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3 Membrane Channels and Action Potentials

This chapter continues our study of matrix models, but applies them to study
molecular structures called membrane channels. The counterparts of different
age classes of a population are different conformations of a channel. The tran-
sitions between age-classes for an individual and those between conformations
for a channel are very different. Individuals never become younger, returning to
a former age-class, while channels may revisit each conformation many times.
Nonetheless, the theory of power-positive matrices is just the right tool for pre-
dicting the behavior of a large collection of channels, based on the behavior of
individual channels.

Membrane channels are pores in the cell membrane that selectively allow ions
to flow through the membrane. These ionic flows constitute electrical currents
that are biologically important. This is especially apparent in electrical excitable
tissue like skeletal muscles, the heart, and the nervous system. All of these tis-
sues have action potentials, impulses of electrical current that affect ionic flows
through membrane channels. Action potentials are a primary means of signal-
ing within the nervous system. They are triggered by inputs to sensory neurons,
communicate information among neurons throughout the nervous systems, and
transmit motor commands to the musculoskeletal system. Action potentials co-
ordinate the heartbeat, and malfunction of cardiac electrical activity is quickly
fatal if proper function is not restored.

Dynamic models built upon extensive knowledge about the nervous system
and other organs help us to understand action potentials and the electrical ex-
citability of these complex systems. This chapter provides a brief overview of
the electrical excitability of membranes at molecular and cellular levels. We use
the mathematics of matrix algebra introduced in Chapter 2 to analyze models
of how individual membrane channels function. There is also new mathematics
here, namely, aspects of probability. The specific times that channels change their
conformational states are unpredictable, so we introduce probabilistic models for
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these switching times. As in tossing a large number of coins, we can predict the
average behavior of a large population of channels even though we cannot predict
the behavior of individual channels. The measurements that can be made give
us only partial information about the state of individual channels. Models and
their analysis provide a means for “filling the gaps” and deducing information
about things that cannot be observed directly.

We consider models at three different levels: a single ion channel, a population
of channels of a single type, and multiple populations of several different channel
types in a cell, whose interactions lead to the generation of action potentials. In
each case, we review the biology underlying the models. The next level up—the
patterns that can arise in a population of interconnected cells—is touched on in
Chapter 7.

3.1 Membrane Currents

The membranes surrounding cells are for the most part impermeable, but they
incorporate a variety of molecular complexes designed to transfer material across
the membrane. The membrane allows cells to maintain different concentrations
of ions inside the cells than outside. The imbalance of electric charge across
the cell membrane creates an electrical potential difference. There are molecular
complexes that use inputs of energy to maintain the concentration and electri-
cal potential differences across the membrane. Membrane channels are different
structures through which ions cross the membrane. Channels are pores that can
open to allow ionic flows driven by diffusive and electrical forces (see Figure 3.1).
You can imagine a channel as an electrical valve that allows ions to flow through
when it is open and blocks ionic flows when it is closed. The electrical excitabil-
ity of membranes relies on gating, the opening and closing of different types of
channels. Channels have remarkable properties, notably:

• Many channels are selective, allowing significant flows only of particular ionic

species. Channels that are specifically selective for sodium (Na+ ), potassium (K+ ),

and calcium (Ca2+ ) ions are ubiquitous in the nervous system and important in

the generation of action potentials.

• Channels have only a few distinct conformational states. Unlike a valve in a pipe

that regulates the flow rate to any specified value up to a maximum, a channel

only allows ions to flow at a rate determined by its conformational state and the

driving forces. As we describe below, each channel state has a fixed conductance.

The switching time between states is so rapid that we regard it as instantaneous. At

fixed membrane potential, the current observed to flow has a small number of

values, and the channel jumps abruptly from one to another.
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Figure 3.1 Artist’s representation of a membrane-spanning channel with a diagram rep-

resenting an equivalent electrical circuit for the channel (from Hille 2001, p. 17).

• Switching of channels among states appears to happen randomly. However, there

are different probabilities for switching between each pair of states. These

switching probabilities typically depend upon membrane potential (voltage

dependence) or upon the binding of neurotransmitters to the membrane (ligand

dependence).

Learning, memory, dexterity, and sensory perception are all mediated by the
electrical signals within the nervous system. The “architecture” of this system
is enormously complex, both at the cellular level and as a network of cells. For
example, the human brain is estimated to have approximately 1012 neurons.
The geometry of most individual neurons is elaborately branched, with long
processes called dendrites and axons. Pairs of neurons make contact at specialized
structures called synapses, which can be either chemical or electrical. At chemical
synapses, action potentials traveling along an axon of the presynaptic cell trigger
the release of neurotransmitter into the intercellular space of the synapse. The
neurotransmitter, in turn, binds to receptor sites on dendrites of the postsynaptic
cell, stimulating a postsynaptic current.

Channels play a central role in the propagation of action potentials within
neurons, along axons, and in synaptic transmission between nerve cells. Tech-
niques for identifying the genes that code for channels and comparative studies of
channels from different organisms are rapidly leading to catalogs of hundreds of
different types of channels. Alternative splicing of these genes and modification
of channels by events such as phosphorylation contribute additional diversity.
Nonetheless, the basic structure and function of channels has been conserved
throughout evolution. One place to start in understanding how the nervous
system works is by considering an individual ion channel.
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3.1.1 Channel Gating and Conformational States

The patch clamp recording technique invented by Neher and Sakmann (1976)
makes it possible to measure the current through a single channel. A small piece
of membrane is attached to a suction electrode and the current through this
tiny patch of membrane is measured. If the patch is small enough, then it may
contain a single channel and the measurements reflect the current flowing in
that channel.

The first patch clamp studies were of the nicotinic acetylcholine receptors
(nAChR) in the neuromuscular junction (Neher and Sakmann 1976). The record-
ings (Figure 3.2) exhibit the properties of channels listed above—in particular,
the current switches between discrete levels at apparently random times. The
nAChR receptor has two possible conductance levels, zero when it is closed and
approximately 30 pS when open. From these recordings we obtain sequences
of successive dwell times, the amounts of time that the channel remains open or
closed before switching. These appear to be irregular, so we will turn to mathe-
matical models that assume that the probability that the channel will switch states
in a small interval depends on only its current state, and not its past history.

Biophysical models for channel gating are based upon the physical shape, or
conformation, of the channels. Channel proteins can be modeled as a collection
of balls and springs representing individual atoms and the forces between them.
The springs correspond to covalent bonds, the strongest forces in the molecule.
There are additional forces that depend upon the environment of the molecule
and the three-dimensional shape of the molecule. Thermal fluctuations are al-
ways present, driving small energy changes through collisions and causing the
molecule to vibrate. There is a free-energy function assigned to each spatial con-
figuration of the atoms within the channel, and the physical position of the
molecule is normally at states of smaller energy. The molecule spends relatively
long periods of time near local minima of the free energy, undergoing only small
vibrations. However, sometimes the thermal fluctuations are sufficiently large to
cause the molecule to move from one local minimum to another.

The behavior of this system can be interpreted in terms of an “energy land-
scape.” Corresponding to any set of positions for the atoms is a value of the free
energy, which we regard as defining a height at each point of this space. The
resulting landscape has hills and valleys (see Figure 3.3). Imagine the state of
the molecule as a particle vibrating on this landscape like a ball oscillating on a
frictionless surface under the influence of gravity and being given small random
kicks. The amplitude and frequency of vibrations of the particle around a min-
imum are determined by the steepness of the sides of the valley in the energy
landscape. Occasionally, the molecule receives a kick that is hard enough to make
it cross the ridge between one valley and another. The height of the ridge deter-
mines how frequently this occurs. When the molecule crosses to a new valley,
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Figure 3.2 Data from a single channel recording of the nicotinic acetylcholine receptor (nAChR)

channel in the neuromuscular junction, in the presence of four different agonists that can bind to

the receptor. Note that the open channel current is the same for each agonist, but the dwell times

are different (from Colquhoun and Sakmann 1985).

it will settle at the new local minimum until it receives a kick that knocks it out
of the valley surrounding that minimum. For any pair of local minima, there is
a transition probability that the molecule will cross from the valley surrounding
the first minimum to the valley surrounding the second. This transition proba-
bility depends only on the pair of states; in particular, it does not depend upon
the past history of the particle. This leads to a model for the switching dynamics
of the channel as a Markov chain, the type of mathematical model we study in
the next section.

One important use of these models is to infer information about the confor-
mational states of channels from measurements of membrane current. If each
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Figure 3.3 A hypothetical energy landscape. Imagine a ball rolling along this

curve under the influence of gravity and collisions with other, much smaller

particles. When the ball sits at a local minimum, it stays near this minimum

until it receives a “kick” hard enough to knock it over one of the adjacent local

maxima.

conformational state has a different conductance level, then the membrane cur-
rent tells us directly about the conformational state. However, this is seldom
true. Most channels have more than a single closed state, and some types of
channel have multiple open states with the same conductance. The selectivity
filter that determines the ion selectivity and permeability may be a small portion
of the channel. Conformational changes that have little effect on this part of the
channel are likely to have little effect on conductance.

To simplify matters, we shall only consider situations in which the channel
conductance has just two values, one for open states and one for closed states.
When we have only partial information about the molecular dynamics, we are
left with the fundamental question as to whether we can model the dwell times
of the channel from the information we do have. This is where mathematical
analysis enters the picture.

Let us be careful here to specify in mathematical terms the problem that we
want to solve. The channel that we want to model has conformational states
C1, C2, . . . , Ck, O1, . . . , Ol. The Cj are closed states and the Oj are open states. We
do not know the numbers k and l of closed and open states: they are part of
what we are trying to determine. The observations we make yield a time series
of the membrane current at discrete times t0, t1, . . . , tN . These measurements tell
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us whether the channel is in a closed state or an open state at each time. If the
temporal resolution τ = ti+1 − ti is fine enough, then the probability of two or
more transitions occurring in a single time step is very small. Assuming that this
is the case, our data tell us when the channel makes transitions from an open
state to a closed state, or vice versa. What information about the channel can
we extract from these transition times? Can we determine values of k, l, and
transition probabilities between states? How large are the expected uncertainties
in our estimates associated with the limited amount of data that we have? What
kinds of experiments can we do that will help us reconstruct more information
about the switching process? These are the questions we shall examine more
closely.

Exercise 3.1. Discuss how you expect the transition rates between two states to de-
pend upon the height of the energy barrier between them. How do you think the
distribution of amplitudes and frequency of the kicks affects the transition rates? De-
sign a computer experiment to test your ideas.

3.2 Markov Chains

This section discusses the probability theory we use in models for membrane
channels. Only in the next section do we return to the biology of channels.

Individual membrane channels are modeled as objects that have several con-
formational states, divided into two classes: open and closed. In open states, the
channel allows a current flow of ions, while in closed states, it does not. If a chan-
nel has more than one open state, we assume that the current flow in each of the
different open states is the same. We observe switching times between open and
closed states of a channel, and then attempt to produce stochastic1 models that
reproduce the observed statistics of switching. Using simple examples of proba-
bility, we illustrate the principles and methods that lead to successful stochastic
models of switching in some cases.

The stochastic models we discuss are Markov chains. Markov chain models
are framed in terms of probabilities. We assume that a physical system has a
finite number of states S1, S2, . . . , Sn, and that the system switches from one state
to another at random times. The fundamental Markov assumption is that the
switching probabilities depend only upon the current state of the system. Past
history has no influence in determining the switching probability. Markov mod-

1A stochastic model is one that contains random elements. We do not give a formal definition of randomness, but
intuitively we think of a quantity as random if repeated measurements of that quantity give different results. We
characterize a random quantity by the distribution or histogram of results we obtain when we make a large number
of repeated measurements. We assume that this distribution is hardly changed if we make a second set of repeated
measurements.
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els can be formulated with either continuous time or discrete time. We shall
emphasize discrete-time models in this chapter.

3.2.1 Coin Tossing

The simplest example of a Markov chain is a thought experiment of probability
theory: flipping coins repeatedly. We think of a “fair” coin as having equal
probability of landing heads or tails, but what does this mean since each toss
must produce either heads or tails? The mathematical description of probability
is built upon the idea of repetition of events. If we flip a coin once, there is
no way to test the probabilities of the two different outcomes, heads and tails.
From an experimental perspective, we view the probabilities as statements about
the frequencies of these outcomes if we repeat an experiment many times. If we
flip a coin N times, with N a large number, then we expect that a probability of
0.5 for each outcome will be reflected in roughly the same number of outcomes
that are heads and outcomes that are tails. However, the exact numbers will
fluctuate if we repeat the experiment of flipping a coin N times. Can we test
whether observations are consistent with the hypothesis that a coin has equal
probabilities of 0.5 for heads and tails by flipping it many times and observing the
relative proportion of heads and tails? If the results for the series of experiments
are highly improbable, then we reject them as being plausible. What we need
here is a mathematical analysis of the probability distribution for sequences of N
coin flips. This distribution is derived from the probabilities for an individual
flip. In the mathematical idealization of the experiment of flipping a fair coin
N times, all sequences of heads and tails of length N are equally likely outcomes
and all are equally probable. By counting the number of sequences of length
N with each number of heads and tails, we can assign probabilities to different
outcomes that can be used in testing statistical hypotheses. Let us examine the
case N = 4 to develop an intuition for the general case.

The possible outcomes of tossing the coin four times would be

hhhh hthh thhh tthh

hhht htht thht ttht

hhth htth thth ttth

hhtt httt thtt tttt

where h represents the outcome of a head and t represents the outcome of a tail.
Note that there are 2N possible such sequences and so if the coin is fair, each
of these sequences has equal probability, namely, 1/24 = 1/16. Looking at the
list, we count that there is 1 outcome with 0 heads, 4 outcomes with 1 head, 6
outcomes with 2 heads, 4 outcomes with 3 heads, and 1 outcome with 4 heads.
Even though each (ordered) sequence of tosses is equally likely, it is six times
more likely to observe 2 heads and 2 tails than to observe 4 heads. So we hypoth-
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esize that the probabilities of 0, 1, 2, 3, 4 heads are 1/16, 4/16, 6/16, 4/16, 1/16,
respectively. Even though each sequence of tosses is equally likely, we expect
to observe sequences with 2 heads and 2 tails about six times as often as we see
sequences with 4 heads. If we perform a large number of sequences of four
tosses and make a histogram for the number of trials with 0, 1, 2, 3, 4 heads,
we expect that the bins of the histogram will have relative proportions close
to 1/16, 4/16, 6/16, 4/16, 1/16.

The numbers 1, 4, 6, 4, 1 are the binomial coefficients that appear in expanding
the polynomial

(H + T)4 =
4∑

k=0

ckHkT4−k

for k = 0, 1, 2, 3, 4. For the general case of sequences of N coin tosses, we use the
expansion

(H + T)N =
N∑

k=0

ckHkTN−k

where the ck are the binomial coefficients

ck = N!
k!(N − k)! .

The distribution in the outcomes of flipping a fair coin N times is given by the
binomial distribution defined by

bN(k) = N!
2Nk!(N − k)! .

This is justified by the following argument. There are 2N possible outcomes for
sequences of N coin tosses. If the coin is fair, then each of these sequences has
equal probability, namely, 1/2N . The number of sequences with k heads and
N − k tails is given by the binomial coefficient ck, so the probability of obtaining
exactly k heads is bk.

What happens if a coin is not fair? We want to compute the probabilities of
different outcomes in a sequence of tosses of an unfair coin. Let H and T = 1 − H
denote the probabilities of tossing a head or a tail, respectively. In the case of a
fair coin, we have H = T = 1

2 . The probability that a particular sequence of heads
and tails occurs is given by the product of the corresponding probabilities. This
is the assumption that the successive tosses are independent of each other. Thus
the probability of the sequence hhth is HHTH . Placing subscripts on the H and
T to denote the probabilities of the outcome of each toss, we write the formula

1 = (H1 + T1)(H2 + T2) · · · (HN + TN)

which expresses that either heads or tails is sure to be the outcome on each toss.
Expanding the right-hand side of this formula, each of the 2N sequences of heads
and tails is represented by a single term that is the product of the probabilities
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of each outcome in that sequence of tosses. To determine the probability of all
sequences with specified numbers of heads and tails, we drop the subscripts in
the polynomial to get the formula

1 = (H + T)N =
N∑

k=0

ckHkTN−k

where the ck are the binomial coefficients above. The number of sequences with
exactly k heads is not affected by the probabilities of heads or tails, but the prob-
ability that a particular sequence of heads and tails with exactly k heads occurs
is HkTN−k. Therefore, the probability of obtaining exactly k heads in a sequence
of N independent tosses is ckHkTN−k. To know what to expect when N is large,
we compute and evaluate histograms of ckHkTN−k.

It is convenient to plot these histograms with the horizontal axis scaled to be
[0, 1]: at k/N we plot the probability of having k heads in N tosses. Numerical
computations with different values of H and N large suggest that the histograms
are always approximated by a “bell shaped” curve with its peak at k/N = H (see
Figure 3.4). This observation is confirmed by the DeMoivre-Laplace limit theorem,
a special case of the central limit theorem of probability. This theorem states the
following.

Consider a sequence of N independent coin tosses, each with probability H of obtain-
ing heads. The probability of obtaining k heads with

NH + zl

√
NH(1 − H) < k < NH + zu

√
NH(1 − H)

approaches

1√
2π

∫ zu

zl

exp
(

−1
2

x2
)

dx

as N → ∞.
The integrand in this formula is called the normal distribution. Other names for

this important function are the Gaussian distribution and a bell-shaped curve.
The DeMoivre-Laplace limit theorem tells us that in our coin-tossing experiment,
as the length N of the sequence increases, the proportion k/N of heads is more and
more likely to be close to H . The expected deviation of k/N from H is comparable
to 1/

√
N.

Diaconis, Holmes, and Montgomery (2004) reexamined the tossing of real
coins and came to surprising conclusions. They built a coin-flipping machine
and conducted experiments by repeatedly flipping a coin that starts heads up.
The proportion of coin tosses in which the coin landed heads up was larger than
1/2 by an amount that was statistically significant. In other words, if one assumes
that the probability of landing heads was 1/2 and that the tosses were indepen-
dent of each other, then the DeMoivre-Laplace theorem implies that the results
they observed were very unlikely to have occurred. They went further with a
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Figure 3.4 A histogram from a computer experiment: 5000 repetitions of toss-

ing an unfair coin 100 times. The probability of heads is 0.75 and the prob-

ability of tails is 0.25. The asterisks show the number of experiments that

produced k heads as a function of k, the circles are the values of the binomial

distribution, and the solid line is the approximation to the binomial distribu-

tion from the bell shaped Gaussian function. Note that the minimal number of

heads obtained in our trials was 60 and the maximum was 91. There are small

deviations from the predicted distribution that change when we rerun the ex-

periment with different sequences of the random numbers used to generate

the experimental outcome.

careful examination of the physics of coin tossing. They found that reasonable
hypotheses lead to the conclusion that it is more probable that a coin lands with
the same side up that was face up at the beginning of the toss. Here we rely on
computer experiments, using algorithms that generate pseudorandom numbers—
sequences of numbers that look as if they are independent choices from a uniform
probability distribution on the interval [0, 1] (Knuth 1981). There are different
approaches to the generation of pseudorandom numbers, and some widely used
generators produce poor results.

Exercise 3.2. Consider a sequence of 100 tosses of a fair coin. Use the DeMoivre-
Laplace limit theorem to check the following statements. The odds (probability) of
obtaining fewer than 20 heads is less than one in a billion. The odds of obtaining
fewer than 30 heads is about one in 25,000, and the odds of obtaining fewer than
40 heads is less than three in 100. The odds of obtaining between 40 and 60 heads
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is more than 94 in 100, but there is more than a 5% chance of obtaining fewer than
41 or more than 59 heads. If one tosses a coin 10,000 times, there is more than a
95% chance of obtaining between 4900 and 5100 heads.

Exercise 3.3. Experiment with sequences of coin flips produced by a random number
generator:

(a) Generate a sequence r of 1000 random numbers uniformly distributed in the unit

interval [0, 1].

(b) Compute a histogram for the values with ten equal bins of length 0.1. How much

variation is there in values of the histogram? Does the histogram make you suspicious

that the numbers are not independent and uniformly distributed random numbers?

(c) Now compute sequences of 10,000 and 100,000 random numbers uniformly dis-

tributed in the unit interval [0, 1] and a histogram for each with ten equal bins. Are

your results consistent with the prediction of the central limit theorem that the range

of variation between bins in the histogram is proportional to the square root of the

sequence length?

Exercise 3.4.

(a) Convert the sequence of 1000 random numbers r from the previous exercise into a

sequence of outcomes of coin tosses in which the probability of heads is 0.6 and the

probability of tails is 0.4.

(b) Recall that this coin-tossing experiment can be modeled by the binomial distribution:

the probability of k heads in the sequence is given by

ck(0.6)k(0.4)1000−k

where ck = 1000!/k!(1000 − k)!. Calculate the the probability of k heads for values of

k between 500 and 700 in a sequence of 1000 independent tosses. Plot your results

with k on the x-axis and the probability of k heads on the y-axis. Comment on the

shape of the plot.

(c) Now test the binomial distribution by doing 1000 repetitions of the sequence of 1000

coin tosses and plot a histogram of the number of heads obtained in each repetition.

Compare the results with the predictions from the binomial distribution.

(d) Repeat this experiment with 10,000 repetitions of 100 coin tosses. Comment on the

differences you observe between this histogram and the histogram for 1000 repetitions

of tosses of 1000 coins.

3.2.2 Markov Chains

A small generalization of the coin-flipping experiment produces a two-state
Markov chain. In this generalization, one has two coins, each with its own heads
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versus tails probabilities. We will call one coin a penny and the other a quarter.
The two possible states are that we are flipping either a penny or a quarter at each
turn. We switch states according to the following:

• After a heads, we flip the penny

• After a tails, we flip the quarter

Given states S1 and S2, which may be the same, we call the transition probability
from S1 to S2 the probability that we are in state S1 at time t and in state S2

at time t + 1. In the example, there are four transition probabilities associated
with the current state and the outcome of the flip we do now. Since the coin
we toss depends on the previous outcome, the transition probabilities are the
probabilities of heads previous and heads now, heads previous and tails now,
tails previous and heads now, and tails previous and tails now. These can be
written in a 2 × 2 matrix called the transition matrix of the Markov chain.

Let us pick specific probabilities for the two coins to make our discussion more
concrete. Assume that the probability of getting heads when we toss the penny is
0.4 and so the probability of getting tails is 1 − 0.4 = 0.6, and that the probability
of getting heads when we toss the quarter is 0.7 and so the probability of getting
tails is 1 − 0.7 = 0.3. Then the transition matrix for this system is

penny quarter[
0.4 0.7
0.6 0.3

]
penny

quarter.

This means that if we are currently flipping the penny, then the probability that
next time we will flip a penny is 0.4 and the probability that next time we will
flip a quarter is 0.6. If we are currently flipping a quarter, the probability that
next time we will flip a penny is 0.7 and the probability that next time we will
flip a quarter is 0.3.

The behavior of the Markov chain can be different from flipping a single coin.
For example, if the probability of flipping heads for the penny and the probability
of flipping tails for the quarter are both less than 0.5 as in the example above,
then we expect a larger number of alternating strings of penny:tails, quarter:heads
than of successive quarter:heads or successive penny:tails. Repeated runs of heads
and tails are less frequent than when flipping a single coin. On the other hand,
if the probability of flipping tails for the penny is very low and the probability
of flipping heads for the quarter is very low, then we expect a large number of
repeated runs of both heads and tails. When the probabilities of heads and tails
are independent of the current state, that does not happen. In that case, only one
outcome can have high probability since the sum of the probabilities is 1. Runs
of the outcome with low probability are very rare. The lengths of runs are directly
relevant to our observations of membrane channels: if one thinks of the states
of the Markov chain as being open and closed states of a membrane channel,
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the lengths of “runs” of the Markov chain correspond to the dwell times of the
channel in open or closed states.

A Markov chain model can be represented by its transition matrix: the n × n
matrix A is defined by setting the entry Aij to be the probability that state Sj

switches to state Si. The sum of the entries in each column of A adds to 1 since
state Sj surely switches to some state Si at each time-step. This way of looking at
the Markov chain allows us to relate its properties to those of matrix population
models. We compare the states of the Markov chain with stages of a population,
and the transition matrix of the Markov chain with the transition matrix of the
population. We imagine a large population of individuals distributed among the
states of the Markov chain. Each individual independently makes a transition
to a new state using the probabilities in the transition matrix. The sample paths
of the Markov chain are paths taken by individuals, and the transition matrix
coefficient Aij approximates the proportion of individuals in state Sj at time t
who move to state Si at time t + 1.

The matrix makes it easy to compute the transition probabilities for paths of
length longer than 2. Consider the transition from state Sk to Sj to Si in two steps.
The Markov assumption implies that the probability for the two transitions to
take place at successive time-steps is the product AijAjk. Also, the probability that
state Sk will make a transition to state Si in two steps is

n∑
j=1

AijAjk = (A2)ik,

the (i, k) component of the matrix product of A with itself. Extending this ar-
gument, the probability that a sequence of length l beginning at state Sj ends at
state Si is (Al)ij, the (i, j) component of the matrix product Al of A with itself l
times.

The matrix A has non-negative entries. If it is power-positive, then we can use
the Perron-Frobenius theorem to tell us about the evolution of our population: it
will have a dominant eigenvalue and the eigenvector of the dominant eigenvalue
is the only eigenvector with all positive entries. Since the sum of each column of A
is 1, the row vector (1, 1, . . . , 1) is a left eigenvector with eigenvalue 1. Intuitively,
growth rate 1 makes sense since our population is being redistributed among the
states with no births or deaths in the population. Thus, the total population size
remains constant. In formulas, if (w1, w2, . . . , wj) is the population vector at time
t , then the population vector at time t + 1 is⎛

⎝∑
j

A1jwj,
∑

j

A2jwj, . . . ,
∑

j

Anjwj

⎞
⎠

t

and the total population is∑
i

∑
j

Aijwj =
∑

j

∑
i

Aijwj =
∑

j

wj,
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unchanged from time t . The Perron-Frobenius theorem implies that the popu-
lation distribution will converge to the stable stage distribution, the right eigen-
vector of 1 for the transition matrix A. In the setting of membrane channels,
there is an actual population of individual channels and the stable stage distri-
bution gives the expected number of channels in each state under steady-state
conditions. Moreover, the conductance of the membrane is the conductance of
a single channel times the number of open channels.

Single-channel recordings of membrane currents show us transitions between
open and closed states. Therefore, we are particularly interested in the residence
or dwell times of a Markov chain, the times that a sample path remains in a
particular state. In the channel, these transitions are the result of stochastic
fluctuations and we assume that the time between measurements is short enough
that the probability of multiple transitions between successive measurements is
negligible. When the time-step is small enough, during most time-steps a channel
remains in the same state. This implies that the transition matrix has diagonal
entries Ajj close to 1 and the remaining entries are small.

We seek to determine the distribution of residence times for each state. If a
channel is in state Sj at time t0, the probability that it remains in state Sj at time
t0 + 1 is Ajj. The probability that it remains in the state Sj at times t0 + 1 and
t0 + 2 is A2

jj. Continuing, the probability that the channel remains in state Sj for
times t0 < t ≤ t0 + k is Ak

jj. Similarly, the probability that the system switches from
state Sj to some other state at each time is 1 − Ajj. The channel has a residence
time of k in state Sj beginning at time t0 if it is in state Sj at times t0 < t < t0 + k
and it switches to another state in the step from time t0 + k − 1 to t0 + k. The
probability associated with this sequence of states is Ak−1

jj (1 − Ajj). We conclude
that the residence times have an exponential distribution: the probability of
residence time k in state Sj decreases exponentially with k. If the time between
measurements is δ and Ajj = exp(−λjδ), then the probability that a channel in
state Sj makes its first transition to another state between times kδ and (k + 1)δ is
(1 − Ajj) exp(−kλjδ).2

These results yield predictive information that we can utilize in analyzing the
data from single-channel patch clamp measurements of membrane current. In
the situation where we measure just two current levels (from open and closed
states of the channel), our analysis of residence times predicts that histograms of
the residence times will be sums of exponentials, with one exponential term for
each channel state. Given time series data from a single-channel recording, we
construct a histogram for the residence times of open states and the residence
times of closed states. If there is a single open state, then the residence time
histogram for the open state can be fitted by a single exponential function. If we

2We can let δ tend to zero in this formula while holding kδ constant and obtain the result that the probability
density of residence times in state Sj is an exponential function proportional to exp(−tλj). The distributions of
dwell times for each state in a continuous-time Markov chain are exponential functions.
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need to sum more than one exponential to fit the histogram, then there must
be more than one open state. The same conclusions apply to closed states. The
number of exponential functions we need to fit the residence time histogram
of the closed states gives a lower bound on the number of closed states of the
channel.

Exercise 3.5. The histogram of expected residence times for each state in a Markov
chain is exponential, with different exponentials for different states. To observe this
in the simplest case, use a random number generator to produce data for a two-state
Markov chain. Next, determine the transitions that occur in these data as the state
changes, and the residence times between these. Finally, compute histograms of the
residence times.

3.2.3 The Neuromuscular Junction

Using the theory that we have developed for Markov chain models, we now want
to use single-channel patch clamp recordings to infer properties of the molecular
mechanisms underlying the gating (opening and closing) of nAChR channels at
the neuromuscular junction. Since the only step in this multistep process that is
observed directly in these recordings is the final opening of the channel, analysis
of the dwell times is required to deduce information about the steps taking place
while the channel is closed.

The simplest possible model is that receptors with bound acetylcholine agonist
are open, while unbound receptors are closed. The total membrane current would
then be perfectly correlated with the amount of bound acetylcholine. This model
is much too simple to explain two important observations. First, at low agonist
concentrations, the current from a population of channels is seen to be roughly
proportional to the square of agonist concentration rather than linearly propor-
tional (Katz and Thesleff 1957). This cooperativity suggests that enhancement
of the opening probability of a channel depends on a pair of agonist molecules
binding to a channel, rather than a single bound molecule. Second, the dwell
time distributions have “bursts” typified by several successive very short closings
interspersed with long ones (Colquhoun and Sakmann 1985). This distribution
of dwell times is not well approximated by a single exponential, implying that a
Markov model for a single channel must have two or more closed states.

Colquhoun and Sakmann (1985) studied the dwell time distributions of open
and closed states for the nAChR channels and how these vary with different ex-
perimental conditions. They varied membrane potential, agonist concentration,
and the agonist itself. Acetylcholine is not the only molecule that binds to the
receptors and acts as an agonist for the receptors, so use of different agonists
is a way of exploring the dynamics of binding. Figure 3.2 shows recordings of
single-channel recordings from their paper. They found in these studies that a
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Figure 3.5 Sums of exponentials fit to dwell time distri-

butions of open states in an nAChR channel. The three

histograms show distributions of dwell times from three

ranges of times: slow (top), medium (middle), and fast

(bottom). The dashed curves come from a fit to a sum

of two exponentials, the solid curves from a fit to a sum of

three exponentials (from Colquhoun and Sakmann 1985).

sum of at least three exponentials was required to fit the dwell time distributions
for closed states and a sum of at least two exponentials was required to fit the
dwell time distributions for open states (see Figure 3.5). They postulated that the
closed states are receptors with 0, 1, and 2 agonists bound, and that the open
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Figure 3.6 A diagram of the states and transitions in the

Markov chain model used to model the nAChR channel

(from Colquhoun and Sakmann 1985). The states labeled

with an ∗ are the open states.

states have 1 or 2 agonists bound. Of special note here is that the transitions
between open and closed states are distinct from the binding events of the ag-
onist. Agonist binding changes the probability that a channel will open, but
the binding itself does not open the channel. Figure 3.6 shows a diagram of the
five-state model proposed by Colquhoun and Sakmann. The transition matrix
for a Markov model corresponding to this graphical representation of the model
has the approximate form I + δA for small time steps δ, where A is the following
matrix expressing the rates of transitions between pairs of states.3⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−(α1 + k∗
+2xA) 2k−2 0 β1 0

k∗
+2xA −(α2 + 2k∗

−2) β2 0 0

0 α2 −(β2 + 2k−2) k+2xA 0

α1 0 2k−2 −(β1 + k+2xA + k−1) 2k+1xA

0 0 0 k−1 −2k+1xA

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

with xA the agonist concentration. The diagonal term Ajj of A gives the rate of
decrease of channels in state j which remain in state j. Since the total number
of channels does not change, the magnitude of this rate is the sum of the rates
with which channels in state j make a transition to some other state. Colquhoun
and Sakmann (1985) discuss parameter fits to this model from the dwell time
distributions for different agonists. They find a good fit to the dwell times for
acetylcholine by ignoring the state with a singly bound opening (AR∗ in the

3The exact form of the transition matrix is exp(δA), expressed using the matrix exponential function. One way
of defining the matrix exponential is as a power series: exp(δA) = ∑

δkAk/k!
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diagram) and the remaining parameters set to k−1 = k−2 = 8150 s−1, k+1 = k+2 =
108 s−1(M)−1, α = 714, and β = 30, 600.

Exercise 3.6. This exercise examines Markov chains with three states: one “open”
state O and two “closed” states C1 and C2. We assume that measurements do not
distinguish between the states C1 and C2, but we want to demonstrate that there are
more than two states.

(a) Generate a set of 1,000,000 samples from the Markov chain with transition matrix

C1 C2 O⎡
⎢⎢⎣

0.98 0.1 0

0.02 0.7 0.05

0 0.2 0.95

⎤
⎥⎥⎦

C1

C2

O

.

You can see from this matrix that the probability 0.7 of staying in state C2 is much smaller

than the probability 0.98 of staying in state C1 or the probability 0.95 of remaining in

state O.

(b) Compute the eigenvalues and eigenvectors of the matrix A. Compute the total time

that your sample data in the vector states spends in each state and compare the

results with predictions coming from the dominant right eigenvector of A.

(c) Produce a new vector rstates by “reducing” the data in the vector states so that

states 1 and 2 are indistinguishable. The states of rstates will be called “closed” and

“open.”

(d) Plot histograms of the residence times of the open and closed states in rstates.

(e) Comment on the shapes of the distributions for open and closed states. Show that

the residence time distribution of the closed states is not fitted well by an exponential

distribution. Using your knowledge of the transition matrix A, make a prediction about

what the residence time distributions of the open states should be.

The nAChR channel illustrates the complexity of gating of membrane chan-
nels. Measurements of unitary currents through individual channels are con-
ceptually simple, but the behavior of the channel is not. Abstract Markov chain
models help answer questions about a complex multistep process without in-
corporating detail about the physics of binding or gating. Our discussion has
brought forward basic principles about how these stochastic models are fit to the
data, but we have just touched the surface of these principles are applied. Here
are three mathematical questions arising from the limitations of the experimental
techniques. They give pointers to how the analysis becomes more complicated.
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1. The instrumental noise in patch clamp current measurements may be comparable

to the current flowing through an open channel. How do we distinguish the times

when the channel is truly open and truly closed?

2. If a channel opens and closes between two successive measurements, we do not

observe these transitions. What effect do such short visits to a closed or open state

have on our estimates?

3. We assume that there is a single channel in the patch of membrane in our

apparatus. How do we tell? If we see the combined current from two open

channels simultaneously, this is clear evidence for multiple channels in the patch.

However, if openings are short and infrequent, we may have to watch for a long

time before two channels are open simultaneously. How long is long enough to

make us confident that we have a single channel?

These questions are discussed by Colquhoun and Hawkes (1995).

3.3 Voltage-Gated Channels

We now move up a level—from models of a single channel to models for a popula-
tion of channels that are voltage gated, meaning that their transition probabilities
between conformational states are a function of the potential difference across
the membrane. The statistical summation of all ion currents from the channels
in a patch of membrane behaves in a much more predictable fashion than the in-
stantaneous on/off current through a single channel. The central limit theorem
of probability theory predicts that the relative magnitude of the fluctuations in
the current will be comparable to the square root of the number of channels con-
tributing to the current. Since the total current is proportional to the number of
channels, the relative magnitude of the fluctuations decreases as the population
size grows.

What are the quantitative relations between the ionic current flowing through
a population of channels, the fluctuations in this current, the unitary current
through an individual channel, and the population size? This is the question
we now explore using the probability theory in section 3.2. To begin, we make
several assumptions about the channels and the membrane in which they are
embedded:

• The voltage potential across the membrane is held constant (this experimental

manipulation is called a voltage clamp, and the experimental methodology to

achieve it was first developed by Hodgkin and Huxley (1952)).

• There are N channels in a membrane randomly switching between open and

closed states.

• The current through each open channel is the same.

• The state of each channel is independent of the others.
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These assumptions lead to similarities with the coin-tossing problem. Let the
probability that a single channel is open be p and the probability that it is closed
be q = 1 − p. At each time, we can represent the state of the system as a vector
(a1, . . . , aN) where each ai is a C for closed or O for open. There are 2N different
sequences representing the possible states of the system at each time. The as-
sumption that the states of the individual channels are independent means that
the probabilities of the population being in a given state is the product of the
probabilities for the individual channels: if there are k open channels and N − k
closed channels, the probability of the state (a1, . . . , aN) is pk(1 − p)(N−k). Using
the same combinatorics as in coin tossing, the probability that there are exactly
k open channels at each time is

N!
k!(N − k)!p

k(1 − p)(N−k).

Even though analysis of dwell times may require a complicated Markov model
with multiple states of each channel, independence implies that the current flow
in the population has a binomial distribution. If we sample the population at
times that are long compared to the switching time of the individual channels,
then the samples will be independent of each other. This provides helpful in-
formation that relates the population current, the individual channel current,
and the fluctuations in the channel current. We derive below a formula for this
relationship.

Let the current of a single open channel in our population be i. This depends
on the membrane potential, but that is held constant in voltage clamp. If k
channels in the population are open, then the population current is ki. The
DeMoivre-Laplace Limit Theorem stated earlier tells us that as N grows large,
the expected value of k is pN with fluctuations in k of magnitude proportional
to

√
N. An alternative calculation works directly with the population current

measurements. When we measure the current in a population of N channels
repeatedly, Ī = pNi is expected to be the mean population current. Think of this
current as the analog of tossing N coins simultaneously, with p the probability of
heads for each. Measuring the population currents M times, obtaining values Ij,
we expect the average population current

Ī = 1
M

M∑
j=1

Ij

to be closer to the mean than the typical Ij. Fluctuations in the measurements of
the population current can be measured by the variance σ , defined by the formula

σ 2 = 1
M

M∑
j=1

(Ij − Ī)2.

Expanding the term for Ī in this formula and a bit of algebra give the alternative
formula
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σ 2 = 1
M

M∑
j=1

I2
j − Ī2 [3.1]

for σ . These population level measurements of mean and variance can be related
to those for a single channel by the following argument.

If we measure current from a single channel M times, then we expect that
the channel will be open approximately k = pM times, so the mean current from
individual channels will be pi = (1/M)ki. If k of the individual channels are open,
the variance of the single-channel measurements is

1
M

ki2 − (pi)2 = pi2 − p2i2 = p(1 − p)i2.

Now, if each of our population of N channels behaves in this manner, the mean
current will be I = Npi and the variance will be obtained from adding the vari-
ances of the individual channels in the equation [3.1] for σ 2:

σ 2 = 1
M

kNi2 − N(pi)2 = 1
M

pMNi2 − 1
N

(Npi)2 = iI − 1
N

I2.

We eliminate N from this last formula using the expression N = I/(pi) to obtain
σ 2 = iI − piI and then solve for i:

i = σ 2

I(1 − p)
.

This is the result that we are after. It relates the single-channel current to the
population current and its variance. The term (1 − p) in this expression is not
measured, but it may be possible to make it close to 1 by choosing a voltage clamp
potential with most of the channels in the population closed at any given time.

Fluctuation analysis based upon this argument preceded the development of
single-channel recordings based upon patch clamp. Thus, one can view the for-
mula for the single-channel current as the basis for predictions of the unitary
conductance of single channels. This analysis was carried out by Anderson and
Stevens (1973) on the nAChR channel, giving an estimate of 30 pS for the unitary
conductance. Subsequent direct measurements with patch clamp gave similar
values, in accord with the theoretical predictions. Thus, the theory of coin toss-
ing applied to the fluctuations in total current from a population of membrane
channels gave successful predictions about the number of individual channels
and their conductances. This was science at its best: data plus models plus the-
ory led to predictions that were confirmed by new experiments that directly tested
the predictions.

3.4 Membranes as Electrical Circuits

We now go up one more level, to consider the interactions among several dif-
ferent types of voltage-gated channels in a single neuron, and the patterns of
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neural activity that can result, such as action potentials. The interaction be-
tween voltage-gated channels is indirect, mediated by changes in the electrical
potential (voltage difference) across the membrane. As ions flow through chan-
nels this changes the electrical potential across the membrane, which in turn
changes the transition probabilities for all voltage-gated channels. In the last
section, we saw that the relative magnitude of the fluctuations in a population
of identical channels tends to 0 as the size of the population increases. In other
words, large populations of thoroughly random individual channels behave like
deterministic entities, so we model them that way. Models at this level are based
on regarding the membrane and its channels as an electrical circuit—such as
that depicted in Figure 3.1—so it is helpful to begin by reviewing a few concepts
about circuits.

Electric charge is a fundamental property of matter: electrons and protons carry
charges of equal magnitude, but opposite sign. Electrons have a negative charge,
protons a positive charge. Charge adds: the charge of a composite particle is the
sum of the charges of its components. If its charges do not sum to zero, a particle
is an ion.

Charged particles establish an electric field that exerts forces on other charged
particles. There is an electromotive force of attraction between particles of oppo-
site electric charge and a force of repulsion between particles of the same charge.
The electric field has a potential. This is a scalar function of position whose gra-
dient4 is the electric field. The movement of charges creates an electrical current.
Resistivity is a material property that characterizes the amount of current that
flows along an electrical field of unit strength. Resistance is the corresponding
bulk property of a substance. The resistance of a slab of material is proportional
to its resistivity and thickness, and inversely proportional to its surface area. Con-
ductance is the reciprocal of resistance, denoted by gK in Figure 3.1.

Channels in a membrane behave like resistors. When they are open, channels
permit a flow of ions across the membrane at a rate proportional to v − vr where
v is the membrane potential and vr is the reversal potential discussed below. The
membrane potential relative to vr makes the membrane act like a battery, pro-
viding an electrodiffusive force to drive ions through the channel. This potential
is labeled EK in Figure 3.1. Even though membranes are impermeable, an elec-
tric potential across them will draw ions of opposite polarity to opposite sides of
the membrane. The accumulation of ions at the membrane surface makes it an
electrical capacitor (with capacitance CM in Figure 3.1). The movement of these
electrical charges toward or away from the membrane generates a current, the
capacitive current CdV/dt , despite the fact that no charge flows across the mem-
brane. Charge movement is induced by changes in the membrane potential,

4The gradient of a function is a vector field that is aligned with the direction in which the function changes
fastest. The magnitude of the gradient is the rate of change of the function along a line in the gradient direction.
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proportional to the change in the membrane potential. This leads to Kirchhoff’s
current law, the fundamental equation describing the current that flows between
the two sides of the membrane:

C
dv
dt

=
∑

j

−gj(v − vj). [3.2]

In [3.2], C is the membrane capacitance and each term gj(v − vj) represents the
current flowing through all the channels of type j. Here vj is the reversal potential
of the channels of type j and gj is their conductance. For voltage-gated channels,
gj itself changes in a way that is determined by differential equations. This aspect
of channel behavior will be investigated later in Section 3.4.2.

Exercise 3.7. Using electrodes inserted into a cell, it is possible to “inject” current
into a cell, so that [3.2] becomes

C
dv
dt

= Ii +
∑

j

−gj(v − vj).

A “leak” current is one with constant conductance gL. Show that changes in the
reversal potential vL of the leak current and changes in Ii , the injected current, have
similar effects on the membrane current. Discuss the quantitative relationship be-
tween these.

3.4.1 Reversal Potential

The ionic flows through an open channel are affected by diffusive forces as well
as the electrical potential across the membrane. Membrane pumps and exchangers
can establish concentration differences of ions inside and outside a neuron. They
rely upon active shape changes of the transporter molecules and inputs of energy
rather than diffusive flow of ions through the pores of membranes. Pumps and
exchangers operate more slowly as ion transporters than channels, but they can
maintain large concentration differences between the interior and exterior of a
cell. In particular, the concentration of K+ is higher inside the cell than outside,
while the concentrations of Na+ and Ca2+ ions are higher outside.

Diffusive forces result from the thermal motions of molecules. In a fluid,
particles are subject to random collisions that propel them along erratic paths
called Brownian motion. The resulting diffusion acts to homogenize concentra-
tions within the fluid. Near a channel, the intracellular and extracellular spaces
are maintained at different concentrations, so the concentration within the chan-
nel cannot be constant: there must be a concentration gradient. At equilibrium
and in the absence of other forces, the concentration of an ion in a tube con-
nected to two reservoirs at differing concentrations will vary linearly, and there
will be a constant flux of ions flowing from the region of high concentration to
the region of low concentration.
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The electrical force across a membrane is proportional to its potential. This
electrical force may be directed in the same direction as the diffusive forces or in
the opposite direction. The diffusive and electrical forces combine to determine
the motion of ions in an open channel. As the membrane potential varies, there
will be a specific potential, the reversal potential, at which the two forces balance
and there is no net flux of ions. At higher potentials, the net flow of ions is from
the interior of the neuron to the exterior. At lower potentials, the ionic flux is
from the exterior to the interior. The Nernst equation gives a formula for the rever-
sal potential through a channel selective for a single species of ions: the reversal
potential is proportional to ln(c1/c2) where c1 is the external concentration and
c2 is the internal concentration.

Even though the ionic flow through channels is faster than the transport of ions
by the pumps and exchangers, it is small enough that it has a minimal effect on
the relative internal and external concentrations of K+ and Na+ ions. Ca2+ ions
play essential roles as signaling molecules, and large increases in local concen-
trations of Ca2+ ions due to the influx through calcium channels have important
effects on electrical excitability in some cases. Accordingly, internal calcium ion
concentration is used as a variable in many models of membrane excitability,
but the concentrations of sodium and potassium are constant in virtually all
models. The dynamics of calcium concentration within cells is an active area of
intense research, aided by the ability to visualize calcium concentrations with
special dyes.

Exercise 3.8. The full expression for the reversal potential in the Nernst equation is

vj = RT
zF

ln
(

c1

c2

)

where R is the gas constant 1.98 cal/K-mol, F is the Faraday constant 96, 840 C/mol,
T is the temperature in K, and z is the valence of the ion. The value of RT/F is
approximately 26.9 mV at T = 37◦ C = 310 K. Typical values of c1 and c2 for sodium
ions in a mammalian cell are 145 and 15 mM. Compute the reversal potential for
sodium in these cells.

3.4.2 Action Potentials

We now return to considering the total current flowing through all the channels
in a membrane. Typical neurons and other excitable cells have several different
types of voltage-gated channels whose currents influence one another. In our
representation of the membrane as a circuit, each type of channel is represented
by a resistor. Current through each type of channel contributes to changing the
membrane potential, and the conductance of the channel is voltage dependent.
Quantitative models are needed to predict the effects of this cycle of interac-
tions in which current affects potential which affects current. As the number
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of channels of each type in a membrane increases, the relative magnitude of the
fluctuations in the population current decrease. In many systems, the relative
fluctuations are small enough that we turn to deterministic models that represent
the total current of populations of voltage gated channels explicitly as a function
of membrane potential. This leads to a class of models first proposed by Hodgkin
and Huxley (1952) to model action potentials.

The primary object of study in the Hodgkin-Huxley model is the time-
dependent membrane potential difference v(t). We assume a “space clamped”
experimental setup in which the potential difference is uniform across the mem-
brane, so spatial variables are not included in the model. The potential difference
results from ionic charges on the opposite sides of the membrane. The membrane
itself acts like a capacitor with capacity C. The specific capacitance (capacitance
per unit area) is usually given a nominal value of 1 µF/cm2. Membrane chan-
nels act like voltage-dependent resistors, and support current flowing through
the membrane.

The first ingredient in the Hodgkin-Huxley model is simply Kirchhoff’s law,
[3.2], which says that Cdv/dt is given by the sum of currents flowing through the
membrane channels. However, to complete the model we also have to specify
how the changes in potential affect the conductances g for each type of chan-
nel. The remainder of this section describes the formulation of models using the
approach established by Hodgkin and Huxley. The mathematical and compu-
tational methods used to derive predictions from these models are discussed in
Chapter 5.

Hodgkin and Huxley observed two distinct types of voltage-dependent mem-
brane currents: one permeable to potassium ions and one permeable to sodium
ions. There is a third type of channel, called the “leak,” with conductance that is
not voltage dependent. Channels had not been discovered when they did their
research. One of their contributions was the development of “voltage clamp”
protocols to measure the separate conductances and their voltage dependence.

To fit their data for the sodium and potassium currents, they introduced the
concept of gating variables, time-dependent factors that modulated the conduc-
tance of the currents. Today, these gating variables are associated with the prob-
abilities of channel opening and closing.

In the Hodgkin-Huxley model, there are three gating variables. The gating
variables m and h represent activation and inactivation processes of the sodium
channels while the gating variable n represents activation of the potassium chan-
nels. The gating variables themselves obey differential equations that Hodgkin
and Huxley based on experimental data. Figure 3.7 shows a set of current traces
from voltage clamp measurements of the squid axon.

To understand the kinetics of channel gating, a few more facts and a bit more
terminology are needed. As in all electrical circuits, membrane potential has an
arbitrary baseline. The convention in neuroscience is to set the potential outside
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Figure 3.7 Data from a series of voltage clamp measurements on a squid giant axon.

The membrane is held at a potential of −60 mV and then stepped to higher potentials.

The traces show the current that flows in response to the voltage steps (from Hille 2001,

p. 38).

the membrane to be 0 and measure potential as inside potential relative to the
outside. The resting potential of most neurons, as well as the squid giant axon, is
negative and in the range of −50 to −80 mV. If the membrane potential is made
more negative, the membrane is said to be hyperpolarized. If the potential is made
more positive, the membrane is depolarized. Processes that tend to increase the
probability of a channel opening with depolarization are called activation pro-
cesses. Processes that tend to decrease the probability of a channel opening with
depolarization are called inactivation processes. The reversal of of an activation
process with hyperpolarization is called deactivation and the reversal of an inac-
tivation process with depolarization is called deinactivation.
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Deactivation and inactivation are very different from one another, but both
processes can act on the same channel. The Hodgkin-Huxley model assumes that
the activation and inactivation processes of the sodium channels are independent
of each other. Imagine there being two physical gates, an activation gate and an
inactivation gate, that must be open for the channel to be open. As the membrane
depolarizes, the activation gate is open more of the time and the inactivation gate
is closed more. Deactivation reflects the greater tendency of activation gates to
close with hyperpolarization. The Hodgkin-Huxley model also assumes that the
gating of each type of channel depends only on the membrane potential and not
upon the state of other channels.

The kinetics of activation and inactivation processes are not instantaneous, so
the gating variables are not simple functions of membrane potential. To study
these kinetics, Hodgkin and Huxley used voltage clamp protocols. Instead of mea-
suring the membrane potential, they measured the current in a feedback circuit
that maintained the membrane at a fixed, predetermined potential. Under these
conditions, the gating variables approach steady-state values that are functions
of the membrane potential. One of the fundamental observations leading to
the models is that the currents generated as the membrane approaches its steady
state can be modeled by sums of exponential functions. In a similar fashion to
the analysis of residence times in Markov chain models, this suggests that, at any
fixed membrane potential, the gating variables should satisfy linear differential
equations.

Recall that exponential functions are solutions of linear differential equations.
The differential equations describing the gating variables are frequently written
in the form

τ ẋ = −(x − x∞) [3.3]

where τ and x∞ are functions of the membrane potential. The solution of this
equation is

x(t) = x∞ + (x(0) − x∞) exp(−t/τ). [3.4]

This formula expresses quantitatively the exponential relaxation of the vari-
able x to its steady state (or “infinity”) value x∞ with the time constant τ . The
Hodgkin-Huxley model has equations of this form for each of the gating vari-
ables m, n, h. For each gating variable, the voltage-dependent steady-state values
and time constants are measured with voltage clamp experiments. This is easier
for the potassium currents that have only one type of gate than for the sodium
currents that have two types of gates. To measure the values for the sodium cur-
rents, the contributions of the activation and inactivation gating to the measured
currents in voltage clamp must be separated.

To estimate the parameters in a model for the currents, the contributions from
the different kinds of channels need to be separated. Ideally, the membrane is
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treated so that only one type of channel is active at a time, and the changes ob-
served in the membrane come from changes in a single gating variable. We then
take observed values for the gating variables x(t) from the voltage clamp data
and fit exponential functions to estimate x∞ and τ . The actual data come from
voltage clamp protocols in which the membrane is initially held at one potential,
and then abruptly changed to another potential. Transient currents then flow
as the gating variables tend to their new steady states as described by equation
[3.4]. This experiment is repeated for a series of different final membrane po-
tentials, with the exponential fits to each producing estimates for x∞ and τ as
functions of membrane potential. Figure 3.7 illustrates the results of this volt-
age clamp protocol when applied to the squid axon without any separation of
currents.

In squid axon, there are two principal types of voltage-dependent channels,
sodium and potassium. The conductance of a leak current is independent of
voltage, so it can be determined in squid axon by measurements at hyperpo-
larized potentials when neither sodium or potassium currents are active. The
separation of voltage dependent currents is now commonly done pharmacolog-
ically by treating the membrane with substances that block specific channels.
The sodium channels of the squid axon are blocked by tetrodotoxin (TTX), a poi-
son that is collected from pufferfish, and the potassium channels are blocked by
tetraethylammonium (TEA) (Figure 3.8). Blockers were not available to Hodgkin
and Huxley, so they use a different method to measure the separate potassium
and sodium currents.

Hodgkin and Huxley proceeded to develop quantitative models for each gating
variable based on their voltage clamp measurements. However, as an introduc-
tion to this type of model we will now consider a simpler model formulated
by Morris and Lecar (1981) for excitability of barnacle giant muscle fiber. This
system has two voltage-dependent conductances, like the squid giant axon, but
their voltage dependence is simpler. Nonetheless, the system displays varied os-
cillatory behaviors that we examine in Chapter 5.

The inward current of barnacle muscle is carried by Ca2+ ions rather than
Na+ ions as in the squid axon. In both cases the outward currents flow through
potassium channels. Neither the calcium nor potassium channels in the muscle
barnacle show appreciable inactivation. Thus the Kirchhoff current equation for
this system can be written in the form

Cv̇ = i − mgCa(v − vCa) − wgK(v − vK) − gL(v − vL). [3.5]

Here C is the capacitance of the membrane, gCa, gK, and gL are the maximal
conductances of the calcium, potassium, and leak conductances, vCa, vK, and vL

are their reversal potentials, m is the activation variable of the calcium channels,
w is the activation variable of the potassium variable, and i represents current
injected via an intracellular electrode.
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Figure 3.8 The separation of voltage clamp currents in the squid

axon into sodium and potassium currents. Pharmacological
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from the voltage clamp current. The spikes at the beginning of
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ond trace is capacitative current due to the redistribution of ions
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(from Kandel et al. 1991, p. 107).
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Figure 3.9 Plots of the functions 1/1 + exp(−v) and 1/ cosh(−v/2).

Morris and Lecar used a theoretical argument of Lecar et al. (1975) to determine
the functions x∞(v) and τ(v) in the differential equations [3.3] for the gating
variables. Lecar et al. (1975) argued that the functions x∞(v) and τ(v) in these
equations should have the forms

m∞(v) = 0.5
(

1 + tanh
(

v − v1

v2

))
= 1

1 + exp(2(v1 − v)/v2)

τ (v) = φ
1

cosh((v − v1)/2v2)

[3.6]

for channels that satisfy four properties: (1) they have just one closed state and
one open state, (2) the ratio of closed to open states is an exponential function of
the difference between energy minima associated with the two states, (3) the dif-
ference between energy minima depends linearly upon the membrane potential
relative to the potential at which half the channels are open, and (4) transition
rates for opening and closing are reciprocals up to a constant factor. In these
equations, v1 is the steady-state potential at which half of the channels are open,
v2 is a factor that determines the steepness of the voltage dependence of m∞, and
φ determines the amplitude of the time constant. Figure 3.9 shows plots of these
two functions for v1 = 0 and v2 = −1 and φ = 1.

Morris and Lecar (1981) fitted voltage clamp data of Keynes et al. (1973), shown
in Figure 3.10, to this model for the gating variable equations. Thus the full model
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Figure 3.10 Voltage clamp currents in a barnacle muscle fiber.

The left hand column shows currents elicited in a Ca2+ free

bathing medium, thereby eliminating calcium currents. The

right hand column shows currents elicited in a muscle fiber

perfused with TEA to block potassium currents. Note that the

currents that follow the depolarizing voltage step are shown

as well as those during the step (from Keynes et al. 1973,

Figure 8).

that they studied is the following system of three differential equations:

Cv̇ = i − gCam∞(v)(v − vCa) − gKw(v − vK) − gL(v − vL)

τm(v)ṁ = φm(m∞(v) − m)

τw(v)ẇ = φw(w∞(v) − w),

[3.7]

This content downloaded from 
�������������96.248.68.89 on Sun, 18 Jul 2021 13:25:45 UTC�������������� 

All use subject to https://about.jstor.org/terms



January 18, 2006 16:07 m26-main Sheet number 125 Page number 103

Membrane Channels 103

gL gCa gK vL vCa vK v1 v2 v3 v4 φm φw C

2 4 8 −50 100 −70 0 15 10 20 1 10 20

Table 3.1 Parameter values of the Morris-Lecar model producing sustained

oscillations (Morris and Lecar 1981, Figure 6)

where

m∞(v) = 0.5
(

1 + tanh
(

v − v1

v2

))

τm(v) = 1
cosh((v − v1)/2v2)

w∞(v) = 0.5
(

1 + tanh
(

v − v3

v4

))

τw(v) = 1
cosh((v − v3)/2v4)

.

[3.8]

Typical parameter values for the model are shown in Table 3.1. Note that
φm/φw = 0.1 and φm/C = 0.05 are much smaller than 1 in this set of parame-
ters. Consequently, the gating variable m tends to change more quickly than w
or v. For this reason, a frequent approximation, similar to the analysis of en-
zyme kinetics in Chapter 1, is that τm = 0 and m tracks its “infinity” value m∞(v).
This reduces the number of differential equations in the Morris-Lecar model from
three to two. In Chapter 5, we shall use this reduced system of two differential
equations as a case study while we study techniques for solving nonlinear systems
of differential equations.

3.5 Summary

This chapter has applied the theory of power-positive matrices to models for
membrane channels. Channels switch between conformational states at seem-
ingly random times. This process is modeled as a Markov chain, and the steady-
state distribution of a population of channels converges to the dominant eigen-
vector of its transition matrix as the population size grows. While the behavior
of individual channels appears random, the fluctuations in the current from a
population of channels are related to the population size by the central limit the-
orem of probability theory. The relative magnitude of the fluctuations decreases
with population size, so large channel populations can be modeled as determin-
istic currents. Hodgkin and Huxley introduced a method to construct differential
equations models for the membrane potential based on gating variables. The gat-
ing variables are now interpreted as giving steady-state probabilities for channels
to be in an open state, and their rates of change reflect the convergence rate to
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the dominant eigenvector. The steady states and time constants of the gating
variables are calculated from voltage clamp data.

The systems of differential equations derived through the Hodgkin-Huxley for-
malism are highly nonlinear and cannot be solved analytically. Instead, numer-
ical algorithms are used to calculate approximate solutions. Systems of differen-
tial equations are one of the most common type of model for not only biological
phenomena, but across the sciences and engineering. Chapter 4 examines addi-
tional examples of such models that have been used to “design” and construct
gene regulatory networks that display particular kinds of dynamical behavior.
We use these examples to introduce mathematical concepts that help us to un-
derstand the solutions to differential equations models. Chapter 5 reexamines
the Morris-Lecar model while giving a more extensive introduction to numerical
methods for solving differential equations and to the mathematical theory used
to study their solutions.

3.6 Appendix: The Central Limit Theorem

The Central Limit Theorem is a far-reaching generalization of the DeMoivre-
Laplace limit theorem for independent sequences of coin tosses. We will meet
the Central Limit Theorem again in Chapter 7. The intuitive setting for the
central limit theorem is an experiment that is repeated many times, each time
producing a numerical result X. We assume that the results vary from trial to trial
as we repeat the experiment, perhaps because of measurement error or because
the outcome is unpredictable like the toss of a fair coin. However, we assume that
the probability of each outcome is the same on each trial, and that the results of
one trial do not affect those of subsequent trials. These assumptions are expressed
by saying that the outcomes obtained on N different trials are independent and
identically distributed random variables Xi, i = 1, 2, . . . , N.

If the experiment has only a finite number of possible values v1, . . . , vn, we can
think of an Xi as yielding these outcomes with probabilities p1, . . . , pn. Over many
trials, we expect to get outcome v1 in a fraction p1 of the trials, v2 in a fraction p2

of the trials, and so on. The average value of the outcomes is then approximately

p1Nv1 + p2Nv2 + · · · + pnNvn

N
=

N∑
k=1

pkvk [3.9]

when N is large. This motivates the definition that the expectation or expected
value of the random variable X is given by the formula

E(X) =
N∑

k=1

pkvk.

The expectation is also called the mean.
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The Central Limit Theorem tells us about how well [3.9] approximates the av-
erage as the number of trials N becomes larger and larger. This naturally depends
on how unpredictable each of the individual experiments is. The unpredictability
of a single experiment can be measured by the variance

Var(X) = E((X − µ)2) =
N∑

k=1

pk(vk − µ)2. [3.10]

A small variance means that X is usually close to its expected value; a high vari-
ance means that large departures from the expected value occur often. The sym-
bols µX and σ 2

X are often used to denote the mean and variance of a random
variable X.

Let

SN = X1 + X2 + · · · + XN [3.11]

be the total of all outcomes in N trials, so that SN/N is the average outcome. Using
properties of the mean and variance (which can be found in any introductory
probability or statistics text), it can be shown that the rescaled sum

ZN = SN − NµX√
NσX

[3.12]

always has mean 0 and variance 1. The Central Limit Theorem states not only
that this is true, but that the distribution of the scaled deviation ZN approaches a
normal (Gaussian) distribution with mean 0 and variance 1 as N becomes larger
and larger. That is, the probability of ZN taking a value in the interval [a, b]
converges to

1√
2π

b∫
a

e−x2/2dx. [3.13]

This expresses the remarkable fact that if we average the results of performing the
same experiment more and more times, not only should we expect the average
value we obtain to converge to the mean value, but deviations from this mean
value converge a normal distribution—regardless of the probability distribution
of the outcomes on any one repetition of the experiment.

We can informally summarize the Central Limit Theorem by writing [3.12] in
the form

SN = NµX + √
NσXZN [3.14]

where ZN is approximately a Gaussian random variable with mean 0 and vari-
ance 1. The right-hand side of [3.14] consists of two parts: the “deterministic”
part NµX and the “random” part

√
NσXZN . As the number of trials increases,

the deterministic part grows proportionally to N while the random part only
grows proportionally to

√
N, so in a very large number of trials—such as the very
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large numbers of membrane channels in a neuron—the deterministic part will
be dominant.

Versions of the Central Limit Theorem also apply to random variables with a
continuous distribution such as the Gaussian, meaning that they can take any
value in some segment (finite or infinite) of the real line; to random variables
that are independent but not necessarily identical in distribution; and to many
cases where the random variables are not completely independent.
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