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Basis of the Paper

Linda J.S. Allen’s Paper “Open Problems and Conjectures: SI and SIR Epidemic Models”
discusses an SIR Epidemic Model of the form:

where xn represents the number of infected individuals and yn represents the number of
susceptible individuals (normalized to a population of size 1). In this model, 0 < b+c ≤ 1, 0 < a,
0 < b, 0 < c, 0 < x0+y0 ≤ 1, 0 < x0, and 0 < y0. The birth/death rate is b, the recovery rate is c, and
the contact rate is a.
Allen states that it has been proved that if R0 = a/(b+c) ≤ 1, then solutions approach [0, 1], the
state with none infected and all susceptible (and for R0 > 1, [xn, yn] reaches a positive
equilibrium). We investigated this phenomenon numerically and produced the following data:

Fig. 1: Holding b and c constant and incrementing a. Shows values of [xn, yn] when n = 1000, 1001, and 1002.



Fig. 2: Holding a and c constant and incrementing c. Shows values of [xn, yn] when n = 1000, 1001, and 1002.

Fig. 3: Holding a and b constant and incrementing c. Shows values of [xn, yn] when n = 1000, 1001, and 1002.

Clearly, it holds that for R0 ≤ 1, solutions approach [xn, yn] = [0,1].

Conjecture 1

Conjecture 1 discussed the case where the reproductive number of the disease was greater than
one. This implies that the disease will not be fully eradicated, but will reach an equilibrium with
some infected and some vulnerable.  The reproductive number, R0 = a/(b+c). In the specific case
where R0 > 1, a set of difference equations were proposed:



Dr. Linda Allen and Dr. Gerry Ladas proposed the following conjecture based on the above
equation:

In order to fully investigate this conjecture, it was hypothesized that this should hold for any
value of a, b, or c. As such, methods were written that held two of the variables constant, and
incremented the remaining variable. Then the long term solution was determined and compared
to the solution to equation 3 given above.

The data tables for each situation is given as follows:

Fig.4: Incrementing a from 1 to 5 by 0.2 each time; b and c are held constant.



Fig. 5: Incrementing b from 0.1 to 0.9 by 0.05; a and c held constant

Fig. 6: Incrementing c from 0.05 to 0.8 by 0.05; a and b held constant



Thorough examination of each table shows that the long term values using the OrbF function do
match the values determined by equation 3 proposed by Dr. Allen when R0 > 1.

In addition, the functions were run for cases where R0 ≤ 1, in order to see how the solutions to
equation 3 would compare to the long term behavior of the discrete dynamical model. This
information is given below:

Fig 7: Incrementing a, R0 ≤ 1

Fig. 8:  Incrementing b, R0 ≤ 1



Fig. 9: Incrementing c, R0 ≤ 1
It seems that overall the long term behavior and the value of equation 3 are about the same,
regardless of which variable you fix and which is incremented. However, there are some values
of a, b, and c (marked in red) such that we see the long term behavior does not quite match the
value of equation 3. This could be due to Maple’s approximation, so it cannot quite be concluded
whether or not Conjecture 1 holds for R0 ≤ 1.

Conjecture 2

For conjecture 2, we investigated the case where there was no recovery in the population (i.e. c =
0) called the SI Model. For the scenario c = 0 and x0 + y0 = 1, a unique second order difference
equation arises:

In this case the conjecture was:



We first normalized the equation to x(n) rather than x(n+1) and created a function which would
form the first order system of the equation:

The output to this function, taking a and b as general parameters, was in the form:

We also created a function that would output the variables of the system after converting it into a
first order system:

When investigating the long term behavior of equation 4, we found that the conjecture does hold
for R0 = a/b > 1 (it differs from a/(b+c) because in this case c = 0). The subsequent charts exhibit
the long term behavior of equation 4, the R0 value, and the subsequent solution for the SI Model
Equation in the conjecture.

In the case below we incremented the parameter a, for a constant b = 0.5 with initial conditions
x1(0) = 0.5 and x2(0) = 0.5:



Fig. 10: Incrementing a
We see that for R0 1, the solution of equation 4 does not satisfy the SI Equation given in the≤
conjecture. However for R0 > 1, the solution does satisfy the SI Equation.

When we increment b instead, for b < 1, as that is the original boundary for the SIR model, and
hold a at 0.1, we get a slightly different result:

Fig. 11: Incrementing b, R0 ≤ 1
For R0 values that are very close to 0, the long term behavior approaches 0, and therefore the SI
Model Equation is satisfied even if R0 < 1. However, this may be attributed to the fact that Maple
approximates those very small values to 0 and therefore it seems to be equal when it really is not.



When we test larger values for R0 by incrementing a and keeping b = 0.9, we find the same result
that the SI Model Equation is satisfied at R0 > 1:

Fig. 12: Incrementing a, R0 at large values
Here we see that at larger values of R0, the conjecture holds. However, like in Figure 11, for very
small values of R0, the conjecture holds at x = 0. However, that again could be attributed to
Maple approximating the smaller fixed points at 0, rather than the actual values.

Further Investigation: Higher Order Terms

We investigated a similar SIR Model of the form:

introducing the two new parameters 𝛼 and 𝛽. While it was immediately evident that R0 = a/(b+c)
≤ 1 no longer implied [xn, yn ] approaches [0,1] as n approaches infinity, we hypothesized that a
new formula of the form:
R0 = f(a, b, c, 𝛼, 𝛽) might exist such that if R0 = f(a, b, c, 𝛼, 𝛽) ≤ 1, then the value of xn approaches
0 as n approaches infinity (and for R0 > 1, xn reaches a positive equilibrium).

It should be noted that, unlike in the original case (with 𝛼 = 𝛽 = 0), we have defined R0 such that,
for R0 ≤ 1, it is true that xn approaches 0 as n approaches infinity, but it is not necessarily true that
yn approaches 1 as n approaches infinity.



To explore what the function f(a, b, c, 𝛼, 𝛽) might be, we defined a0 to be the last value of a such
that, for given b, c, 𝛼, and 𝛽, xn approaches the infection-free state. In other words, it is the cutoff
point after which the number of infected individuals will be nonzero in the long run. The plot
below illustrates this concept for the original model, where 𝛼 = 𝛽 = 1.

Fig.13: For any b, c, if a is any greater than b+c, then xn is nonzero in the long run. Thus, for any b, c, a0 = b+c.

We made similar plots, showing values of a0 as b, c, 𝛼,  𝛽 are incremented separately.



Fig: 14: Holding 𝛽 constant at 1.1 and b, c constant at 0.2 and incrementing 𝛼 from 0.5 to 1.5. We believe that for
any 𝛼 < 1, a0 = 0, meaning there are always infected individuals in the long run (the points near 𝛼 = 1 which seem to

suggest otherwise are likely due to rounding error, but this remains unconfirmed).

Fig. 15: Holding 𝛼 constant at 1.1 and b, c constant at 0.2 and incrementing 𝛽 from 0.5 to 1.5.



Fig. 16: Holding 𝛼, 𝛽 constant at 1.1 and b constant at 0.2 and incrementing c from 0.1 to 0.5.

Fig. 17: Holding 𝛼, 𝛽 constant at 1.1 and c constant at 0.2 and incrementing b from 0.1 to 0.5. There appears to be
an asymptote as b approaches 0.



Though it remains unclear exactly what form R0 = f(a, b, c, 𝛼, 𝛽) actually takes, these plots give
some clues. The final plot is perhaps the most interesting, as it appears to show that a0

approaches infinity as b approaches 0. This does not hold true as c approaches 0, implying that b
and c are not interchangeable as they were in the original case R0 = a/(b+c).

Based on these plots, we make the following conjectures:

1. For 𝛼 < 1, xn is always nonzero as n approaches infinity.
2. For b > 0.2, a0 increases (or remains constant) as any of b, c, 𝛼, 𝛽 increase.
3. As b approaches 0, a0 approaches infinity.


