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Over the semester we have studied difference equations in numerous forms, from
observing the orbits of systems, to understanding the fixed and equilibrium points to determining
the conditions for stability. One of the first multi dimensional difference models we studied was
the predator-prey relationship. The effect that predators and prey have on each other in
determining their populations at unique time points. We found the article “Dynamic complexity
in predator-prey models framed in difference equations” to be a foundational text for these
difference equations, and while the calculus supported the theoretics of the research, the
numerics were loosely supported via calculations performable with the given equipment. For our
Project we have taken the difference equations modeled by Beddington and created Maple
procedures and code to further support the conjectures made by the researchers.

Our first item is a Maple implementation of the original Predator-Prey model by J. R.
Beddington. While Beddignton supported his ideas using calculus and older computational
methods, modern computing simplifies the process and allows for greater visualization. In the
original models the stability and equilibrium of the product values for the constant r were found
using manual calculations. Using maple we are able to manipulate the equations and observe the
change in the orbits to determine the conditions for extinction and stability in the density
dependent predator prey model. The parameters listed in the Maple implementation are the Host
Carrying Capacity (k), Searching Efficiency of Predators (a), Equilibrium Constant (r), and
Equilibrium Prey Population Density (q). By applying the same parameters as used by
Beddington et. al. we found the stability of the prey self regulation at constant values of the
range 0<r<2, first bifurcating cycle for 2<r<2.522, a second bifurcating cycle for 2.522<r<2.653
chaos for r>2.653. The variation in the bifurcating cycles as compared to the paper’s values
comes from our ability to test long term stability of the equations without repetitive and
strenuous calculations. We were able to test values at a finer scale and clearly observe the
variations in this equation.

From the code The list of numbers given by the orbit of the Predator-Prey model is the
population density of each species. The first list is the self regulation of prey without predators
and the second list is the population of prey and predators. A trend we noticed in the various sub
groups of regulation was that between 0-2 the predator prey populations varied uniformly with
rises in prey and predator directly related. Between 2-2.522 step by step trends were wide and
sometimes were not directly related. The same occurred at geater randomness than
2.522<r<2.653. At values greater than 2.653 the regulation strayed into chaotic unrelated values.

Our second item is a Maple implementation of the Predator-Prey model by Beddingtion
using a maple procedure. This allows users to easily and quickly modify parameters to their



Predator Prey models as they deem necessary without having to delete or rewrite the equations
wholly. Two charts that are generated show the population density of the prey over time and the
population density of the predators over time.  Since we are mapping population density, we
chose to use a density plot as you can more clearly see where the values are the most high and
the most low.

Our final item is applying the concepts of the predator prey model to the current
Lanternfly invasion of Rutgers. This was performed using a difference equation with the
parameters being: % of lanternflies producing one egg mass(a) =0.6 and % of lanternflies
producing two egg masses (b)=0.3.  As the lanterflies on campus are without any known
predators beyond the ability of humans to self regulate the flies through physical extermination
on Rutgers they need to be modelled using a self regulating predator prey system. We chose the
equation displayed based on the reproductive rate and survivability of lanterflies based on known
data. We used Orbits to determine the population of the flies over time and found that in a
theoretical uncontested model the Lanterflies grew to values of 30+digits within 20 years. As this
is purely a mathematical representation we added real world limitations in the form of a carrying
capacity. At the realistic carrying capacity levels of 2 million, 5 million and 10 million, the
lanterflies at their current pace managed to reach that value within 4 years for all values. This
behavior is modelled using point plots of the data over time. The values for the uncontrolled
population created a graph with extremely skewed axes which we show with the exponential
growth from the first 3 steps. The self regulation point plot of 5 million flies grows rapidly for 4
years before decreasing and stabilizing at the carrying capacity in 10 years.


