φ = 0.202554, there is a
single periodic orbit and both branches of the stable manifold of the saddle come
from the unstable equilibrium point while one branch of the unstable manifold
tends to the stable equilibrium point. In between these parameter values there is a
homoclinic bifurcation that occurs at parameter values where the lower branches
of the stable and unstable manifolds of the saddle coincide.

Exercise 5.12. There are additional values of φ that give different homoclinic bifur-
cations of the Morris-Lecar model when gCa = 5.5. Show that there is one near
φ = 0.235 in which the lower branch of the stable manifold and the upper branch of
the unstable manifold cross, and one near φ = 0.406 where the upper branches of the
stable and unstable manifold cross. (Challenge: As φ varies from 0.01 to 0.5, draw
a consistent set of pictures showing how periodic orbits and the stable and unstable
manifolds of the saddle vary.)

8A similar phenomenon happens at some saddle-node bifurcations of an equilibrium. After the equilibria disap-
pear at the bifurcation, a periodic orbit that passes through the region where the equilibrium points were located
may appear. The term snic (saddle node on invariant circle) was used by Rinzel and Ermentrout to describe these
saddle-node bifurcations.
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Figure 5.19 Phase portraits of the Morris-Lecar system close to a saddle-node of periodic orbits. (a) Here

φ = 0.05201 and there are two nearby periodic orbits. (b) Here φ = 0.05202 and a single trajectory is

plotted. It passes very slowly through the region where the periodic orbits were located.
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Figure 5.20 Phase portraits of the Morris-Lecar system close to a homoclinic orbit. (a) and (c) φ =
0.202553 (b) and (d) φ = 0.202554.
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Figure 5.20 (continued) The phase portraits (c) and (d) show an expanded view of those in figures (a)

and (b). Observe carefully the relative position of the stable and unstable manifolds of the saddle in

(c) and (d).
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Figure 5.21 Bifurcation curves of saddle-node (vertical) and Hopf bifurcation

(curved) in the plane of the parameters (gCa, φ). The curves intersect tangen-

tially at the end point of the Hopf bifurcation curve, a Takens-Bogdanov point.

More complicated bifurcations than the ones described above can be expected
to be found in a two-dimensional vector field with more than a single active
parameter. The bifurcations encountered in generic systems with k active pa-
rameters are called codimension-k bifurcations. As k increases, the classification
of codimension-k bifurcations becomes increasingly difficult. Even for two-
dimensional vector fields, the largest value of k for which the classification is
reasonably complete is k = 3. We give here two examples of codimension-2
bifurcations in the Morris-Lecar system. When both φ and gCa are varied at
the same time, we can find parameter values for which 0 is the only eigen-
value of the Jacobian at an equilibrium point. These parameter values sat-
isfy the defining equations for both saddle-node and Hopf bifurcations. Using
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Figure 5.22 Phase portraits of the Morris-Lecar system close to a Takens-Bogdanov codimension-2

bifurcation. (a) There are three equilibrium points (a stable focus, a saddle and an unstable focus)

and two periodic orbits. The small periodic orbit is not visible here, but can be seen in the small scale

plot (b) of the phase portrait near the two lower equilibrium points.
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Maple, we compute an approximate set of parameters for which this happens:
(gCa, φ) ≈ (5.6392, 0.2876). See Figure 5.21. This codimension-2 bifurcation is
called a Takens-Bogdanov bifurcation, after the two mathematicians who first
studied the properties of these bifurcations around 1970 (Guckenheimer and
Holmes, 1983). Three of the bifurcations we have studied in the Morris-Lecar
model—saddle nodes, Hopf bifurcation, and homoclinic bifurcation—come to-
gether at the Takens-Bogdanov bifurcation. The curve of homoclinic bifurcations
lies above the curve of Hopf bifurcations in Figure 5.21, but is more difficult to
compute. Figure 5.22 shows a phase portrait with (gCa, φ) = (5.638, 0.276), pa-
rameters near the Takens-Bogdanov parameter values. This phase portrait has
three equilibrium points, two of which are close together, and two periodic or-
bits, one of which is small. Figure 5.22b shows more detail of the region around
the two nearby equilibrium points. One of the aspects of the Takens-Bogdanov
bifurcation, evident in this figure, is that the eigenvectors of the saddle lie almost
in the same direction. As the parameter φ is decreased or gCa is increased, the
small unstable periodic orbit shrinks, meeting the equilibrium point at a sub-
critical Hopf bifurcation. As φ is increased or gCa is decreased, the small unstable
periodic orbit becomes a homoclinic orbit and then disappears. When the param-
eter gCa increases, the two nearby equilibrium points coalesce with one another
in a saddle-node bifurcation.

A second type of codimension-2 bifurcation is the cusp. This bifurcation occurs
in two-dimensional vector fields when the nullclines intersect with a third-order
tangency, like the tangent line to a function at a point of inflection. The pa-
rameters that give the saddle-node bifurcation in Figure 5.9a appear to be close
to such a point of tangency. We let i be a second active parameter with gCa and
then find a cusp point near (gCa, i) = (4.97, 107.1). A pair of saddle-node curves
emanate from the cusp in the parameter plane. Figure 5.23 shows the nullcline
for the cusp values of the parameters along side a plot of the saddle-node curve
in the (gCa, i) parameter plane.

5.7 Numerical Methods

Throughout the past two chapters, we have assumed that we have computer algo-
rithms that reliably determine trajectories with specified initial conditions. This
assumption is a good one, but there are pitfalls that must be avoided to obtain
reliable results. Since the Morris-Lecar equations cannot be “solved” by finding
explicit analytic formulas that express the trajectories as elementary functions,
numerical methods that compute approximate solutions proceed step by step in
time. There are many methods for solving these initial value problems. The re-
sults can vary substantially as we switch from one algorithm to another and as we
change algorithmic parameters, so we discuss the fundamental ideas employed in
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Figure 5.23 (a) Nullclines of the Morris-Lecar system at a cusp point. The two nullclines inter-

sect at a single point to third order. The parameters are as in Table 5.1 except that (gCa, i) =
(4.9666, 107.06655). The location of the cusp point is independent of the parameter φ. (b) The

saddle-node curve in the (gCa, i) parameter plane. The cusp bifurcation parameters are at the cusp of

the saddle-node curve in this parameter plane.
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a few of the simplest numerical methods and display some of their shortcomings.
We begin with the simplest method of all, called the (explicit) Euler method.

In calculus, we learn that the derivative of a function gives the slope of its best
linear approximations. If g(x) is a differentiable function and �x = x − a, then
the residual r(x) = g(x) − (g(a) + g ′(a)(�x)) has the property that r(x)/(�x) → 0 as
�x → 0. For x close to a, g(a) + g ′(a)(�x) gives a good approximation to g(x). The
same thing is true for solutions of the system of differential equations ẋ = f(x).
If x(t) is the trajectory with x(t0) = x0, then x(t0 + h) is well approximated by
x0 + hf(x0) when the time increment h = t − t0 is small. The line traced by x0 +
hf(x0) as h varies is the one that the trajectory would follow if the vector field were
constant, with the same value f(x0) everywhere. Since the vector fields we study
are not constant, we fix a (small) positive value of h and use x1 = x0 + hf(x0)

as an approximation to the point we reach on the trajectory at time t1 = t0 + h.
We then take another step to time t2 = t1 + h and position x2 = x1 + hf(x1). We
continue in this fashion, using the iteration tn+1 = tn + h and xn+1 = xn + hf(xn)

to determine xn+1, tn+1 from xn, tn. To compute an approximation to x(T), we
pick a time-step h = (T − t0)/N for some integer N, and use N steps of this iteration.
This is the Euler method. At each step, the Euler method makes an error that
shrinks as h → 0. We hope that, as h → 0, the method will give values that
converge to x(T). Since the number of steps grows as the step length h gets
smaller, it is not evident whether we obtain this convergence or how good the
approximation is. To study the approximations further, let us look at an example
where we can derive formulas for the values of x(T) and and the points produced
by the Euler method.

Example.
Consider the equation ẋ = x. From calculus, we know that the solutions to
this equation are x(t) = x(0)et . Take T = 1 and x(0) = 1. Then x(T) = e ≈
2.718281828 and we want to see how the values calculated by the Euler method
vary when we use N steps of length h = 1/N starting at x0 = 1. We compute
the first three steps of the method to be x1 = 1 + h, x2 = x1 + hx1 = (1 + h)x1 =
(1 + h)2, and x3 = x2 + hx2 = (1 + h)x2 = (1 + h)3. Continuing, we obtain xN =
(1 + h)N = (1 + 1/N)N . Now (1 + 1/N)N → e as N → 0, but it does so quite slowly.
Table 5.2 gives some data for this example, showing values obtained by the Euler
method when N is a power of 10. The table indicates that ten thousand time-
steps are required to obtain four digits of accuracy on this simple equation, a
very poor performance. We also observe that each additional digit of accuracy
requires about ten times the number of time-steps. In contrast to this method
of calculating e and the solution to the differential equation ẋ = x, consider the
Taylor series for

e =
∞∑

n=0

1
n! .

This content downloaded from 
�������������96.248.68.89 on Sun, 18 Jul 2021 13:26:35 UTC�������������� 

All use subject to https://about.jstor.org/terms



January 18, 2006 16:07 m26-main Sheet number 200 Page number 178

178 Chapter 5

10 2.593742460

100 2.704813829

1000 2.716923932

10000 2.718145927

100000 2.718268237

1000000 2.718280469

Table 5.2 Approximate values for e obtained from the Eu-

ler method. The first column gives the number of time

steps, the second column, the approximate value of e ≈
2.718281828.

If we truncate this series after eleven terms (the last term we give has n = 10),
it gives an approximate value of e as 2.718281801. Extrapolating from our ob-
servations about the Euler method, comparable accuracy would require roughly
100 million time steps! Thus the Euler method is a very poor way of obtaining
highly accurate approximations to solutions of differential equations. We want
methods that require fewer calculations to achieve a given accuracy.

One path to finding more accurate numerical methods for solving ordinary
differential equations is to focus upon the order of the numerical methods. The
order is defined by the relationship between the step length h and the error the
method makes in computing x(t + h) from x(t). If the error in computing one
step is proportional to hd+1, then the method has order d. When we use N steps
of length h = T/N to compute an approximate solution at time t0 + T , N = T/h
has order 1/h. Thus, the error of a method of order d in computing x(T) tends to
zero as hd as h → 0.

In our example of computing e by solving the differential equation ẋ = x, re-
placing the Euler method by the degree d truncation of the Taylor series of the
exponential function gives increasingly accurate order-d approximations to the
solution. For example, a single step of length 1 with d = 10 gives two more digits
of accuracy than a million steps of the Euler method. Even “low”-degree methods
give an enormous improvement: ten steps of length 1/10 with d = 4 give a value
of 2.718279744, with accuracy comparable to the Euler method with a million
steps.

There are varied approaches to the construction of higher-order methods for
solving differential equations. We mention two, one to illustrate the principle
and the second because it is frequently used. The second-order Heun’s method
has time-step map Hh(x) = x + (h/2)(f(x) + f(x + hf(x))). Note that producing
each time-step requires evaluating f twice, once at x and once at x + hf(x). To
see that the method has second order, we first compute the Taylor expansion of
Hh(x) in h, obtaining x + f(x)h + 1

2f′
(x)f(x)h2. Next we differentiate the equa-

tion ẋ(t) = f(x(t)) with respect to t , to get ẍ = f′
(x)f(x) using the chain rule.
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These equations imply that the degree-1 and -2 terms of the Taylor expansion of
x(t) have coefficients f(x) and f′

(x)f(x), agreeing with the Taylor expansion of
Heun’s method. Similar, but longer, calculations lead to still higher-order meth-
ods. For example, the Runge-Kutta method with time-step map Rh defined by

k1 = f(x)

k2 = f
(

x + 1
2

hk1

)

k3 = f
(

x + 1
2

hk2

)

k4 = f
(
x + hk3

)

Rh(x) = x + h
6

(k1 + k2 + k3 + k4)

[5.28]

has fourth order. When accuracy of a numerical simulation is important, use
higher-order methods if at all possible.

In addition to accuracy, the stability of numerical methods for solving initial
value problems is also important. To illustrate the issue, consider Euler’s method
applied to the equation ẋ = −ax with a > 0 large. The solution of this equation
with x(0) = x0 is x(t) = e−atx0. As t → ∞, the solution approaches 0 very, very
quickly. The time-step map from the Euler method is Eh(x) = x(1 − ah). N it-
erations of Eh send x to x(1 − ah)N . If ah > 2, then |1 − ah| > 1 and |1 − ah|N
increases geometrically with N. Thus the behavior of the iterates of Eh is com-
pletely different from that of the solution of the differential equation. Instead
of monotonically approaching 0, the iterates of Eh increase in magnitude with
alternating signs. To avoid this unstable behavior of the numerical integration,
the time-step is limited by ah < 2. If 1 < ah < 2, the iterates of Eh approach 0,
but they oscillate in sign as they do so.

Constraints on the time-step h of a method are a big issue in applications of
biological interest. If time-steps are limited by the fastest rates of exponential
decay in a system, then we will have difficulty working with models that include
fast processes that quickly approach equilibrium. The model for enzyme kinetics
introduced in Chapter 1 is already an example of this phenomenon. Simulations
of the three-dimensional motions of proteins provide a somewhat different chal-
lenge in handling multiple time scales in systems of differential equations. The
frequencies of oscillations in individual bonds within a molecule are many orders
of magnitude faster than the time required for the folding of the molecule. At-
tempts to predict three-dimensional structure from simulation of the molecular
dynamics must encompass this range of time scales, a task that is still not feasible
on today’s fastest computers. Within the numerical analysis literature, systems
with multiple time scales are called stiff. Numerical methods have been created
for integrating stiff systems. The simplest of these is the implicit Euler method.
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Implicit methods require that one solves a system of equations to determine
the point at the end of a step. The simplest example is the implicit Euler method
defined by the equations Ih(x) = x + hf(Ih(x)). To determine Ih(x), we need to
solve these equations at each step. Newton’s method is typically used to find
the solution. As before, we can analyze the method completely for the linear
equation ẋ = −ax. The equation to be solved is Ih(x) = x − haIh(x) whose solution
is Ih(x) = x/(1 + ah). This implies that after n steps, x is mapped to x/(1 + ah)n. As
n increases, this tends to 0 in a monotone way for all a, h > 0. Thus the method
avoids the instability and step length limitations of the explicit Euler method. In
a stiff system, we can usually use step lengths based upon the slower time scales
in the system without causing instability due to rapidly decaying components
of a solution. Even though the implicit Euler method is more stable than the
explicit Euler method, it still has first order. The second-degree Taylor expansion
of x/(1 + ah) in h is x(1 − ah + a2h2 − · · · ) = x − ahx + a2h2x − · · · . The second-
degree term in the Taylor expansion of e−ahx is 1

2 a2x, not a2x, so the method is
only first-order accurate. In general, implicit methods are slower than explicit
methods when used with the same step size due to the time required to solve
the implicit equations. Their advantage is that it is often possible to take much
larger steps and still maintain stability.

The limitations on step size associated with accuracy and instability may
change substantially along a trajectory. To deal with this, it is common prac-
tice to use methods that change step sizes during the calculation of trajectories.
Procedures have been developed for estimating the error of a tentative step and
adjusting the step length based upon this information. The simplest procedure
is to do the following. If the estimated error exceeds a desired threshold, then a
smaller step is chosen. If the estimated error is smaller than a lower threshold,
then a larger step is attempted. The effect of such a strategy is to utilize the largest
step sizes that are consistent with specified error tolerances. In practice, the ad-
ditional computational cost in estimating error tolerances is more than offset by
the smaller number of steps required to compute trajectories. On occasion, the
step length selection procedures can be overly optimistic and give results that do
become unstable.

We depend upon thoroughly tested computer algorithms to solve solutions
to initial value problems for systems of differential equations, just as we depend
upon algorithms to compute eigenvalues and eigenvectors of matrices. However,
there is a wider range of performance and more choices to be made in solving dif-
ferential equations. There are three things to keep in mind when using numerical
integration:

• It is easy to get spurious results by misusing an algorithm. So be skeptical and

check your results, for example by using more than one step size to solve the same

problem, and by comparing solutions to the same problem computed with

different methods.
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• There are problems, like molecular simulations of protein folding, that remain

beyond the capability of current methods. Be realistic in your expectations of what

computers can do, and creative in dealing with problems that seem beyond the

pale.

• There is a mathematical framework that is helpful in developing a consistent

interpretation of simulation results. If numerical results appear to be at odds with

the theory, work to resolve the discrepancies.

5.8 Summary

This chapter is the most mathematical in this book. Nonetheless, it gives only a
brief introduction to dynamical systems theory. Systems of ordinary differential
equations are perhaps the most common type of dynamic models in all of the
sciences, so it is worthwhile to learn how to work with them. That is a task
that involves lots of computation and lots of mathematics. The language that
has been developed to describe the patterns formed by these systems and the
logic of concentrating attention on generic systems can be intimidating when we
first encounter them. As with most skills, proficiency with this type of analysis
comes with experience and practice. We have used a single example, the Morris-
Lecar model, to illustrate phenomena described in much greater generality by
the theory. We hope that you will explore additional examples of differential
equation models with complex dynamics and study the mathematics in more
depth so that you can use it with confidence as a tool in your explorations.

The next chapter applies what we have learned here to differential equation
models of infectious disease. In the simplest of these models, analytical tech-
niques take us a long way and the dynamics are simpler than those of the Morris-
Lecar model. However, sustained oscillations of childhood endemic diseases like
chicken pox and measles have been observed, and we will use dynamic models
to gain insight into the causes of these oscillations. Subsequent chapters will
consider still more complex dynamic models of biological systems where the
mathematical foundations for interpreting the model results are weaker than is
the case for ordinary differential equations.
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