
Review (and Worksheet) of Basic Objects and Algorithms in Dynamical Models in Biology

By Dr. Z. (Doron Zeilberger)

Preliminaries

Mathematics consists of objects: numbers, functions, limits, equations, differential equations,

difference equations, matrices, eigenfunctions, eigenvalues, etc. etc. .

It also consists of algorithms to handle, manipulate, and solve them.

DO NOT CONFUSE THE ALGORITHM WITH THE OBJECT!

I was disappointed that even some of the best students, when I asked them to check that a certain

vector v is an eigenvector of a certain matrix A, instead of doing it directly, applying Av and

checking whether it is a scalar multiple of v, automatically performed the algorithm for finding

all the eigenvalues and the corresponding eigenvectors. Technically it is a correct way (and I should

have specified, ‘without doing it from scratch’) but it was still disappointing).

It is much more important to understand the concepts, then being able to perform the algorithms,

that computers can do much faster and more reliably.

Analogy: Check that x = 1 is a solution of the equation x2 − 9x+ 8 = 0.

Correct but STUPID WAY: Using the formula for the quadratic equation we get

−(−9)±
√

(−9)2 − 4 · 1 · 8
2 · 1

=
9±
√

81− 32

2 · 1
=

9±
√

49

2
=

9± 7

2
= 8, 1 .

Hence the roots of the equation are x = 1 and x = 8. Since x = 1 is one them, we solved this

problem.

Correct and Smart way: The whole point of this problem was to make sure that you understand

the concept of what it means for a number to be a root (or solution) of a given equation. Just

plug-it-in!

12 − 9 · 1 + 8 = 1− 9 + 8 = 0 .

Yea! x = 1 is indeed a solution of the equation x2 − 9x+ 8 = 0.

Basic Notion 1: NUMBER. The most fundamental numbers are integers, then rational num-

bers, (ratios of integers) but the numbers that show up in science are real numbers. Complex

numbers are also useful, but they are really (usually) theoretical devices to help us say something

about the real world. For example the criteria for stability of an equilibrium (discrete or contin-

uous) dynamical system use complex numbers (the eigenvalues are often complex), but these are

1

only theoretical devices. Even negative numbers are not realizable as quantities of species (of course

if you talk about money, you can have a negative amount, in other words you can owe money).

Numbers can be added, multiplied, raised to powers etc. This is numerics that computers are

very good at.

Basic Notion 2: (Algebraic) EQUATION (not to be confused with differential equation). An

(algebraic, or if it involves exponential and trig functions, it is called transcendental) , is a puzzle.

‘I am a number, I satisfy this equation. who can I be?’

As I said above, to solve an equation is often very hard, and even more often, impossible to solve

exactly (but with computers we can get very good approximations, good enough for science and

technology).

To check whether a candidate solution is indeed a solution, is easy! PLUG-IT-IN.

Do right now:

P1: Check whether z = 2 is a solution of the equation z3 + 3z2 − 11z+ 2 = 0. Is z = 3 a solution?

P2: Check whether z = π is a solution of the equation sin z = 0, is z = π
2 a solution?

P3: Check whether z = π
3 is a solution of the equation sin2 z + cos2 z = 1, is z = π

5 a solution?

P4: Find the set of all solutions of the trig equation sin2 z + cos2 z = 1.

Basic notion 3: FUNCTION. The notion of function is very general.

f : A→ B

A is called the domain and B is called the range. If A is a finite set, it can be given in table

form.

The functions that come up in dynamical systems always have the domain ‘time’. If it is continuous

time, the domain is the real axis (if you also care about the past) or the half-line t ≥ 0 (if you only

care about the future). The functions are usually denoted by x(t), or if you have several variables,

x(t), y(t); x(t), y(t), z(t); or, in general, x1(t), . . . , xk(t). Of course you can use any symbols to

denote the dynamical functions.

If we have a discrete time dynamical system, the domain is the set of integers (if you also care

about the past, but usually you don’t), or, or more often, the set of non-negative integers. Such

discrete functions are called sequences. In this case we can’t talk about ‘rate of change’, but in a

discrete-time dynamical system you talk about the evolution, how to get from the value today to

the value tomorrow (see below).

2

Note that x(t) and x(n) are functions that are solutions of dynamical systems, and the domain

is always ‘time’. Either continuous time t, or discrete time n. In addition there is a completely

different kind of functions, called underlying functions, whose domain is also R (but not meaning

time), but, in this case ‘the number (or concentration)’ of some species (or of infected people, or

of nutrients etc.). Don’t confuse these two kinds of functions. When you have two species, you

have functions from R2 to R2, and if you have k species, the underlying function is from Rk to Rk.

When k ≥ 2, it is called the underlying transformation.

Do right now:

P5: For the function x(t) = t4, find its rate of change, and the rate of change of rate of change,

when the time is t = 2.

Basic notion 4: Given a function (or transformation) with the same domain and range

f : A→ A ,

a fixed point is a member of a ∈ A such that f(a) = a.

Warning: the notion of ‘fixed point’ only makes sense if the domain and range are the same.

Do right now:

P6: Check whether x = 1, x = 2, x = 3, x = −1, are fixed points of the function (from R to R)

f(x) = (x− 1) (x− 2) (x− 3) + x.

P7: Check whether the point (x, y) = (0,−1) in R2 is a fixed point of the transformation (from R2

to R2)

f(x, y) = (x+ y + 1, x− y − 2) .

Is (x, y) = (1, 1) also a fixed point?

Basic notion 5: The Orbit (alias trajectory) of a function f : A→ A , starting at a0.

It is

a0, f(a0), f(f(a0)), f(f(f(a0))),

If A is an infinite set (usually the case in applications) the orbit is infinite, so we humans can only

find the first few terms (Maple can easily find the first 10000 terms). In the Maple package

https://sites.math.rutgers.edu/~zeilberg/Bio21/DMB.txt ,

it is given by the very important function Orb(F,x,x0,K1,K2), that inputs F (the transforma-

tion), the list of variables , x, the initial point x0 and integers K1,K2 and outputs the segment of

the orbit from n = K1 to n = K2.

3

Another way of thinking about the orbit (alias trajectory) is as the terms n = K1 through n = K2

of the first-order difference equation

x(n) = f(x(n− 1)) , x(0) = x0 .

Warning: If things take place in R the format is Orb([f],[x],[x0],K1,K2).

Example: For the function f(x) = 2x (1− x)

(i) By hand (w/o computer) find the first three terms of the orbit starting at x(0) = 0.4.

(ii) Write down the Maple line to get the same answer.

(iii) Using Maple, write the Orb command to find the 1000-th term of the orbit, i.e., x(1000). What

is it?

Sol.

(i)

x(0) = 0.4 , x(1) = 2·0.4·(1−0.4) = 2·0.4·0.6 = 0.48 , x(2) = 2·0.48·(1−0.48) = 2·0.48·0.52 = 0.4992 ,

(ii) Orb([2*x*(1-x)],[x],[0.4],0,2);

(ii) Orb([2*x*(1-x)],[x],[0.4],1000,1000)[1]; , you get [0.5000000000].

Do right now

P8: For the function f(x) = 1/(x+ 1)

(i) By hand (w/o computer) find the first three terms of the orbit starting at x(0) = 0.5.

(ii) Write down the Maple line to get the same answer.

(iii) Using Maple, write the Orb command to find the 1000-th term of the orbit, i.e., x(1000). What

is it?

Another Example: For the transformation f(x, y) = (x
1+y ,

y
1+x)

(i) By hand (w/o computer) find the first three terms of the orbit starting at [1.0, 1.0].

(ii) Write down the Maple line to get the same answer.

(iii) Using Maple, write the Orb command to find the 1000-th term of the orbit. What is it?

Answer:

4

(i)

(1.0, 1.0) , ; f(1.0, 1.0) = (0.5, 0.5) , f(0.5, 0.5) = (0.3333 . . . , 0.3333 . . .) .

Hence the first three terms, starting at n = 0 are (in Maple notation)

[[1.0, 1.0], [0.5, 0.5], [0.333 . . . , 0.333 . . .]

(ii) Orb([x/(1+y),y/(1+x)],[x,y],[1.0,1.0],0,2); (you get the above output)

(iii) Orb([x/(1+y),y/(1+x)],[x,y],[1.0,1.0],1000,1000)[1];

You get [0.0009990010090, 0.0009990010090] .

P9 For the transformation f(x, y, z) = (x/(1 + y + z), y/(1 + x+ z), z/(1 + x+ y))

(i) By hand (w/o computer) find the first three terms of the orbit starting at [1.0, 1.0, 1.0].

(ii) Write down the Maple line to get the same answer.

(iii) Using Maple, write the Orb command to find the 1000-th term of the orbit. What is it?

Basic notion 6: a first-order difference equation aka discrete-time first-order dynamical

system with one quantity.

A first-order difference equation has the format

x(n) = f(x(n− 1)) ,

where f(x) is the underlying function. Often you are also given an initial condition, x(0) = x0.

A famous example is the discrete logistic equation (studied by Robert May, Mitchell Feigen-

baum, and others).

x(n) = k x(n− 1) (1− x(n− 1)) ,

where k is the reproduction parameter. In general there is no formula for x(n), but you can

easily get a numerical solution, starting with a given initial value x(0) = x0. Say the first 10000

terms, using Orb or OrbF, that in application is enough to see what is going on.

Basic notion 7: An equilibrium solution of the first-order difference equation x(n) = f(x(n−1))

is a solution such that x(n) is always the same. In other words it has the format

x(n) = c ,

5

for n = 0, 1, 2, Note that here we do not prescribe an initial value x(0). To find all the

equilibrium solutions, you solve the algebraic equation

c = f(c) .

(In an equilibrium solution of the discrete dynamical system, x(n) = c and x(n−1) = c, so plugging

in x for x(n) and x(n− 1) you get that equation.)

In other words ‘equilibrium solution’ of a first-order discrete dynamical system with one quantity

is the same as fixed-point of the underlying function.

Sample Problem: Find all the equilibrium solutions of the discrete-time first-order dynamical

system

x(n) = 2x(n− 1) (1− x(n− 1)) .

Sol.: The underlying function is

f(x) = 2x(1− x) .

To get the equilibrium (i.e. constant) solutions, we solve

x = 2x(1− x) ,

which is the same as

x− 2x(1− x) = x(1− 2 + 2x) = x(−1 + 2x) = 0 .

Getting two equilibrium solutions

x(n) = 0 ,

x(n) =
1

2
,

(for all n).

Ans. to the problem: There are two equilibrium solutions, x(n) = 0 and x(n) = 1
2 .

Do right now

P11: Find all equilibrium solutions of the first-order discrete time dynamical system

x(n) = x(n− 1)2 − 2x(n− 1) + 2

6

P12: Find all equilibrium solutions of the first-order discrete time dynamical system

x(n) =
5

2
x(n− 1)(1− x(n− 1)) ,

P13:: More generally, find all equilibrium solutions of the first-order discrete time dynamical system

with parameter k

x(n) = k x(n− 1)(1− x(n− 1)) ,

(your answers (may) depend on k, of course)

Obviously for an equilibrium solution x(n) = c, the solution of the initial-value problem

x(n) = f(x(n− 1)) , x(0) = c ,

is itself, namely x(n) = c. In other words ‘Once at x = c always at x = c.

Basic notion 8: A stable equilibrium solution, x(n) = c, of the first-order difference equation

x(n) = f(x(n − 1)) is an equilibrium solution (see above) with the additional property that for

some neighborhood of x = c, c− δ < x < c+ δ) (often pretty large), the long-time behavior of the

solution of the modified initial value problem

x(n) = f(x(n− 1)) , x(0) = d ,

for d in the interval c− δ < d < c+ δ, in the long-run, goes back to c. Mathematically

lim
n→∞

x(n) = c .

How to find whether an equilibrium solution is stable or not (using numerics)?

We use procedure Orb.

Sample problem’: Using procedure Orb (or OrbF), to decide, for each of the equilibrium solutions

of the discrete-time dynamical system

x(n) = 2x(n− 1) (1− x(n− 1)) ,

found above, namely x(n) = 0 and x(n) = 0.5, decide whether it stable or unstable.

Sol. to sample problem:

Orb([2*x*(1-x)],[x],[0],1000,1010);

gives

[[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]]

7

confirming that indeed x(n) = 0 is an equilibrium solution (alias a fixed point of the underlying

function). Now try

Orb([2*x*(1-x)],[x],[0.01],1000,1010);

and you get

[[0.5000000000], [0.5000000000], [0.5000000000], [0.5000000000], [0.5000000000], [0.5000000000],

[0.5000000000], [0.5000000000], [0.5000000000], [0.5000000000], [0.5000000000]]

so the limit does not go to 0 but to the other equilibrium point.

Even starting ever so close to x = 0, for example x(0) = 0.001, gives the same thing. This indicates

that the equilibrium solution x(n) = 0 is not stable. It is an unstable equilibrium solution.

Now let’s investigate the other equilibrium solution x(n) = 0.5.

Orb([2*x*(1-x)],[x],[0.5],1000,1010);

gives you

[[0.5000000000], [0.5000000000], [0.5000000000], [0.5000000000], [0.5000000000], [0.5000000000],

[0.5000000000], [0.5000000000], [0.5000000000], [0.5000000000], [0.5000000000]] ,

as it should, confirming that x(n) = 0.5 is an equilibrium solution. But now set x(0) = 0.6 and

type

Orb([2*x*(1-x)],[x],[0.6],1000,1010); ,

and you get the same thing.

Also

Orb([2*x*(1-x)],[x],[0.4],1000,1010); ,

gives you the same thing, so in the long-run (even if you go pretty far from x = 0.5 in this case)

you go back to x = 0.5, sooner or later (in this particular case, pretty soon!)

Comment: To be honest, you never actually make it exactly back to x = 1
2 , but you get ever-

so-close, so Maple can’t distinguish it with its decimal approximations.

Hence, using numerics we found out that x = 1
2 is a stable fixed point of our discrete-time

first-order dynamical system, x(n) = 2x(n− 1) (1− x(n− 1)).

Do right now

P11’: Using numerics Find all stable equilibrium solutions of the first-order discrete-time dy-

8

namical system

x(n) = x(n− 1)2 − 2x(n− 1) + 2

(You should use what you found in P11 above, as the starting points (don’t do it again)), but

decide for each of them whether or not it is stable.

P12”’ Using numerics, find all stable equilibrium solutions of the first-order discrete time dy-

namical system

x(n) =
5

2
x(n− 1)(1− x(n− 1)) ,

(You should use what you found in P12 above, as the starting points (don’t do it again)), but

decide for each of them whether or not it is stable.

How to find whether an equilibrium solution is stable or not (using calculus)

Comment: As I said above, this is an algorithm to decide conclusively whether an equilibrium

solution of a first-order, one-quantity, discrete dynamical system is stable or not. It is not to be

confused with the concept, that the numeric way illustrates so well. Unlike the numerics that

sometimes can fool you (in some cases the stable fixed point has a very small ‘basin of attraction’,

so you may miss it), this is completely safe. The drawback is that you need to differentiate (but

Maple does not mind).

• Decide on the underlying function, let’s call it f(x).

• compute f ′(x), getting (usually) an expression in x (you may get a constant sometimes, i.e. that

the derivative is a constant function)

• plug-in the candidate equilibrium solution (alias fixed point, i.e. the number c that you already

know is an equilibrium from the algebraic step), into f ′(x), getting the number f ′(c).

If |f ′(c)| < 1 then x = c is a stable equilibrium solution.

If |f ′(c)| ≥ 1 then x = c is an unstable equilibrium solution.

Comment: If |f ′(c)| = 1, then it is called semi-stable.

Another comment: This rule follows from ‘linearization’. If f(c) = c then f(x)−f(c) = f(x)− c
is ‘close’ to f ′(c)(x− c).

Sample problem”: Using calculus, decide conclusively whether the equilibrium solutions

x(n) = 2x(n− 1) (1− x(n− 1)) ,

found above, namely x(n) = 0 and x(n) = 0.5 are stable or not.

9

Sol. The underlying function is

f(x) = 2x(1− x) = 2x− 2x2 .

Differentiate

f ′(x) = 2− 4x .

Regarding x = 0, we get

f ′(0) = 2 ,

Since |2| = 2 is larger than 1, x = 0 is unstable.

Regarding x = 1
2 , we get

f ′(
1

2
) = 2− 4 · 1

2
= 0 ,

Since |0| = 0 is smaller than 1, x = 1
2 is stable.

Do right now

P11” Using calculus Find all stable equilibrium solutions of the first-order discrete time dynam-

ical system

x(n) = x(n− 1)2 − 2x(n− 1) + 2

(You should use what you found in P11 above, as the starting points (don’t do it again)), but

decide for each of them which is stable and which ones is not)

P12” Using calculus, find all stable equilibrium solutions of the first-order discrete time dynam-

ical system

x(n) =
5

2
x(n− 1)(1− x(n− 1)) ,

(You should use what you found in P12 above, as the starting points (don’t do it again)), but

decide for each of them which is stable and which ones is not)

Basic notion 9: a first-order differential equation aka continuous-time first-order dy-

namical system with one quantity.

A first-order differential equation has the format

x′(t) = f(x(t)) ,

where f(x) is the underlying function. Often you are also given an initial condition, x(0) = x0.

A (biologically boring) example is the continuous logistic equation

10

x′(t) = k x(t) (1− x(t)) ,

where k is the reproduction parameter.

In some cases, it is possible to find an explicit solution to an initial value problem

x′(t) = f(x(t)) , x(0) = x0 ,

either by hand, or using Maple’s dsolve. But often not even Maple can do it. Nevertheless we can

investigate the long-term behavior.

Basic notion 10: An equilibrium solution of the first-order differential equation

x′(t) = f(x(t)) ,

is a solution such that x(t) is always the same. In other words, it is a constant function. it has

the format

x(t) = c ,

for all real numbers t, for some number c. Note that here we do not prescribe an initial value x(0).

To find all the equilibrium solutions, you solve the algebraic equation

0 = f(c) .

(Since an equilibrium solution has the form x(t) = c, for some constant, c, x′(t) is automatically

0, no matter what c happens to be.)

Warning: Do not confuse with the way to determine equilibrium solutions to discrete-time dy-

namical systems! (where you solve c = f(c))!

Using discretization we can approximate a continuous-time dynamical system by a discrete one,

and then use Orb or OrbF. This is implemented in procedure TimeSeries in DMB.txt.

Sample Problem: Find all the equilibrium solutions of the continuous-time first-order dynamical

system

x′(t) = 2x(t) (1− x(t)) .

Sol. The underlying function is f(x) = 2x (1 − x). Setting it equal to 0 gives the algebraic

equation

2x(1− x) = 0 .

Solving it, gives x = 0 and x = 1. Hence there are two equilibrium solutions to this continuous-time

dynamical system, x(t) = 0 and x(t) = 1.

11

Ans.: The two equilibrium solutions to the continuous-time dynamical system x′(t) = 2x(t) (1−
x(t)) are x(t) = 0 and x(t) = 1.

The conceptual definition of what it means for an equilibrium solution to be stable

(NOT to be confused with the algorithm for deciding it, recalled below)

Given an equilibrium solution (found as above), x(t) = c, to the dynamical system x′(t) = f(x(t)),

it means that the (unique!, it is always unique if the underlying function f(x) is ‘nice’) solution of

the initial value problem

x′(t) = f(x(t)) , x(0) = c ,

is the constant function x(t) = c. It is a stable equilibrium solution if there is some interval around

x = c,

c− δ < x < c+ δ ,

such for each number d in that neighborhood of x = c, i.e. for each number such that c−δ < d < c+δ

the unique solution of the modified initial value problem

x′(t) = f(x(t)) , x(0) = d ,

has the property that in the long-run it gets ever-so-close to the horizontal line x = c. Formally

lim
t→∞

x(t) = c .

Graphically, if you plot it, there is a horizontal asymptote at height c above the t-axis.

How to investigate whether a given equilibrium solution is stable using Maple’s dsolve?

Let’s illustrate it with the above continuous-time dynamical system x′(t) = 2x(t) (1− x(t)) where

we already know that x(t) = 0 and x(t) = 1 are equilibrium solutions.

Let’s investigate x(t) = 0.

dsolve(diff(x(t),t)=2*x(t)*(1-x(t)),x(0)=0,x(t));

gives you, not surprisingly, x(t) = 0. Now let’s ‘tweak’ the initial condition, and instead of x(0) = 0

let’s take x(0) = 0.1. Typing, in a Maple worksheet,

dsolve(diff(x(t),t)=2*x(t)*(1-x(t)),x(0)=0.1,x(t));

gives

x (t) =
1

1 + 9 e−2t
,

whose limit, as t goes to infinity is 1 not 0 (note that it goes to the other equilibrium solution).

This indicates that x(t) = 0 is not stable!

Now let’s investigate the other equilibrium solution, x(t) = 1.

12

dsolve(diff(x(t),t)=2*x(t)*(1-x(t)),x(0)=1,x(t));

gives you, not surprisingly, x(t) = 1. Now let’s ‘tweak’ the initial condition, and instead of x(0) = 0

let’s take x(0) = 1.1. Typing, in a Maple worksheet,

dsolve(diff(x(t),t)=2*x(t)*(1-x(t)),x(0)=1.1,x(t));

gives

x (t) =
11

11− e−2t

whose limit, as t goes to infinity is 1. How about the initial condition x(0) = 0.9 (slightly below

1)? (you do it!) you should also get that the limit is 1. Hence we deduce that x(t) = 1 is a stable

equilibrium solution.

How to investigate whether a given equilibrium solution is stable using TimeSeries in

DMB.txt?

dsolve can’t solve many (more complicated) differential equation, but to get approximate plots for

the above scenarios you type:

TimeSeries([2*x*(1-x)],[x],[1.1],0.01,10,1);

(for the initial value x(0) = 1.1 and

TimeSeries([2*x*(1-x)],[x],[0.9],0.01,10,1);

(for the initial value x(0) = 0.9 and in both cases you get a horizontal asymptote x = 1. (Do it!)

How to conclusively decide whether an equilibrium solution is stable or not?

• Once you found the underlying function, f(x), take its derivative, f ′(x), getting some expres-

sion in x.

• For each equilibrium solution x(t) = c, that you found before by solving the algebraic equation

f(c) = 0, you plug-in x = c, and look at the number f ′(c).

• If f ′(c) < 0 (i.e. if it is negative) then x(t) = c is stable.

• If f ′(c) ≥ 0 then it is unstable.

In the border-line case of f ′(c) = 0 it is called semi-stable.

Comment: Later on when we do systems with more than one quantity, we have to consider the

Jacobian matrix at the candidate equilibrium solution and then the condition is (see below) ‘all

eigenvalues must have negative real part’. Right now the ‘Jacobian matrix’ is the 1 × 1 matrix

(f ′(x)), and at the candidate equilibrium solution x(t) = c, the numerical 1 × 1 matrix (f ′(c))

13

whose ‘eigenvalue’ is f ′(c), and if the system came from the real world, this is never complex, so

in this case ‘negative real part’ is the same as ‘negative’.

Sample Example: For each of the two equilibrium solutions of the one-quantity continuous-time

dynamical system, x′(t) = 2x(t)(1 − x(t)), namely x(t) = 0 and x(t) = 1, decide whether or not

they are stable.

Sol. The underlying function is

f(x) = 2x(1− x) = 2x− 2x2 .

Taking derivative with respect to x gives

f ′(x) = 2− 4x .

Regarding x(t) = 0, we have

f ′(0) = 2− 4 · 0 = 2 ,

since this not negative x(t) = 0 is an unstable equilibrium solution.

Regarding x(t) = 1, we have

f ′(1) = 2− 4 · 1 = −2 ,

since this is negative x(t) = 1 is a stable equilibrium solution.

Do right now

P14:

(i) Find all the equilibrium solutions of the continuous-time dynamical system (with one quantity,

x(t))

x′(t) = 2x(t) (1− x(t)) (2− x(t)) (3− x(t)) .

(ii) Using TimeSeries with h = 0.01, investigate numerically, for each of the equilibrium solutions

that you found in (i), whether it seems to be stable or not (look at the horizontal asymptotes, it

they exist)

(iii) Using the algorithm to decided stability, conclusively decide, for each of the equilibrium

solutions that you found in (i), whether it is stable or not. Explain!

Basic notion 12: A discrete-time dynamical system with two (changing) quantities.

Often, in applications, there are two or more species. For the sake of clarity, in these review notes,

we will only talk about two quantities, and indeed, many dynamical systems in practice do have

only two quantities (e.g. ‘predators and prey’, ‘infected and susceptible’ etc.). The theory and

concepts are valid for any (finite) number of different ‘species’.

14

Let’s call these two quantities x(n) and y(n). This means that x(n), and y(n) are the value of the

‘species’ at generation n. A first-order discrete-time system has the format

x(n) = f(x(n− 1), y(n− 1)) ,

y(n) = g(x(n− 1), y(n− 1)) .

This means that the values of x and y at any given generation depends on both their values in the

previous generation. The underlying transformation from R2 to R2 is

(x, y)→ (f(x, y), g(x, y)) .

The orbit staring at [x0, y0] is defined as above.

Example: By hand-calculations, find the first three terms of the orbit, starting at n = 0 of the

following discrete-time dynamical system, if x(0) = 1, y(0) = 2. Confirm it with the output of Orb.

x(n) = x(n− 1)2 + y(n− 1) , y(n) = x(n− 1) + y(n− 1)2 .

Sol.

x(1) = x(0)2 + y(0) = 3 , y(1) = y(0)2 + x(0) = 5 ,

x(2) = x(1)2 + y(1) = 9 + 15 = 14 , y(2) = y(1)2 + x(1) = 25 + 3 = 28 ,

Ans. [[1, 2], [3, 5], [14, 28]]. Now in DMB.txt, type:

Orb([x**2+y,x+y**2],[x,y],[1,2],0,2);

getting the same thing.

Do right now

P15: By hand-calculations, find the first four terms of the orbit, starting at n = 0 of the discrete-

time dynamical system, if x(0) = 1, y(0) = 3. Confirm it with the output of Orb.

x(n) = x(n− 1)3 + 2y(n− 1) , y(n) = x(n− 1)2 + 5y(n− 1)2 ,

Basic notion 13: Equilibrium solution of discrete-time dynamical system with two (chang-

ing) quantities. These are solutions where both x(n) and y(n) never change, i.e. they are two

numbers c and d such that for every n,

x(n) = c , y(n) = d .

15

How to use algebra to find the Equilibrium solution of a discrete-time dynamical

system with two species

Recall that such a system has the format

x(n) = f(x(n− 1), y(n− 1)) ,

y(n) = g(x(n− 1), y(n− 1)) .

Plugging-in, x(n) = c, x(n− 1) = c; y(n) = d, y(n− 1) = d (recall that the solutions that we are

interested in never change, so the values at generation n − 1 is the same as the respective values

in generation n)

c = f(c, d) ,

d = g(c, d) .

In other words, the point, in R2, (c, d) is a fixed point of the underlying transformation

(x, y)→ (f(x, y), g(x, y)). Usually this is too hard to solve by hand, but procedure FP in DMB.txt

can do it for you.

Basic notion 14: What does it mean for an Equilibrium solution of discrete-time dynamical

system to be stable? (the concept!, not ‘how to decide it’).

Obviously, if x(0) = c and y(0) = d, and you find the orbit, say up to 10000, it is always the

same, by definition! But now ‘tweak’ the initial conditions, say make them x(0) = c + 0.1 and

y(0) = d − 0.1, and run the orbit to 10000. If it is stable, then in the long run, x(n) will get

ever-so-close to c, and y(n) will get ever so close to d.

Example: Consider the discrete-time system with two quantities

x(n) =
3 + x(n− 1) + 2y(n− 1)

1 + 2x(n− 1) + y(n− 1)
,

y(n) =
1 + 3x(n− 1) + 2y(n− 1)

2 + 2x(n− 1) + 3y(n− 1)
.

The underlying transformation is

(x, y)→
(

3 + x+ 2y

1 + 2x+ y
,

1 + 3x+ 2y

2 + 2x+ 3y

)
.

Using SFP we type:

F:=[(3+x+2*y)/(1+2*x+y), (1+3*x+2*y)/(2+2*x+3*y)] ,

16

and then

SFP(F,[x,y]);

we get

{[1.342780106, 0.9222435790]}

Now let’s check this using Orb, with initial conditions close, but not the same, how about [1.0, 1.0].

Typing

Orb(F,[x,y],[1.0,1.0],1000,1002);

we get

[[1.342780106, 0.9222435789], [1.342780106, 0.9222435789], [1.342780106, 0.9222435789]]

so indeed, it tends to the above values!

Do Right Now

P16: Using SFP find the stable equilibrium solutions of the discrete-time dynamical system with

two quantities

x(n) =
2 + x(n− 1) + y(n− 1)

2 + 2x(n− 1) + 2y(n− 1)
,

y(n) =
2 + x(n− 1) + y(n− 1)

1 + 2x(n− 1) + 2y(n− 1)
.

Make sure that it is [0.6953496364, 0.8641637014], then confirm it numerically, by using Orb with

x(0) = 0.5 and y(0) = 0.4.

How to conclusively decide whether an equilibrium solution of a discrete-time dynam-

ical system is stable or not

Suppose that the underlying transformation is

(x, y)→ (f(x, y), g(x, y)) .

and you found out that for some numbers c and d, the constant functions x(t) = c and y(t) = d

is a fixed point, i.e. f(c, d) = c, g(c, d) = d.

• Find the Jacobian matrix, in general

J(x, y) =

(
fx(x, y) fy(x, y)
gx(x, y) gy(x, y)

)
17

• plug-in the numbers x = c, y = d, getting a numerical matrix, J(c, d).

• Find the eigenvalues.

If all the eigenvalues have absolute value less than 1, x(t) = c, y(t) = d is a stable equilibrium.

Otherwise is is unstable.

Basic notion 15: A continuous-time dynamical system with two (changing) quantities.

The format is

x′(t) = f(x(t), y(t)) ,

y′(t) = g(x(t), y(t)) .

where f(x, y) and g(x, y) are functions of two variables. If you are given initial conditions

x(0) = x0, y(0) = y0 there there is a unique solution

(x(t), y(t)) that satisfies the system.

The underlying transformation is

(x, y)→ (f(x, y), g(x, y)) .

To get the graph of x(t) using TimeSeries from t = 0 to t = A in DMB.txt, type:

TimeSeries([f(x,y),g(x,y)],[x,y],[x0,y0], 0.01, A ,1);

To get the graph of y(t) using TimeSeries from t = 0 to t = A in DMB.txt, type:

TimeSeries([f(x,y),g(x,y)],[x,y],[x0,y0], 0.01, A ,2);

How to get the equilibrium solution of a continuous-time dynamical system with two

quantities?

Assuming that there exist constants c and d such that the pair x(t) = c and y(t) = d is a solution,

since for such constant functions, x′(t) = 0, and y′(t) = 0, the system becomes

0 = f(c, d) ,

0 = g(c, d) .

In other words, you have to solve the system of two algebraic equations with two unknowns {c, d}:

{f(c, d) = 0 , g(c, d) = 0} .

18

Basic notion 16: what does it mean for an equilibrium solution to be stable?

Suppose that you did the previous step, and found out that x(t) = c, y(t) = d, is an equilibrium

solution (found using EquP in DMB.txt). This means that if the initial conditions are exactly

x(0) = c, y(0) = d then the solution is exactly x(t) = c and y(t) = d for ever after.

If there is a δ > 0 such that whenever c− δ < c′ < c+ δ, d− δ < d′ < d+ δ we have the property

that any solution of the continuous-time dynamical system

x′(t) = f(x(t), y(t)) ,

y′(t) = g(x(t), y(t)) ,

with the ‘tweaked’ initial conditions x(0) = c′, y(0) = d′, have the property that

lim
t→∞

x(t) = c ,

lim
t→∞

y(t) = d .

In words: Even you don’t start exactly at x = c, y = d at t = 0, but at a close location, in the

long-run you will wind-up as close to (c, d) as you wish.

If that happens the examined equilibrium solution x(t) = c, y(t) = d is a stable equilibrium.

If x(t) and/or y(t) ‘blow up’, or oscillate, or end to other values than c and d respectively, when

the initial conditions are close (but not exactly the same) as (c, d), then the examined equilibrium

solution (or ‘point’ in the ‘phase diagram’) is unstable.

How to check numerically for stability using TimeSeries?

Let’s illustrate it with an example. Consider the continuous-time dynamical system

x′(t) = (1− 2x(t)− 3y(t)) (2− 2x(t)− 3y(t)) ,

y′(t) = (3− x(t)− 2y(t)) (1− x(t)− 2y(t)) .

The underlying transformation is

[(1− 2x− 3y) (2− 2x− 3y) , (3− x− 2y) (1− x− 2y)]

Typing

EquP([(1-2*x-3*y)*(2-2*x-3*y), (3-x-2*y)*(1-x-2*y)],[x,y]); ,

tells you that the equilibrium solutions are

19

[−7, 5], [−5, 4], [−1, 1], [1, 0] .

Let’s examine [−7, 5] meaning the equilibrium solution x(t) = −7, y(t) = 5.

TimeSeries([(1-2*x-3*y)*(2-2*x-3*y), (3-x-2*y)*(1-x-2*y)],[x,y],[-7,5],0.01,10,1);

gives you the horizontal line x = −7, (i.e. the constant function x(t) = 7), and typing

TimeSeries([(1-2*x-3*y)*(2-2*x-3*y), (3-x-2*y)*(1-x-2*y)],[x,y],[-7,5],0.01,10,2);

gives you the horizontal line y = 5, (i.e. the constant function y(t) = 5). Now try

TimeSeries([(1-2*x-3*y)*(2-2*x-3*y), (3-x-2*y)*(1-x-2*y)],[x,y],[-7.1,5.1],0.01,10,1);

(i.e. just a little away from [−7, 5] and it blows up! So we found numerically that x(t) = −7, y(t) = 5

is an unstable equilibrium solution,

Let’s examine [−1, 1] meaning the equilibrium solution x(t) = −1, y(t) = 1.

TimeSeries([(1-2*x-3*y)*(2-2*x-3*y), (3-x-2*y)*(1-x-2*y)],[x,y],[-1,1],0.01,10,1);

gives you the horizontal line x = −1, (i.e. the constant function x(t) = −1, and typing

TimeSeries([(1-2*x-3*y)*(2-2*x-3*y), (3-x-2*y)*(1-x-2*y)],[x,y],[-1,1],0.01,10,2);

gives you the horizontal line y = 1, (i.e. the constant function y(t) = 1. As it should! Now try

TimeSeries([(1-2*x-3*y)*(2-2*x-3*y), (3-x-2*y)*(1-x-2*y)],[x,y],[-1.1,1.1],0.01,20,1);

and you get a curve that clearly has a horizontal asymptote at x = −1, i.e. in the long-run it goes

to −1.

Similarly,

TimeSeries([(1-2*x-3*y)*(2-2*x-3*y), (3-x-2*y)*(1-x-2*y)],[x,y],[-1.1,1.1],0.01,20,2);

has a horizontal asymptote at y = 1. This is a numerical indication that x(t) = −1, y(t) = 1 is

a stable equilibrium solution.

Do right now

P17: Use DMB.txt to convince yourself, numerically, that the other two equilibrium solutions

[−5, 4] and [1, 0] are unstable.

How to determine conclusively whether an equilibrium solution of a continuous-time

dynamical system is stable?

20

Suppose that the underlying transformation is

(x, y)→ (f(x, y), g(x, y)) .

and you found out that for some numbers c and d, the constant functions x(t) = c and y(t) = d

is a solution to the system (recall that such constant solutions are called ‘equilibrium solutions’),

in other words

f(c, d) = 0 , g(c, d) = 0 .

• Find the Jacobian matrix, in general

J(x, y) =

(
fx(x, y) fy(x, y)
gx(x, y) gy(x, y)

)
.

• Plug-in the numbers x = c, y = d, getting a numerical matrix, J(c, d).

• Find the eigenvalues.

If all the eigenvalues have negative real part, then the examined equilibrium solution is stable,

otherwise not.

Comment: This is implemented in SEquP in the Maple package DMB.txt.

21

