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2 Matrix Models and Structured Population
Dynamics

If a population or species is in decline and at risk of extinction, it is clear what
we need to do: increase the birth rate, decrease the death rate, or both. But
exactly whose birth or death rate are we talking about? For example, given limited
human and financial resources, would it be more effective to create additional
good nesting sites so more adult birds can breed each year, to shield eggs from
predators so that each nest produces more offspring, or to augment food supply
so that juveniles have a better shot at surviving to breeding age?

Trying to answer these questions in advance, rather than by trial and error, is
an increasing part of the conservation biologist’s job. This chapter focuses on a
type of model that is widely used for this task (Morris and Doak 2002): matrix
models for the dynamics of structured populations. “Structured” means that the
model incorporates differences among individuals. Models based on differences
in age were developed centuries ago for the study of human populations—one
basic result is credited to Euler (1707–1783)—and we will start by considering
that case. To understand structured population models we need some aspects
of matrix theory. We review this from the ground up, beginning by defining
matrices and reviewing basic matrix algebra. We then consider some applications,
including conservation planning, and finally some generalizations of the model.

This chapter and the next introduce our modus operandi of using a small num-
ber of in-depth case studies as the vehicle for presenting different types of models
and for motivating the study of their properties. To indicate the range of appli-
cability for matrix models, we will not give you a quick survey of examples from
other areas of biology, or even a list of books and articles with other applications.
Instead, we follow this chapter with one where matrix models (and other kinds
of model) are applied in a totally different biological context. Within our own
field of biology we feel confident about choosing good “role models” for you to
study. For the rest, you’ll have to explore the literature and decide for yourself.
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2.1 The Population Balance Law

The starting point for population modeling is the fundamental balance law

N(t + 1) = N(t) + births + immigration − deaths − emigration [2.1]

where N(t) is the number of individuals in the population or the population den-
sity (number per unit area) at time t . The balance law becomes a complete model
when we specify formulas for the quantities on the right-hand side. The simplest
model is to assume a closed population without immigration or emigration, and
that the per capita (i.e., per individual) birth and death rates are constant:

Births = b × N(t), Deaths = d × N(t).

The balance law then becomes

N(t + 1) = N(t) + bN(t) − dN(t) = λN(t) [2.2]

where λ = 1 + b − d. This model is simple enough that we can solve it. Starting
from any initial population size N(0) we get

N(1) = λN(0)

N(2) = λN(1) = λ(λN(0)) = λ2N(0)

N(3) = λN(2) = λ(λ2N(0)) = λ3N(0),

and so on, leading to the general solution

N(t) = λtN(0). [2.3]

This is exponential population growth: defining r = log λ, we then have λt = (er)t =
ert and so

N(t) = ertN(0).

(Note that “log” means the natural (base-e) logarithm; we will use log10 to indicate
base-10 logarithms.)

Growth cannot go on forever, so [2.3] cannot be valid forever if λ > 1. This
kind of limitation bothers biologists much more than it bothers physical scien-
tists, who are used to the idea that different models for a given system may be
valid in different circumstances. Anderson and May (1992, p. 9) compare simple
biological models to Newton’s first law of motion:

A body remains in its state of rest or uniform motion in a straight line, unless acted

on by external forces.

Exponential population growth has the same character—it tells us what happens
if current conditions persist without change:
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A closed population of self-reproducing entities—such as viruses, cells, animals, or

plants—will grow or decay exponentially at a constant rate, unless a change in condi-

tions alters the per entity birth or death rate.

Therefore, more general models are derived by considering the factors that can
alter the average per entity birth and death rates.

2.2 Age-Structured Models

The biological theme of this chapter is that per entity birth and death rates are af-
fected systematically by differences among individuals, such as their age. To take
effects of age into account we need to describe the population by a state vector
listing the numbers of individuals of each age. It is natural (but not necessary)
to use years as the time unit; the state variables are then na(t), the number of
a-year-old individuals in year t , with a running from 0 to the maximum possible
age A.

For now we continue to assume a closed population without immigration or
emigration. The model’s dynamic equations are bookkeeping expressed in math-
ematical symbols, as in the salmon model in Chapter 1. Consider one of the
authors: 50 years old in January 2004. In order to reach that state, he must have
been 49 years old in January 2003 and survived the next year. Consequently

n50(2004) = p49n49(2003) [2.4]

where p49 is the probability that a 49-year-old survives to age 50. In general, this
line of reasoning tells us that

na(t + 1) = pa−1na−1(t) for a > 0 [2.5]

where px is the probability that an x-year-old individual survives to be age x + 1.
To complete the model we need to specify the number of births each year. If we

assume that per individual birth rates are only a function of age, we can define
fa to be the average number of newborns next year, per age-a female this year.
Then we have

n0(t + 1) = f0n0(t) + f1n1(t) + · · · + fAnA(t)

=
A∑

a=0

fana(t).
[2.6]

Two conventions can be used: count everybody, or only count females—in which
case fa only includes female offspring. The females-only convention is by far the
more common, and we will always use it here.

Exercise 2.1. Find at least two important assumptions that are necessary for [2.5] to
be true.
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Exercise 2.2. Define l0 = 1, la = p0p1p2 · · · pa−1, the probability of an individual sur-
viving from birth to age a. Explain in words why

n0(t + 1) =
A∑

a=0

fa lan0(t − a). [2.7]

Exercise 2.3. The general theory developed later in this chapter tells us that in the
long run a population governed by the age-structured model typically grows expo-
nentially, as in [2.3]. In particular, n0(t) = cλt will hold (with greater and greater
accuracy as time goes on), for some λ and c. By substituting this approximation
for n0(t) into [2.7], show that the long-term population growth rate λ satisfies the
equation

A∑
a=0

λ−(a+1)lafa = 1. [2.8]

This is called the Euler, Lotka, or Euler-Lotka equation.

Exercise 2.4. (a) Show that the left-hand side of [2.8] is a decreasing function of λ by
computing its derivative with respect to λ. (b) Compute the values of the left-hand
side in the limits λ → 0 and λ → ∞. (c) Explain why (a) and (b) imply that [2.8] has
one and only one positive real solution.

2.2.1 The Leslie Matrix

It is convenient and informative to express the age-structured model in matrix
notation. In this form it is called the Leslie matrix model, after British ecologist
P. H. Leslie who popularized age-structured models for animal populations in the
mid-twentieth century.

First we need to review a bit about matrices. A matrix is a rectangular array
of numbers. A matrix A with entries aij is said to have size m × n if it has m
(horizontal) rows and n (vertical) columns. Thus the row index i takes the values
1, 2, . . . , m (1 indicating the top row) and the column index j takes the values
1, 2, . . . , n (1 indicating the leftmost column). A matrix with one column is called
a column vector, and a matrix with a single row is called a row vector.

Matrix algebra was invented for studying systems of linear equations in several
unknowns, such as

3x1 + 5x2 = 1

x1 − 2x2 = 0.

[2.9]

Solving one such equation in one unknown is a snap:

3x = 1

(1/3) × (3x) = (1/3) × (1)

x = 1/3.

[2.10]
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Matrix algebra lets us make [2.9] look like [2.10], so that we can solve it in the
same way. We put the coefficients in [2.9] into a matrix

A =
[

3 5

1 −2

]
[2.11]

and put the variables and right-hand side into vectors x =
[

x1

x2

]
and b =

[
1
0

]
.

Matrix-vector multiplication is then defined so that [2.9] is equivalent to the
single matrix equation:

A x = b[
3 5

1 −2

] [
x1

x2

]
=

[
1

0

]
.

[2.12]

The definition that makes [2.9] and [2.12] mean the same thing is the following:
if x = (x1, x2, . . . , xn) is a column vector and A is a matrix with n columns, then
Ax is the column vector

(x1 × first column of A)

+(x2 × second column of A)

...

+(xn × last column of A).

[2.13]

Algebraically, that works out to the following formula: for a matrix A with n
columns and a column vector x of length n, Ax is the vector whose ith element
is

(Ax)i =
n∑

j=1

Aijxj [2.14]

where Aij is the number in the ith row and jth column of the matrix A. Equation
[2.14] says that the ith element of Ax is the inner product of the ith row of A with
x, where the inner product of two vectors v and x of length n is defined as

v · x = v1x1 + v2x2 + · · · + vnxn. [2.15]

This expression is sometimes called the dot product, and the alternate notations
〈v, x〉 or (v, x) are also used.

The inner-product interpretation of [2.14] is how people are usually taught to
do matrix-vector multiplication by hand. For example (and make sure that you
understand this example!),[

1 2

3 4

] [
5

6

]
=

[
(1, 2) · (5, 6)

(3, 4) · (5, 6)

]
=

[
1 × 5 + 2 × 6

3 × 5 + 4 × 6

]
=

[
17

39

]
. [2.16]

However, the conceptual definition [2.13] is essential for understanding the bio-
logical meaning of matrix models.
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So what good does this do us? Suppose that we could find a multiplicative in-
verse to A—a matrix A−1 such that A−1(Ax) = x for any vector x. Then we could
solve [2.12] the same way we solved [2.10]: just multiply both sides of equation
[2.12] by the inverse of A to get the solution x = A−1b. Figuring out when such
inverses exist and how to compute them was one of the major accomplishments
of nineteenth-century mathematics.

As is often the case in mathematics, a tool invented for one purpose turns out
to be useful for many others. Notice that the equation [2.6] for births in the
age-structured model has the same form as [2.14]. The survival equation [2.5] is
also a sum, with only one term. So we can express these in matrix notation by
putting the survival and birth rates in the right places:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

n0(t + 1)

n1(t + 1)

...

nA(t + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f0 f1 f2 · · · fA

p0 0 0 · · · 0

0 p1 0 · · · 0
...

...
. . .

...

0 0 pA−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n0(t)

n1(t)
...

nA(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[2.17]

or simply

n(t + 1) = Ln(t) [2.18]

where L is the matrix in [2.17], and n(t) is the population vector
(n0(t), n1(t), . . . , nA(t)). The top row of the matrix contains the births, and the
other nonzero entries are survival.

For example, consider a plant with a maximum age of 2—this might be a plant
that flowers once, at either age 1 or age 2, and then dies. Suppose that newborn
offspring (age 0) have a 50% chance of surviving to age 1; age-1 plants produce
f1 offspring each on average, and have a 25% chance of surviving to age 2, and
age-2 individuals have f2 offspring each on average. The Leslie matrix is then

L =

⎡
⎢⎢⎣

0 f1 f2

0.5 0 0

0 0.25 0

⎤
⎥⎥⎦ . [2.19]

Definition [2.13] tells us how to “read” a matrix like [2.19]. Since ni(t) multiplies
the ith column of the Leslie matrix, the ith column of L gives the individuals
of each age “next year” resulting from a single age-i individual “this year,” as a
consequence of their survival and fecundity. So the first column says that for
each age-0 individual this year, there will be (on average) half a 1 year old next
year—the ones that survive. The second says that for each age-1 individual this
year, the population next year will have f1 age-0 individuals (the offspring of
age-1 individuals) and 0.25 age-2 individuals (the age-1 individuals who survive
to next year). Age-2 individuals all die, so their only contribution to next year’s
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population is their offspring (f2 per 2 year old). In the same way, the jth column
of the general Leslie matrix [2.17] says that for each j year old “this year,” next
year’s population will have fj offspring (age 0) and pj survivors (age j + 1).

Note that it does not matter how survivorship and breeding at a given age are
related to each other. For example, it could be the case in [2.19] that half the
age-1 individuals reproduce and then die (having 2f1 offspring each, on average)
while those that do not reproduce have a 50% chance of surviving to age 2. Or it
could be the case that all age-1 individuals reproduce, and all have a 25% chance
of surviving to age 2. Either way the matrix is the same.

Exercise 2.5. Verify that the following are correct in three different ways: using [2.13],
using the inner-product method illustrated in Equation [2.16], and by writing a script
to do the calculations on the computer.

(a)

[
1 3

2 4

] [
−1

2

]
=

[
5

6

]
, (b)

[
1 0

−1 2

] [
2

3

]
=

[
2

4

]

(c)

⎡
⎢⎢⎣

0 0.5F F

0.5 0 0

0 0.25 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

10

20

10

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

20F

5

5

⎤
⎥⎥⎦ .

Exercise 2.6. Write a script file to run simulations of the biennial plant model [2.19]
with f1 = 1, f2 = 5, starting from a single age-1 individual at time 0. Have the script
plot as functions of time (1) the log of the total population size N(t) = n0(t) + n1(t) +
n2(t), and (2) the fraction of individuals of each age, wi (t) = ni (t)/N(t), i = 1, 2, 3,
for t = 1 to 50. What long-term properties of the population do you see in your
simulation results?

Exercise 2.7. Write down the Euler-Lotka equation [2.8] for the biennial plant model
[2.19] with f1 = 1, f2 = 5, and numerically solve it for the value of λ. How does this
compare to the rate of population growth that you saw in your simulations? [You can
find λ approximately by having your script compute the left-hand side of [2.8] at a
finely spaced set of λ values, and finding one at which the sum is closest to 1. Or if
you’re adventurous, find a function in your scripting language that finds the roots of
univariate functions, e.g., uniroot in R or fzero in MATLAB.]

2.2.2 Warning: Prebreeding versus Postbreeding Models

The interpretation of the f ’s depends on when births occur relative to the annual
census time. Suppose we census the population on January 1 each year. In
humans, births occur year round, so fa should be the average number of births
over the coming calendar year, to an individual whose age was between a and
a + 1 on January 1, but only counting offspring that survive until January 1 of
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next year. So fa is the sum over all such individuals of

(average number of births on Jan 1) × (survival from this Jan 1 to next Jan 1)

+(average number of births on Jan 2) × (survival from this Jan 2 to next Jan 1)

+(average number of births on Jan 3) × (survival from this Jan 3 to next Jan 1)

and so on.
In other cases it is more accurate to assume a once-per-year seasonal “pulse” of

births, as if all offspring for the year were born at once. Let ma be the number
of offspring that an a year old has in the current birth pulse. If we census the
population immediately after the pulse (postbreeding census) then

fa = pa [survival to next year]

×ma+1 [# offspring in next year’s birth pulse].

But if we census just before the pulse (prebreeding census), then

fa = ma [# offspring now—but not counted until next year]

×p0 [fraction of offspring who survive to be counted].

Both of these are valid under their assumptions about census timing, and both
are used. As a result, formulas for things like life expectancy, population growth
rate, and so on, exist in two different versions for prebreeding and postbreeding
models. An additional complication is that some authors (e.g., Caswell 2001)
number age-classes starting at 1 rather than 0, so that their n1(t) is equivalent to
our n0(t). Even experts get confused by all these options, and many books and
papers include a mix of formulas based on incompatible assumptions. So when
you see f4 in a book or paper, it’s important to check what the author intends it
to mean.

2.3 Matrix Models Based on Stage Classes

In most applications to nonhuman organisms, the oldest age A really consists of
individuals aged A or older, due to lack of data. The meaning of “extreme old age”
is that most individuals die before they get there, so there always are relatively
few observations of what happens to extremely old individuals. For example,
suppose during your study of a lizard population, there is one hardy 4 year old
who lives to be 5, then lives to be 6, and then dies, while all other individuals
die before they reach the age of 4. So would you then take p4 = 1, p5 = 1, p6 = 0?
A better option is to assume that all individuals above some age are identical, so
that you can get a reasonable estimate of their average survival probability.

Collapsing all ages above some cutoff into one “age-class” is our first example
of the tradeoff between model error and parameter error. Model error means errors
due to incorrect assumptions, where the model simplifies or omits known aspects
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of reality. Combining all individuals of age 3 or above is likely to create model
error, because we have no grounds for believing that there really are no systematic
differences between a 3 year old and a 5 year old. Parameter error means errors due
to parameters being estimated inexactly from a limited set of data. By combining
all 3+ year olds, we avoid the parameter errors that would result from estimating
p4, p5, and p6 from a sample of size 1. The resulting model has a category of
individuals who are likely to be fairly similar, with parameters for the category
being “average” or “typical” values for members of the category. It is always
possible to reduce model error by making a model more complex, but parameter
error usually goes up because you have to somehow estimate more parameters
from the same amount of data. We discuss this tradeoff more fully in Chapter 9.

More generally, individuals can be classified by their stage in the life cycle.
Sometimes there really are discrete life stages, such as caterpillar-cocoon-butterfly
(or more generally larva-pupa-adult in insects). But sometimes it is just a group of
individuals defined by some measurable feature, such as length or weight, that is
the best available attribute for predicting their fate over the next period of time.

The most common attributes for defining categories are measures of individual
size. These have long been popular in the forestry literature, because size is
generally much better than age for predicting tree growth and mortality. Now size
is used also for animal populations, with recent examples including sea turtles,
desert tortoise, geese, corals, copepods, and fish (Caswell 2001). Size categories
are usually defined so that between one census and the next individuals can grow
or shrink by at most one category, and all newborns are in the smallest category,
but this is not always the case. For example, Valverde and Silvertown (1998) used
size-classified matrix models for the woodland herbaceous plant Primula vulgaris
in which individuals could grow by two categories, in order to study how Primula
population growth was affected by the degree of forest canopy closure. For one
of their study sites (Woburn Wood), the projection matrix for 1993 to 1994 was⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.03 0.10 0.18

0.25 0.35 0.12 0.02 0

0.04 0.45 0.65 0.33 0.19

0 0 0.16 0.58 0.38

0 0 0 0.05 0.38

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with the categories being defined by plant area (see the right-hand side of Table
2.1). As with our hypothetical model [2.19] we “read” this matrix by recogniz-
ing that each column specifies the contribution of one category to next year’s
population.

A useful way to graphically represent a stage-classified matrix model is the life
cycle graph in which each “node” represents a stage, and arrows show possible
changes in stage for individuals between one time interval and the next. Figures
2.1 and 2.2 show two examples. By convention, staying put in a stage is drawn
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Category Carapace length (mm) Category Plant area (cm2)

Yearling Seedling 0.5–5

Juvenile 1 <60 Juvenile 5.1–35

Juvenile 2 60–99 Adult 1* 35.1–200

Immature 1 100–139 Adult 2* 200.1–600

Immature 2 140–179 Adult 3* > 600

Subadult* 180–207

Adult 1* 208–239

Adult 2* >240

Table 2.1 Two examples of stage classifications based in part on individual size. Asterisks indicate

reproductive categories. The two left columns give the categories used by Doak et al. (1994) for

desert tortoise in the western Mojave desert, which were the same as those used by the Bureau of

Land Management in the population monitoring program that provided the data for the model.

The two right columns give the categories defined by Valverde and Silvertown for the forest herb

Primula vulgaris.

Figure 2.1 The standard size-class model. Size categories are broad enough

that individuals can’t change by more than one category between population

censuses, and all newborn individuals are in the smallest size class. These all

look the same apart from the number of “stages”.

Figure 2.2 Stage-structured model for killer whales (from Brault and Caswell

1993). The stages recognized were 1 = yearling, 2 = juvenile, 3 = mature fe-

male, and 4 = postreproductive female.
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as an arrow, but deaths are omitted on the assumption that no life stage is invul-
nerable. Also note that there is no distinction in the diagram between survival
and fecundity. Since a basic premise of the model is that an individual’s stage
classification provides complete information about its future prospects, it does
not matter (in the model) if a small individual is a newborn or an older individ-
ual who shrank back down to newborn size. The life cycle diagram represents
your idea of a good way of classifying individuals. If there are discrete stages, it is
probably a good idea to use those in the model. Otherwise, experience suggests
that the most important issue is selecting which trait to use as the basis for classi-
fying individuals (e.g., age versus size). The trait used for classifying individuals
is sometimes called the individual state variable or the i-state variable.

Given the right data, alternative choices of i-state variable can be compared
objectively. For example, if you know an individual’s size, can you predict her
fecundity more accurately if you also know her age? Caswell (2001, section 3.3)
presents several examples of this kind of comparison. However, the classifica-
tion is often dictated by circumstances. For example, Doak et al. (1994) based
their model on data that had already been collected by the Bureau of Land Man-
agement. They had no choice but to use size as their i-state variable, with the
categories used in the BLM surveys (Table 2.1). Valverde and Silvertown (1998)
based their classification on knowledge of the species’ natural history, with class
boundaries chosen so that each category had sufficient sample size for estimating
matrix entries.

Having chosen a stage classification, the model is completed by specifying the
projection matrix entries aij,

aij = number of type-i individuals at time t + 1, per type-j individual at time t .

Contributions from j to i may be survival, fecundity, or a combination of these.
As in the age-structured model, we assume (for now) that the aij are constant.
The fundamental balance law is then

ni(t + 1) = ai1n1(t) + ai2n2(t) + · · ·

=
m∑

j=1

aijnj(t).
[2.20]

The projection matrix A is defined to be the n × n matrix with entries aij, and the
model then becomes

n(t + 1) = An(t). [2.21]

Estimating the value of matrix entries is a subject in itself. Entire careers (and
entire books, e.g., Williams et al. 2002) are devoted to methods for analyzing
census data on populations in order to estimate demographic rates. Morris and
Doak (2002, Chapter 6) give some guidelines on how to conduct field studies to
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estimate demographic rates. The ideal situation is if individuals can be given a
unique tag or mark (or come with unique markings), and you can come back
later to see what happened to them. Plants sit still and wait to be counted, but
with animals it is often hard to distinguish between death and emigration out of
the study area.

Similarly for fecundities, the best situation is if you can identify and count the
offspring of each parent. This is often possible with large animals or animals that
live in family groups. For plants, a common approach is to count seeds while
they are still on the parent plant. Then, assuming that (once released) a seed is a
seed is a seed, you can estimate

Fi = (average number of seeds produced by a class-i plant)

× (fraction of all seeds that survive to be seedlings at the next census).

The same idea has also been used for estimating fecundity in birds: do a census of
offspring in their natal nest, and decrement those counts by the overall fraction
of nestlings that survive to the next census.

There are also ways to indirectly estimate parameters from population count
data. Indirect methods begin by assuming that the model is valid, and then
asking: What must the survival (or growth or fecundity) parameters be, in order
to generate the population that I observed? This is more difficult than direct
estimates and less secure, because of the a priori assumption that the model is
valid. Indirect methods for structured population models are reviewed by Wood
(1997) and Caswell (2001, section 6.2).

Exercise 2.8. State in words the meaning of the second and fourth columns of the
projection matrix given above for Primula vulgaris in Woburn Wood.

Exercise 2.9. Draw the life cycle graph for Primula vulgaris in Woburn Wood.

2.4 Matrices and Matrix Operations

Our goal now is to derive general properties of matrix models that allow us to
make connections between the matrix entries and the long-term fate of a popula-
tion governed by [2.21]. For example, in conservation planning it is important to
know which matrix entries have the greatest impact on whether the population
is growing or shrinking, so that those can be targets for remediation efforts (e.g.,
striving to increase the survival during particularly important stages of the life
cycle).

Rewriting the balance equations [2.20] in matrix form [2.21] is more than a
convenience, because the algebra of matrices (called linear algebra) has a lot to
tell us about the equations. This section reviews some concepts and results from
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linear algebra that will give us much insight into the balance equations for pop-
ulations. Moreover, these results will be employed in Chapter 3 in an entirely
different setting, to model the gating of membrane channels in neurons.

2.4.1 Review of Matrix Operations

Addition and subtraction of matrices are done element by element, and are there-
fore only defined for matrices of the same size:

C = A ± B has entries cij = aij ± bij. [2.22]

Multiplication of a matrix by a scalar (real number) is also element by element:

B = cA has entries bij = caij. [2.23]

Examples are
[

1 2 3

4 5 6

]
+

[
2 6 10

4 8 12

]
=

[
1 + 2 2 + 6 3 + 10

4 + 4 5 + 8 6 + 12

]
=

[
3 8 13

8 13 18

]

2

[
1 2

3 4

]
=

[
2 4

6 8

]
.

[2.24]

Matrix multiplication is more complicated. The product C = AB is defined if the
number of columns of A is equal to the number of rows of B. If A = (aij) has size
m × n and B = (bij) has size n × r, then C = A · B has size m × r and

cik =
n∑

j=1

aijbjk. [2.25]

Note that if B has only one column, this reduces to the definition of matrix-
vector multiplication [2.14]. Thus, another definition of matrix multiplication is
the following:

kth column of AB = A × (kth column of B). [2.26]

Our attitude is that matrix multiplication is usually best done on the computer.
It is important to understand the conceptual definition [2.26] and the algebraic
formula [2.25], but when working with actual numbers, it is easier and less error-
prone to use a computer language that includes matrices and matrix multiplica-
tion.

Matrix operations share many properties with the familiar arithmetic of real
numbers. For example,

• Matrix addition is associative [A + (B + C) = (A + B) + C] and commutative

[A + B = B + A].
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• Matrix multiplication is associative [A(BC) = (AB)C] and distributive over

addition [A(B + C) = AB + AC, (A + B)C = AC + BC].

However, matrix multiplication is not commutative—typically AB 
= BA. Indeed,
unless A and B are square matrices of the same size, either one of the products
AB and BA will be undefined, or the two products will be matrices of different
sizes. But even in the case of square matrices commutativity typically does not
hold. Here is a simple example:[

1 0

0 −1

] [
0 1

1 0

]
=

[
0 1

−1 0

]

but[
0 1

1 0

] [
1 0

0 −1

]
=

[
0 −1

1 0

]
.

However, scalar multiplication is commutative in the sense that A(cB) = c(AB).

2.4.2 Solution of the Matrix Model

Having defined matrix multiplication, we can now easily write down the solution
to the matrix model [2.21], in the same way that we solved the unstructured
model [2.2]. Starting from some initial population vector n(0) we get

n(1) = An(0)

n(2) = An(1) = A(An(0)) = A2n(0)

n(3) = An(2) = A(A2n(0)) = A3n(0)

...

[2.27]

leading to the general solution

n(t) = Atn(0), [2.28]

where At denotes the product of A with itself t times. We can form these prod-
ucts because A is a square matrix, and the order of operations in computing the
products does not matter because matrix multiplication is associative.

2.5 Eigenvalues and a Second Solution of the Model

The most basic question we can ask about a population is whether it will grow
or become extinct in the long run. The solution of the matrix model shows that
the answer depends on the behavior of At , the powers of the projection matrix
as t increases. We can determine the properties of At through the eigenvalues
and eigenvectors of the matrix A.
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A number (possibly complex) λ is an eigenvalue of A if there is a nonzero vector
w such that Aw = λw, and w is called the corresponding eigenvector. Eigenvec-
tors are defined only up to scaling factors: if w is an eigenvector for λ then so is
cw for any number c 
= 0. An n × n matrix A must have at least one eigenvalue-
eigenvector pair, and it can have up to n (see this chapter’s Appendix for an
explanation of why this is true). The typical situation is to have n distinct eigen-
values each with a corresponding eigenvector—this is typical in the sense that
if matrix entries are chosen at random according to some smooth probability
distribution, the probability of the resulting matrix having n distinct eigenvalues
is 1.

There is a useful formula for the eigenvalues of a 2 × 2 matrix A. If T = a11 + a22

is the trace (sum of diagonal elements) and � = a11a22 − a12a21 is the determinant
then the eigenvalues are

λ1,2 = 1
2

(
T ±

√
T2 − 4�

)
. [2.29]

Back to equation [2.21]. Assuming there are n distinct eigenvalues, the corre-
sponding eigenvectors wi are linearly independent, which means that for any n(0)

it is possible to find constants ci such that

n(0) = c1w1 + c2w2 + · · · + cnwn =
n∑
i

ciwi. [2.30]

Then

n(1) = An(0) = A(c1w1 + c2w2 + · · · + cnwn)

= c1Aw1 + c2Aw2 + · · · + cnAwn

= c1λ1w1 + c2λ2w2 + · · · + cnλnwn.

[2.31]

Comparing [2.30] with [2.31] we see that going forward one step in time corre-
sponds to multiplying all the coefficients ci by the corresponding eigenvalue λi.
We can go from t = 1 to t = 2 in the same way, getting

n(2) = c1λ
2
1w1 + c2λ

2
2w2 + · · · + cnλ

2
nwn [2.32]

and so forth. Thus the solution of the matrix model is

n(t) =
n∑
i

ciλ
t
i wi. [2.33]

An eigenvalue λ1 is called dominant if |λi| < |λ1| for all other eigenvalues of
A. If so, it follows from [2.33] that the long-run behavior of the population is
determined by the dominant eigenvalue and its eigenvector:

n(t) ∼ c1λ
t
1w1. [2.34]

The meaning of ∼ in equation [2.34] is that as t → ∞ the relative error goes to
zero.
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Equation [2.34] tells us two things about the population. First, in the long run
the total population size grows exponentially at rate λ1, just as in the unstructured
model [2.2]. Second, the population vector becomes becomes proportional to
w1; in particular, the relative numbers in each stage become constant. For that
reason, w1 is called the stable stage distribution.

The Perron-Frobenius theorem from linear algebra provides an easy-to-check
condition which guarantees existence of a dominant eigenvalue. A matrix A is
called power-positive if there is an integer m > 0 such that all entries of the matrix
Am are strictly positive. The most important result is the following:

If a non-negative, square matrix A is power-positive, then A has a unique dominant

eigenvalue λ which is real and positive, and the eigenvector w corresponding to λ has

all positive entries.

This criterion for existence of a dominant eigenvalue is especially useful because
power-positivity depends only on which elements in the matrix are positive, not
on their numerical values. It is also useful that there is a simple test to determine if
a non-negative matrix is power-positive (Horn and Johnson 1985, p. 520), which
is easy to implement on the computer:

If A is a non-negative square matrix with n rows and columns, then A is power-

positive if and only if all entries of An2−2n+2 are positive.

Because eigenvectors are defined only up to multiplication by a constant, the
statement that the dominant eigenvector has all positive entries really means that
all entries in any dominant eigenvector have the same sign. A software package
may give you an eigenvector (call it w∗) with all negative entries, in which case
w = −w∗ is the strictly positive eigenvector guaranteed by Perron-Frobenius1.

Exercise 2.10. Write a script to verify that the following projection matrix is power-
positive:⎡

⎢⎢⎢⎢⎣
0 0 0 4

.8 .1 0 0

0 .8 .6 .3

0 .1 .3 .6

⎤
⎥⎥⎥⎥⎦ .

Exercise 2.11. Find a 4 × 4 Leslie matrix L1 that is power-positive, and a second
Leslie matrix L2 that is not power-positive. In the latter case, verify your conclusion
by writing a script that computes and prints the smallest value in the matrix Lj

2 for
each j = 1, 2, . . . , n2 − 2n + 2. What happens to the age structure, starting from a
single newborn, in your non-power-positive example? [Note: a Leslie matrix is a

1Power-positivity does not guarantee that there are n distinct eigenvalues, but so long as there is a dominant
eigenvalue, equation [2.34] still holds—this is not hard to show using the Jordan Canonical Form for matrices.
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matrix of the form [2.17], in which all of the p’s are positive, and at least one of the
f ’s must be positive.]

Exercise 2.12. According to Lande (1988) females of the Northern Spotted Owl begin
breeding at age a = 3, and are estimated to have an average of 0.24 female offspring
per year until they die (fa = 0.24 for a ≥ 3). The survival probability from birth to
age 3 is estimated to be 0.0722, and the annual survival probability of adults (age
3 or older) is 0.942 (these values refer to the notational conventions that we used
in the age-structured model, so that a newborn individual is 0). This owl has been
controversial, because of the conflict between the need to preserve old-growth forests
as habitat for spotted owl, and the interest of logging companies in harvesting those
forests.

(a) We told you that l3 = p0p1p2 = 0.0722 but not the values of the individual p’s. That is

because any choice of p’s with this product will result in the same population growth

rate. Why is that true? (Note: the answer to this question should be verbal; no formulas

are needed).

(b) Construct a projection matrix for the population based on the estimates above.

(c) Compute the owl’s long-term growth rate λ from the projection matrix. Does it appear

that the population is safe, or in danger of extinction?

Exercise 2.13. Killer whales (Orcinus orca) are long-lived marine mammals that live in
stable social groups called “pods.” Their stable social structure and the fact that indi-
vidual whales can be photo-identified makes them especially well suited to scientific
study. Demographic data on killer whale populations in the coastal waters of British
Columbia and Washington state have been collected since 1973. Brault and Caswell
(1993) used the 1973–1987 data and a stage-structured matrix model to investigate
several demographic questions concerning the whales. They model the females with
a mixed age-stage classification: yearlings, juveniles (past the first year, but not ma-
ture), mature, and postreproductive. The life cycle graph is shown in Figure 2.2 and
the projection matrix A is given below:

A =

⎡
⎢⎢⎢⎢⎣

0 0.0043 0.1132 0

0.9775 0.9111 0 0

0 0.0736 0.9534 0

0 0 0.0452 0.9804

⎤
⎥⎥⎥⎥⎦ . [2.35]

Write a script file that

(a) computes the dominant eigenvalue λ and stable stage distribution w for the whale

population;

(b) projects the population dynamics for the next 50 years assuming that the current pop-

ulation vector is x0 = (10, 60, 110, 70);
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(c) plots on three separate graphs the projected changes over time in

• N(t) = total population size in year t,

• the annual population growth rate λ(t) = N(t + 1)/N(t),

• the proportion of individuals in each stage.

Does the population structure become stable? How does it change over time? How
quickly does the annual growth rate λ(t) converge to the dominant eigenvalue λ?

Exercise 2.14. Rerun your script for killer whale population dynamics with the fol-
lowing initial population vectors:x0 = (250, 0, 0, 0), (0, 250, 0, 0), (0, 0, 250, 0), and
(0, 0, 0, 250). Compare and contrast the four population projections—for example,
(a) consider the stage distribution and its stability; (b) which stage seems to be the
most important in terms of the future growth of the population?

Exercise 2.15. Consider a possible harvest from the killer whale population, consist-
ing of individuals from a single stage, for example, all juveniles or all reproductive
adults. Suppose that the initial population structure is the stable distribution w with
a total of 250 individuals. What is the maximum number of juveniles that can be
taken each year such that the population is not driven to extinction? What is the
maximum number of reproductive adults? Note: Assume that harvest will take place
after the breeding season, so that the model becomes x(t + 1) = Ax(t) − h where
h = (h1; h2; h3; h4) is a vector of the number of individuals harvested from each stage
each year, hi . Assume that h is constant: same harvest each year.

2.5.1 Left Eigenvectors

There is a definition of left eigenvalues and eigenvectors analogous to that for
right eigenvalues and eigenvectors: if vA = λv (where v is a nonzero row vector
of length n) then v is a left eigenvector and λ is the corresponding eigenvalues.
There are three key properties:

• The left eigenvalues of a matrix A are the same as the right eigenvalues.

• The left eigenvectors of A are the right eigenvectors of its transpose AT . AT is the

matrix whose (i, j)th element is aji. That is, the rows of A become the columns of

AT , for example,⎡
⎢⎢⎣

1 2 3

4 5 6

7 8 9

⎤
⎥⎥⎦

T

=

⎡
⎢⎢⎣

1 4 7

2 5 8

3 6 9

⎤
⎥⎥⎦ .

• If A is power-positive so is AT , and hence the dominant left eigenvalue has all

positive entries.
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Left eigenvectors are important for the long-term dynamics of matrix mod-
els. First, they determine eigenvalue sensitivity: the extent to which each matrix
entry affects the dominant eigenvalue. Let v and w be the left and right eigenvec-
tors corresponding to the dominant eigenvalue λ of a power-positive projection
matrix A. Then

∂λ

∂aij
= viwj

v · w
[2.36]

where v · w is the dot product defined above [equation (2.15)].
Second, the dominant left eigenvector (when it exists) has a biological inter-

pretation as the “reproductive value” of different stages, a concept due to R. A.
Fisher. Think of different stages as alternate “investments” in long-term popula-
tion growth. If you could put one dollar into any one of these investments (∼
one individual in any of the stages) what is their relative payoff in the long run
(relative size of the resulting population in the distant future)? The answer is that
the “payoff” from a stage-j individual is proportional to vj (see the Appendix of
this chapter). In age-structured models it is conventional to scale v so that v0 = 1,
that is, so that its entries are reproductive values relative to that of a newborn.

Exercise 2.16. Compute the reproductive value vector v for the killer whale model
[2.35], scaled so that v1 = 1. How does this relate to your conclusions from simulating
the population starting from different initial populations?

Exercise 2.17. Construct the projection matrix A, and then find λ, v, and w for
an age-structured model with the following survival and fecundity parameters.
Age-classes 0–5 are genuine age classes with survival probabilities [p0, p1, . . . , p5] =
[0.3, 0.4, 0.5, 0.6, 0.6, 0.7]. Note that pj = aj+1,j , the chance of surviving from age j
to age j + 1, for these ages. Age-class 6 are adults (age 6 or older), with survival 0.9
and fecundity 12.

2.6 Some Applications of Matrix Models

Table 2.2 summarizes the main theoretical results for the case of a power-positive
projection matrix A. From here on λ, v, w without subscripts will refer to the
dominant eigenvalue (formerly λ1) and corresponding left and right eigenvectors,
whose existence is guaranteed by the Perron-Frobenius theorem. We now present
two applications of these results to biological questions that have been addressed
using matrix population models.

2.6.1 Why Do We Age?

Evolutionary biologists distinguish between proximate and ultimate explanations
for phenomena. A proximate explanation tells us how the phenomenon occurs—
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Model n(t + 1) = An(t), n(0) = n0

Solution n(t) = Atn0

Eigenmode expansion n(t) = ∑
ciλ

t
i wi

Long-term exponential growth
∑

i ni(t) ∼ cλt as t → ∞
Stable stage distribution n(t) ∼ cλtw

Stage-specific reproductive value Proportional to v

Eigenvalue sensitivity formula
∂λ

∂aij
= viwj

v · w

Table 2.2 Main properties of a matrix model with power-positive projection matrix A

for example, the physical and biochemical processes involved in meiotic cell
division as part of sexual reproduction. An ultimate explanation attempts to say
why the phenomenon occurs—for example, why some species have evolved to
have sexual reproduction while others have not.

Models are important for developing ultimate explanations, because they let
us consider the consequences of the alternatives that are not seen in nature. As R.
A. Fisher observed, if we want to understand why humans have two sexes rather
than three or more, we must “work out the detailed consequences experienced by
organisms having three or more sexes” (Fisher 1930). To understand the “why”
of traits molded by evolution, we first need to compare things as they are with
the other ways things might have been. Only then can we start to hypothesize
why evolution produced one outcome rather than the other.

For modeling evolution of the life cycle, the growth rate λ can be identified
with Darwinian fitness: the contribution of offspring to future generations. On
the reasonable assumption that matrix entries are determined by the organism’s
genotype, and if multiple genotypes are present within a population, then pop-
ulation genetic models predict (with some caveats) that the genotype with the
largest λ for its matrix becomes fixed in the population (Charlesworth 1994).
The main caveat is a standard one in population genetics theory: if the most fit
genotype is a heterozygote, then a stable polymorphism is maintained.

An ultimate explanation for sexual reproduction still eludes us: theories
abound, and new ones are proposed as quickly as old ones are rejected. But
for aging (technically called senescence), there is a widely accepted theory based
on the eigenvalue sensitivity [equation [2.36]]. This explanation is derived by
modeling a life cycle without aging—the alternative that is not seen in nature—
and then asking whether a little bit of aging would lead to increased Darwinian
fitness.

Life without aging means that females start reproducing at some age m (for
“maturity”), and thereafter have constant fecundity fj = f and survival pj = p < 1
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for all ages j ≥ m. We have assumed that p < 1 to represent an age-independent
rate of deaths unrelated to aging.

The eigenvalue sensitivity formula lets us compute the relative eigenvalue sen-
sitivities at different ages for this life cycle without any hard calculations, so
long as λ = 1. Populations cannot grow or decline without limit, so λ must be
near 1. The reproductive value of adults (vi, i ≥ m) is independent of age because
all adults have exactly the same future prospects and therefore make the same
long-term contribution to future generations. On the other hand, the stable age
distribution wj goes down with age. With λ = 1 the number of m year olds is
constant, so we can compute nm+k(t) = nm(t − k)pk = nm(t)pk. That is, in order to
be age (m + k) now, you must have been m years old k years ago, and you must
have survived for the k years between then and now. Therefore

wj ∝ pj−m for j ≥ m.

Consequently, the relative sensitivity of λ to changes in either the fecundity
a1,j or survival aj+1,j of age-j females, is proportional to pj−m. In both cases, as j
changes the relevant wj is proportional to pj−m while the reproductive value vj

stays the same. This has two consequences:

1. The strength of selection against deleterious mutations acting late in life is weaker

than selection against deleterious mutations acting early in life.

2. Mutations that increase survival or fecundity early in life, at the expense of an

equal decrease later in life, will be favored by natural selection.

These are known, respectively, as the mutation accumulation and antagonistic
pleiotropy theories of aging. In addition there is a particular form of antagonis-
tic pleiotropy, the disposable soma hypothesis, which posits that the connection
between early and late vigor is mediated by investment in maintenance and re-
pair mechanisms at the cellular and molecular levels, such as DNA repair and
antioxidant systems.

Distinguishing between these theories is difficult because they agree on the fun-
damental prediction: If the level of unavoidable extrinsic mortality is high then
the organism is predicted to be short lived even in a protected environment, while
low levels of unavoidable extrinsic mortality should lead to potentially long-lived
organisms. Experiments—mainly on Drosophila—have uniformly supported this
prediction (Kirkwood and Austad 2000). In addition, there is some direct support
for each mechanism.

Antagonistic pleiotropy.
There is abundant evidence for antagonistic tradeoffs (e.g., Roff 2001, Chapter 3).
The ideal organism would mature instantly, live forever, breed often, and have
many offspring each time. In reality we never see this because improvements on
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one front are paid for on another. For example, early maturation typically entails
smaller adult body size and hence lower fecundity. Conversely, experimental
selection against early fecundity in Drosophila led to increased fecundity later in
life. Similar results have been obtained on other insects, birds, and mice (Roff
2001).

Disposable soma.
A unique prediction of this theory, also supported by numerous studies, is that in-
trinsically long-lived organisms should have higher levels of cellular-level main-
tenance and repair processes. For example, DNA repair capacity correlates with
lifespan in mammals, as does the level of poly(ADP-ribose) polymerase, an en-
zyme that is important in maintaining DNA integrity. Intrinsic longevity also
correlates with levels of defense against thermal extremes and chemical toxins
(Kirkwood and Austad 2000).

Mutation accumulation.
A unique prediction of this theory is that genetic variability should increase with
age. There is some evidence in Drosophila for genetic variance in male mating suc-
cess and mortality rate, but experiments on other traits have found no evidence
of mutation buildup with age.

So it seems likely that all three hypothesis play some role in actual patterns of
aging. As usual in biology, it’s not quite that simple. An essential assumption
of the theory is that age-independent mortality is unavoidable. If some mor-
tality risks can be reduced by retaining youthful vigor—for example, predator
avoidance—then populations exposed to higher mortality might have reduced
senescence in traits that reduce the avoidable mortality (Abrams 1993). This idea
has recently been invoked to explain a “mosaic” pattern of senescence observed
in guppies, in which some traits exhibit more rapid aging in populations exposed
to high predation, while other traits do not (Reznick et al. 2004).

The more general message of this section is that structured population models
provide a framework for understanding the life cycles of organisms as adaptations
for maximizing fitness subject to tradeoffs and constraints. This topic, called life
history theory, has been an active research area since the 1960s. Stearns (2000)
gives a good short overview, and Roff (2001) is a recent comprehensive text.

2.6.2 Elasticity Analysis and Conservation Biology

The dominant eigenvalue-eigenvector pair summarize what will happen to the
population if nothing changes. A value of λ > 1 implies a growing population,
and λ < 1 means that the population is predicted to decline to extinction.

In the latter case, the practical issue is, what can we do to improve things? One
approach to that question was based on using the eigenvalue sensitivity formula

This content downloaded from 
�������������96.248.68.89 on Sun, 18 Jul 2021 13:25:21 UTC�������������� 

All use subject to https://about.jstor.org/terms



January 18, 2006 16:07 m26-main Sheet number 75 Page number 53

Structured Population Dynamics 53

to identify matrix entries with the biggest effect on λ. Fairly soon, the objection
was raised that survival and fecundity entries are on intrinsically different scales:
a survival must lie between 0 and 1 while fecundities can be enormous (balanced
by high mortality between birth and maturation). As a result, survival rates often
have higher sensitivity than fecundity: changing newborn survival from 0.1 to
0.4 will probably have a large impact, but changing adult fecundity from 1000.1
to 1000.4 will not do much at all. As this example indicates, a better measure is
the proportional sensitivity or elasticity, defined as

eij = fractional change in λ

fractional change in aij
= ∂λ/λ

∂aij/aij

= aij

λ

∂λ

∂aij
.

[2.37]

The value of eij says nothing about which matrix entries actually could be
changed, or by how much, but it does identify potential targets of opportunity.
So in many applications of matrix population models, the main goal of build-
ing the model is to compute the elasticities. Note also that [2.37] applies only to
small changes in matrix entries, and effects of large changes have to be computed
directly, by modifying the matrix and recomputing λ.

Desert tortoise.
A structured population model for the desert tortoise Gopherus agassizii (Doak
et al. 1994) illustrates how an imperfect model can still be valuable because its
relative predictions are robust in the face of uncertainty about parameter values.
The desert tortoise was listed as endangered in 1989 and a draft recovery plan
was issued in 1993. Particularly severe declines were occurring in the western
Mojave desert. Direct human impacts on the tortoise include

• habitat degradation by off-road vehicles

• habitat loss to urban or agricultural uses

• deliberate hunting (up to 14% of mortality in some areas)

• getting run over by cars or off-road vehicles

There are also indirect impacts, including

• habitat degradation by sheep or cattle grazing

• predation by ravens (which are associated with human presence and attack

yearlings and juveniles)

• an upper respiratory tract infection that may have been introduced by release of

pet tortoises into the wild

Doak et al. (1994) had two goals. The first was to assess the potential threat to the
tortoise posed by the U.S. Army’s proposed expansion of Fort Irwin. The second
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was to compare two management scenarios being considered or implemented:
reducing human disturbance and removing ravens. Human disturbance mainly
affects larger individuals, while raven predation is limited to smaller ones.

The model was based mainly on government reports and previously unana-
lyzed mark-recapture data at eight Bureau of Land Management permanent study
plots in the western Mojave. Individuals were classified based on size and life
stage (Table 2.1). The data included multiple (site × year) combinations for which
stage-specific growth or survival rates could be estimated (6–18 combinations for
the different stages and rates). However, data on fecundity were limited. For the
Mojave there were no direct observations of individual fecundity. Instead, the
modelers divided yearling counts by the number of females censused at the time
the yearlings would have been born. Because yearlings are much harder to find
than adults, this value was regarded as an underestimate and Doak et al. (1994)
applied an arbitrary tenfold factor to compensate for undercounting of yearlings.
In addition, they considered fecundity estimates based on direct observations of
egg production and two estimates of survival to hatching at a different site in the
eastern Mojave, where tortoise populations were not in decline. This gave a total
of four fecundity estimates for the breeding classes. The overall matrix model is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 f6 f7 f8

0.716 0.567 0 0 0 0 0 0

0 0.149 0.567 0 0 0 0 0

0 0 0.149 0.604 0 0 0 0

0 0 0 0.235 0.560 0 0 0

0 0 0 0 0.225 0.678 0 0

0 0 0 0 0 0.249 0.851 0

0 0 0 0 0 0 0.016 0.860

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(f6, f7, f8) = [0.042, 0.069, 0.069]

or [0.42, 0.69, 0.69]

or [1.30, 1.98, 2.57]

or [2.22, 3.38, 4.38].

[2.38]

Even this enormous range of possible fecundity estimates is not necessarily catas-
trophic, because the predictions that you care about may not be affected. Begin-
ning modelers often doubt such claims, but sometimes you get lucky and the
parameters that you know the least about turn out to be the least important. In
this case, Figure 2.3 shows that the eigenvalue elasticities are consistently high-
est for survival of larger individuals. The management implication is to forget
about ravens, and concentrate on reducing the impacts of humans on larger
individuals.
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Figure 2.3 Eigenvalue elasticities for the Doak et al. (1994) stage-structured model for desert tortoise.

The stages are 1 = yearling, 2, 3 = juveniles, 4, 5 = immature, 6 = subadult, 7 = smaller adult, 8 =
larger adult.

The recovery plan for desert tortoise, summarized by Berry (1997), accepted this
conclusion and proposed to create fourteen reserves where the tortoise would be
protected from detrimental human activities, including cattle grazing. Some of
the proposed reserve areas have been established, while others (at this writing) are
in dispute because court-ordered grazing restrictions have not been implemented.

Loggerhead sea turtles.
These studies were also intended to evaluate two different management strategies,
in this case for loggerhead sea turtles Caretta caretta in the southeastern United
States (Heppell et al. 1998). Loggerheads are listed as threatened under the U.S.
Endangered Species Act. Conservation efforts for marine turtles had focused on
reducing egg mortality on human-impacted beaches, but after twenty or thirty
years of effort the numbers of nesting turtles were not showing any increases.
In addition, incidental trapping and drowning of sea turtles in commercial fish-
ing gear, especially shrimp trawlers, led the National Marine Fisheries Service
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(NMFS) to develop a turtle excluder device (TED) that released 97% of trapped
turtles while keeping most shrimp in the net. However, the shrimping industry
complained that TEDs led to loss of valuable harvest, damage to their gear, and
crew injuries, whereas nest protection projects were yielding large increases in
hatchling production at very low cost.

Crouse et al. (1987) used very rough estimates of age-specific survival, growth,
and fecundity rates to derive a seven-class structured model for loggerheads. This
was later revised to a five-class structured model (Crowder et al. 1994).

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 4.665 61.896

0.675 0.703 0 0 0

0 0.047 0.657 0 0

0 0 0.019 0.682 0

0 0 0 0.061 0.8091

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

σi = survival probability

γi = growth probability, conditional on survival

On diagonal: Pi = σi(1 − γi) survive and remain in stage

Subdiagonal: Gi = σiγi survive and grow to next stage.

The eigenvalue elasticities for the five-stage model, shown in Figure 2.4, provide
an explanation for the ineffectiveness of strategies aimed at eggs and nestlings,
and suggest that TEDs will be far more effective. Note that an increase in a stage-
specific survival (σi) will increase both Pi and Gi values by the same proportional
amount. If TEDs were to increase the annual survival of all individuals in stages
2–5, then the proportional sensitivity would be given by the sum of the diagonal
and subdiagonal bar heights, which is 0.88. That is, a 10% increase in annual
survival applied to all these stages would lead to an 0.88 × 10% = 8.8% increase
in λ, which would be sufficient to bring the model’s λ above 1. In contrast, even
if the stage-1 survival were increased to 100%, λ would still be less than 1. So
nest protection is helpful but not sufficient to reverse the population decline.
The same was found to be true for “head-starting,” measures aimed at increasing
the survival of hatchlings (Heppell et al. 1996).

Based in large part on the original analysis, the National Academy of Sciences
recommended requiring TEDs, and the National Marine Fisheries Service ex-
panded seasonal TED requirements to all southeastern shrimp trawls starting
in December 1994. By 1998, loggerhead populations were found to be stable or
increasing on most monitored nesting beaches (Heppell et al. 1998). Because this
was an “uncontrolled experiment” we cannot have full scientific certainty, but it
is highly suggestive that a change in management plans prescribed on the basis
of population models allowed the population to quickly rebound.
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Figure 2.4 Eigenvalue elasticities for the Crowder et al.

(1994) stage-structured model for loggerhead sea turtles.

Stages [stage durations] in the model are 1 = egg and hatch-

ling [1 yr], 2 = small juvenile [7 yr], 3 = large juvenile [8

yr], 4 = subadult [6 yr], 5 = adult [indefinite].

Biological control and pest management.
Matrix models can also be used to compare alternative options for controlling
an undesired species, but for some reason such applications have been rare until
very recently. Rockwell et al. (1997) developed a matrix model for the lesser
snow goose, which has overgrazed and damaged areas of salt marsh in Canada
large enough to be clearly visible in satellite images. As one author of that study
puts it, “If you can see it from space, it’s a real problem” (Evan Cooch, personal
communication). Rockwell et al. (1997) found that the elasticity of adult survival
was 87%, which implies that the only means for controlling the geese is to reduce
adult survival. As a result of this and other analyses, the U.S. Fish and Wildlife
Service relaxed its restrictions on goose hunting in order to increase the harvest of
migrating adults. Similarly Shea and Kelly (1998), McEvoy and Coombs (1999),
and Parker (2000) describe matrix models for the control of invasive and other
undesirable plant populations.

Exercise 2.18. Johnson and Braun (1999) constructed a matrix model for an exploited
population of sage grouse; in this and subsequent exercises we consider a simplified
version of their model. The mean matrix estimated from 23 years of field survey data
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is

A0 =

⎡
⎢⎢⎣

0.18 0.60 0.60

0.33 0 0

0 0.73 0.73

⎤
⎥⎥⎦ [2.39]

with the stages being age 0–1, age 1–2, and age > 2. For this matrix, compute the
dominant eigenvalue, and the matrix of elasticities eij . As the manager responsible for
survival of this population, which vital rates would you be trying to improve? [Note:
the yearling and adult stages could be combined for projecting population growth,
but Johnson and Braun (1999) kept them separate to consider possible age-selective
harvesting policies.]

2.6.3 How Much Should We Trust These Models?

Simple matrix models omit many potentially important factors for population
persistence: emigration and immigration, density dependence in fecundity and
survival, environmental variability, and effects of finite population size (demo-
graphic stochasticity). The use of these models to guide conservation policy,
despite their limitations, brings to the fore the issue of their reliability.

Our examples focused on predicting the relative effectiveness of possible ac-
tions, but models are also asked to make absolute predictions. For example,
Kareiva et al. (2000) used a matrix model to predict whether dam removals (a
proposed but highly controversial action) would be sufficient to reverse the pre-
cipitous decline in salmon stocks in the Columbia River basin. Quantitative
predictions of absolute extinction risk are also among the listing criteria for the
IUCN Red List of Threatened Species (IUCN 2001; also at http://www.redlist.org),
which plays a major role in guiding conservation efforts worldwide. Appreciable
risk of extinction is also the main criterion for listing under the U.S. Endangered
Species Act (USFWS 1988). Consequently, one of the main uses for models in
conservation is to make quantitative predictions about extinction risk (Morris
and Doak 2002).

We still have little evidence as to the accuracy of relative predictions, because
we usually only know what happened under the one policy that was actually im-
plemented. Comparisons of absolute predictions with actual outcomes are also
rare. The most comprehensive study is by Brook et al. (2000); they compared
observed and predicted population growth rates and risk of extinction (more pre-
cisely “quasiextinction,” meaning decline below some threshold density at which
extinction is considered to be inevitable). They compiled population studies for
twenty-one animal species, of sufficient duration that they could use the first half
of each populations’ data to parameterize a simple structured population model.
They then used the model to predict population changes over the second half of
the time period covered by the data, and compared these with the actual data.
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Brook et al. (2000) found remarkably close agreement between the observed and
predicted total number of extinctions, and no tendency to systematically under-
or overestimate the final population size. Holmes and Fagan (2002) performed a
similar test, with similarly good results, for U.S. Pacific Northwest salmon stocks.

These tests indicate that good modelers, with access to a few decades of good
data, can make reliable predictions about groups of related species or populations,
such as the total number of bird or amphibian species expected to go extinct in
the next fifty years. Unfortunately the tests do not tell us about the reliability of
predictions for each individual species (Ellner et al. 2002). Theoretical analysis
(Fieberg and Ellner 2000) and simulation studies (Ludwig 1999; Ellner et al. 2002)
indicate that species-by-species predictions of long-term extinction risk will not
be very accurate, given the amounts of data generally available.

On the other hand, the Doak et al. (1994) analysis illustrates that the important
predictions may still be robust, especially comparisons of options within a sin-
gle population. A recent simulation study suggests that relative predictions will
often be reliable even when absolute predictions are not (McCarthy et al. 2003).
The only way to find out in any particular case is to build the model, and then
quantify how much uncertainty in the relevant predictions is produced by your
uncertainty about parameter values and other aspects of the model. Some gen-
eral computational methods for quantifying prediction uncertainty are reviewed
by Ellner and Fieberg (2003), and illustrated on models for salmon stocks in the
Northwest United States. Decisions have to be made, and an imperfect model
based on limited data is better than none at all, so long as you examine model pre-
dictions across the range of plausible parameter values and model assumptions
(Morris and Doak 2002; Reed et al. 2002).

2.7 Generalizing the Matrix Model

Before moving on to other models we briefly mention three important ways in
which matrix models can be made more realistic. The first two involve dropping
the assumption that matrix entries are constant.

2.7.1 Stochastic Matrix Models

In natural animal and plant populations, fecundity has been observed to vary
enormously between years (by factors of up to 333 in plants, 38 in terrestrial
vertebrates, and 2200 in birds; Hairston et al. 1996). When sufficient data are
available, random variability in transition rates can be incorporated into a matrix
model. There are two main ways of doing so.

1. A nonparametric “bootstrap” approach can be used if a population has been

studied for a series of years, resulting in a series of different estimates of the
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matrix, A1, A2, . . . , Ak. The model is then

n(t + 1) = A(t)n(t)

where A(t) is drawn at random from A1, A2, . . . , Ak. Some of the variability among

the estimated A’s will typically be sampling error rather than real variation in vital

rates, so this approach will tend to overestimate variability.

2. The “parametric” approach is to fit statistical distributions to the observed patterns

of variation and covariation in matrix entries, and simulate the model by drawing

an A matrix for each year from the fitted distributions. Morris and Doak (2002)

review methods for estimating stochastic matrix models from empirical data.

The theory of stochastic matrix models requires mathematics beyond that pre-
sented in this chapter. We refer interested readers to Caswell (2001) for a readable
and practically oriented summary, and to Tuljapurkar (1990) for a comprehensive
review of the theory. One very important result is that there is typically still a
long-term growth rate, analogous to the dominant eigenvector λ. Knowing that
this rate exists, it is then possible to compute its numerical value by simulation,
and also elasticities and the like.

Exercise 2.19. This exercise continues our study of the (simplified) Johnson-Braun
(1999) sage grouse model. Johnson and Braun also estimated the variability over
time in matrix entries; the matrix S below gives the standard deviations:

S =

⎡
⎢⎢⎣

0.04 0.13 0.13

0.09 0 0

0 0.15 0.15

⎤
⎥⎥⎦ .

Write a script to simulate the sage grouse model with random variability in the vital
rates, using the standard deviations above and assuming a normal distribution for each
entry, and initial population vector n(0) = (430, 140, 430). Since each simulation run
will have a different outcome, have your program do 1000 simulations, record (in a
vector) the minimum population size (total number of individuals in all size classes)
over the course of 100 years in each run, and plot a histogram of the minimum
population sizes in the 1000 runs.

Exercise 2.20. When you computed elasticities for the deterministic version of the
sage grouse model, you should have found that the highest elasticity is for adult
(age >2) survival. Therefore, a 20% increase in the mean adult survival has a larger
beneficial impact than a 20% increase in mean adult fecundity, based on the mean
matrix A0. Use simulations to check if this is also true in the stochastic model of
the previous exercise, by comparing (in some informative way) the results from 1000
simulations each of the two scenarios (1, 20% higher mean adult fecundity; 2, 20%
higher mean adult survival).
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2.7.2 Density-Dependent Matrix Models

As a second extension, we can allow density-dependent limits to population
growth. Here the changes in vital rates are assumed to occur due to endoge-
nous feedbacks, such as decreased survival when there is stiff competition for
resources, or difficulty in finding mates when the population is too sparse. In
contrast to random variation, these feedbacks can give rise to completely new
kinds of dynamic behavior. We will soon explore these behaviors in a different
context—differential equation models—so for the moment we give only one il-
lustrative example. Through a series of elegant experiments a simple three-stage
model has been shown to give remarkably accurate predictions for laboratory
populations of flour beetles Tribolium castaneum (Cushing et al. 2002; Dennis et
al. 1997, 2001; Henson et al. 2001). The model is

L(t + 1) = bA(t) exp(−celL(t) − ceaA(t))

P(t + 1) = (1 − µl)L(t)

A(t + 1) = P(t) exp(−cpaA(t)) + (1 − µa)A(t).

[2.40]

Here L, P, and A are the numbers in the larval, pupal, and adult stages of the
beetle life cycle. A time-step of the model corresponds to two weeks of real time,
which is the approximate duration of the larval and pupal stages under laboratory
conditions. Population growth is limited by cannibalism. Foraging adults con-
sume eggs and pupae (which are immobile), and foraging larvae consume eggs.
The model parameters are the birth rate b in the absence of cannibalism, intrin-
sic larval mortality µl and adult mortality µa, and cannibalism rate parameters
cel, cal, cpa.

Figure 2.5 shows some of the possible dynamical behaviors. We plot the num-
ber of larvae, which shows the patterns most clearly; the total population size has
the same qualitative dynamics in each case. In panel (A), the population quickly
reaches a steady state. Matrix entries are then constant (because L, P, and A are
all constant), and such that the dominant eigenvalue is λ = 1 exactly: there is
neither growth nor decline. The population self-regulates to a state where each
individual (on average) replaces itself exactly. In panel (B) the population oscil-
lates: it grows to such a high density that almost all new eggs are cannibalized,
and consequently then drops to a lower density at which higher egg survival
allows the population to rebound. Panels (C) and (D) show more complicated
patterns of overgrowth, crash, and recovery, with periodic oscillations in (C) and
aperiodic chaotic oscillations in (D). Note that there is nothing random in this
model: the erratic behavior in (D) is entirely due to the nonlinear feedback of
population density on population growth rate mediated by cannibalism.

The LPA model has been extensively validated by experiments in which pa-
rameter values of the laboratory population are manipulated (e.g., removing or
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Figure 2.5 The LPA model. Panels (A)–(D) show simulations started with 20 individuals in each

life stage and running for 40 two-week time steps of the model. Panels (E) and (F) compare model

simulations with experimental results for high values of µa and cpa; model simulations used the same

initial conditions as the experiments, [L(0), P(0), A(0)] = [250, 5, 100].

adding adults to alter the effective values of µa and cpa), and experimental data are
compared with model predictions. Panels (E) and (F) show one example out of
many (Cushing et al. 2002). Setting high values of µa and so cpa and using other
parameter values estimated from experimental data, cycles of period 3 with an
on/off/off sequence of egg laying are predicted in model simulations (panel E)
and observed in experiments (panel F). The on’s are variable in the data, rather
than constant as predicted by the model. To capture this variability we would
need a more complex model that simulated variability in egg-laying rates, and
the actual process of cannibalism upon random encounters of beetles burrowing
through flour. But clearly the simple model [2.40] has captured the essentials
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of the experimental dynamics. In other species, however, a stage-structured ma-
trix model was inadequate because there was too much within-stage variation
among individuals (Benton et al. 2004), so more complex models (such as those
described in the next section) would be needed.

The exercises below are an introduction to how nonlinearity can affect popula-
tion dynamics. First, consider a population model for discrete, nonoverlapping
generations defined by

x(t + 1) = bx(t) exp(−cx(t)) = f (x(t)), b, c, > 0. [2.41]

Models of this kind have been used for insects like gypsy moths that have one
generation each year, with adults that do not survive from one year to the next,
and eggs that overwinter. The parameter b is the “intrinsic” birth rate that holds
when the population size is small, and the term exp(−cx(t)) represents density-
dependent decreases in the birth rate. A fixed point x for the model is a value of
x for which f (x) = x. If x(t) is a fixed point, then the population size remains
constant: x(t + 1) = x(t).

Exercise 2.21. (a) For which values of the parameters b and c does the model have a

positive fixed point?

(b) Can the model have more than one positive fixed point? [There is a fixed point for this

model where x = bx exp ( − cx); this occurs if x = 0 or if . . .].

A fixed point xe is stable if nearby values of the population evolve to the fixed
point: if x = x(0) is close to xe, then the sequence x(t) has xe as a limit. When
a fixed point is unstable, the behavior of the population model is more compli-
cated.

Exercise 2.22. Write a script file to simulate model [2.41]. For parameter values
c = 0.01 and b = 4, 8, 12, 16, 20, 24, and initial population size x(1) = 1, have the
script compute and graph x(t) for 1 ≤ t ≤ 100. Have all six graphs appear in a single
window, and put the value of b in the title of each graph.

Exercise 2.23. Write a script file to simulate the LPA model and replicate the results
in Figure 2.5.

2.7.3 Continuous Size Distributions

In many applications of matrix models individuals are categorized based on a con-
tinuously varying attribute such as body size, rather than by discrete life stages.
These modeler-defined “stages” are an artifice imposed to allow the convenience
of using a matrix model. Our final case study in this chapter is a cautionary tale
about the limits of this approach and a possible solution.

Northern Monkshood Aconitum noveboracense is an herbaceous perennial plant
listed as threatened under the U.S. Endangered Species Act (Dixon and Cook
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Figure 2.6 Left panel: Eigenvalue elasticities for a matrix model of northern monkshood using the size-

based classification of Dixon and Cook: seedling, juvenile, small (< 2 mm), medium (2–4 mm), and

large (>4 mm). The seedling stage is omitted because the subset of populations used to parameterize

the model did not have any reproduction by seed during the study period. Right panel: Eigenvalue

elasticities when class boundaries are set based on stem diameter, so that each class contained the

same number of censused individuals.

1990). Transition rates were estimated by repeated census of marked individuals
in a series of populations in the Catskill mountains, with stem diameter and
number of leaves recorded as measures of size. Dixon and Cook (1990) and Dixon
et al. (1997) analyzed the data using matrix models with a small number of size
classes. Figure 2.6 shows elasticity analysis for two matrix models differing only
in their choice of class boundaries. The left panel shows the elasticities using
the “stages” selected by Dixon and Cook (1990), with parameters estimated from
three years of data at one of their sites (Easterling et al. 2000). The right panel
shows elasticities based on exactly the same data, but with boundaries set so that
there were an equal number of observations for each stage class.

The elasticities and their implications for managing the population appear to
be very different. This discrepancy occurs because the size categories used to build
the population model are also used for sensitivity analysis. These objectives may
conflict. To predict future population trends, size categories should contain in-
dividuals who are similar in survival and fecundity under current conditions.
To predict the effect of management actions, size categories should contain in-
dividuals who are similar in their response to possible actions. In principle we
could achieve both goals by using a large number of small categories containing
very similar individuals. But then we would have very little data on each cate-
gory and therefore poor parameter estimates—another example of the tradeoff
between model error and parameter error.
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Figure 2.7 Elasticity surface for the integral projection model for northern

monkshood.

To avoid these problems, Easterling et al. (2000) proposed that the matrix model
should be replaced by an integral projection model (IPM) in which size is a con-
tinuous variable, and the population state is described by a continuous size dis-
tribution n(y, t) such that

∫ b
a n(y, t)dy is the number of individuals whose size

is between a and b at time t . Instead of a projection matrix A the IPM has a
“projection kernel” function K, defined so that

n(y, t + 1) =
S∫

s

K(y, x)n(x, t)dx [2.42]

where s and S are the minimum and maximum possible sizes of individuals.
This integral model does the same thing as the matrix model [equation [2.20]],
computing n(y, t + 1) as the total contribution of size-y individuals “now” from
individuals of any size x “last year,” through either fecundity or individual sur-
vival and growth.

Easterling et al. (2000) describe how a projection kernel can be estimated from
the same data on monkshood that were used to estimate a projection matrix.
Eigenvalue sensitivity and elasticity can then be calculated using a formula sim-
ilar to [2.36] (Easterling et al. 2000). For monkshood (Figure 2.7) the elasticity
surface has regions of high elasticity that could be the focus of management ac-
tions. The narrow, high ridge occurs at the typical size of newborn plants and
thus corresponds to survival from age 1 to age 2. The broader diagonal mound
corresponds to survival of mid-size individuals, with stem diameter up to 2 or
2.5 mm.
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Mark Rees and collaborators (Rees and Rose 2002; Rees et al. 2004; Childs
et al. 2003, 2004) have recently extended the integral model to include size-
and age-dependent demography, as well as stochastic variation. A benefit of the
integral model in these cases is that age and size dependence are described by
smooth functions that may involve only a few parameters. For example, in the
Childs et al. (2004) model for the monocarpic thistle Carlina vulgaris, data on the
probability of flowering as a function of age a and size x (the log-transformed
length of the longest leaf) were fitted by the function

pf (a, x) = exp(β0 + βaa + βxx)

1 + exp(β0 + βaa + βxx)

while the seed production of flowering plants was size dependent and fitted by
s(x) = exp(A + Bx). The complete pattern of age- and size-dependent fecundity
is specified by five parameters, whereas a matrix model would require cross-
classifying individuals by age and size and a separate fecundity parameter for
each age-size class. Using the model to predict how natural selection acts on
the value of the flowering function parameters, it was possible to show that the
observed strategy, where flowering depends on both age and size, is an adapta-
tion to random variation across years in mortality and growth—models ignoring
random variation gave incorrect predictions of the distribution of plant size at
flowering, whereas a model incorporating observed levels of variation gave very
accurate predictions (Childs et al. 2004).

2.8 Summary and Conclusions

We have covered a lot of ground in this chapter, for two reasons. First, to under-
stand matrix models for structured populations we had to review some matrix
algebra. The payoff for this mathematical investment has only begun. In the next
chapter we will see that the eigenvalues and eigenvectors that characterize the
long-term behavior of a matrix population model also summarize important pre-
dictions of Markov chain models for ion channels. In later chapters they will be
essential for understanding differential equation models of gene regulation and
infectious disease dynamics—the universality of mathematics can sometimes be
astonishing. Second, we have tried to illustrate how these general properties
are useful in both basic and applied settings, and how simple matrix models are
being used as the starting point for more general models of structured popula-
tions. Structured populations are everywhere, even inside you. The neurons in
your brain, the T-cells in your immune system, the mercury atoms that you’ve
absorbed from tuna fish sandwiches—what characteristics distinguish one T-cell
(or neuron or · · · ) from another? What processes cause those characteristics to
change? How much of the resulting dynamics of T-cell diversification (or neu-
ron aging or · · · ) could you summarize in a matrix model? How rapidly does
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mercury move among different tissues in your body, and how much of it is lost
each year—it’s not exactly like asking how many sea turtles will still be alive and
how big they will be, but it’s not entirely different. Once you get started, it be-
comes natural to think of just about everything as a structured population of its
constituent components, and then to start wondering what you can learn by
modeling from that perspective.

Exercise 2.24. Give an example of a structured population that you have seen in the
last month, ideally one very different from the ones presented in this chapter. Would
a simple matrix model be appropriate? Why or why not?

2.9 Appendix

Here we fill in some mathematical details for readers who have had a course in
linear algebra.

2.9.1 Existence and Number of Eigenvalues

λ is an eigenvalue of A if and only if it satisfies the characteristic equation det(A −
λI) = 0, since this is equivalent to (A − λI)w = 0 having a nonzero solution w.
Here I is the identity matrix having 1’s on its diagonal (running from top left to
bottom right) and all other elements zero. It is so named because AI = A and
IB = B for any matrices A, B. The characteristic equation is a polynomial of
degree n, so it has at least 1 and at most n distinct solutions in the set of complex
numbers.

2.9.2 Reproductive Value

Here we show that reproductive values vi from the left eigenvector of the pro-
jection matrix give the long-term relative sizes of populations descended from a
single founding individual in stage i. First, observe that v defines an exponen-
tially growing weighted sum of the population vector n(t). That is,

V(t + 1) ≡ v · n(t + 1) = v · An(t) = v · λn(t) = λv · n(t) = λV(t).

So if Vj(t) is the value of V(t) when the population is started from a single stage-j
individual at time 0, we have

Vj(t) = λt vj.

But we also have

Vj(t) = v · n(t) ∼ v · Cjλ
tw = Cjλ

tv · w
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where the constant Cj depends on the stage j of the founding individual. Equating
the two expressions above for Vj(t) we see that Cj is proportional to vj, as claimed.

Another way of expressing this result is that for large t ,

At ∼ Cλt (w ∗ v) [2.43]

regarding w as a column vector (size n × 1) and v as a row vector (size 1 × n)) so
that w ∗ v is a size-n square matrix. From the definition of matrix multiplication
we see that w ∗ v is the matrix whose jth column is w × vj. If we start with a
single single stage-j individual, the population at time t is the jth column of At .
Since the population structure converges to w for any initial population, and the
total number of individuals is proportional to vjλ

t , the conclusion is that At is
given by (2.43).
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