read `C:/Users/cgrie/Dynam Models Bio/M9.txt`;
\#Problem 1 find stable fixed points
Help()

$$
\begin{equation*}
\operatorname{Orb}(f, x, x 0, K 1, K 2), \operatorname{Orb} 2 D(f, x, x 0, K), F P(f, x), S F P(f, x), \operatorname{Comp}(f, x) \tag{1}
\end{equation*}
$$

$>\mathrm{f}:=3 * \mathrm{x}$ * $(\mathrm{x}-1)$;
print("fp");
FP (f,x,0.5,100,1020);
print('sfp');
SFP (f,x,0.5,100,1020);

$$
f:=3 x(x-1)
$$

"fp"
[0., 1.333333333]
$s f p$
[]
(2)
\#there are no stable fixed points for $k=3.6$, as there is an
oscillation between 1.33333 and 0
$>$
$\# f(x)=3.6^{*} x^{*}(1-x)$
\#Set $0=f(x)$ to get the fixed points \# $\mathrm{x}=0$ and $\mathrm{x}=1$
\#thus $\mathrm{f}^{\prime}(\mathrm{x})=3.6-7.2 * \mathrm{x}$
\#Plugging in 0 , we get 3.6 which has greater than an absolute
value of 1
\#Plugging in 1 we get -3.6 which has greater than absolute
value of 1
\#Therefore, no stable points exist
\#Feigenbaum's second constant (denoted as "alpha") is around 2.5029...
\#
\#The second constant is defined as the separation of adjacent elements of Period Doubled Attractors from \#one double to the next
\#Page Source: "https://archive.lib.msu.
edu/crcmath/math/math/f/f052.htm"
\#THis is from the 1990 Rasband Book
\#\alpha alternates in sign for each step so 2.5029... is actually the absolute value of the ratio of the distances of the forks of consecutive bifurcations
\#Therefore, eventually the widths decrease in a geometric pattern.
\#does this have something to deal with flipping across the slope of 0.5
Error, control character ' a ' unexpected
\#What does this width actually mean?
\#alpha is actually used as a way to approximate the famous
constant 4.66...
\#by having a

