Attendance quiz for Lecture 23

Name: Deven Singh

1. For the following scenarios,
(i) Decide whether it is discrete-time or continuous-time dynamical model
(ii) Set up the appropriate difference or differential equation (as the case may be)
(iii) Write explicitly the underlying transformation (recall that for one quantity, like in the models below, it is simply a function of one variable)
(iv) Find all the fixed points (if it is discrete-time) or equilibrium points (if it is continuous time). Explain! Use the criterion for finding them.
(v) Find all the stable fixed points (if it is discrete-time) or all the stable equilibrium points (if it is continuous time). Explain! Use the criterion for finding them.

Call the quantity $x(t)$ or $x(n)$ for the continuous-time and discrete-time respectively.
a The population of a certain species is decreasing at a rate that is twice its current value.
b The population of a certain species changes from one generation to the next. The value at a given generation is one-half of its value at the previous generation.
c The population of a certain species changes from one generation to the next. The value at a given generation is twice its value at the previous generation times (1 minus its value at the previous generation).
d The population of a certain species scaled such that the maximum possible is 1 is increasing at a rate that is twice its current value times (1 minus its current value).
a)
i) continuous-time dynamical model
ii) $x^{\prime}(t)=-2 * x(t)$
iii) $F(x)=-2 x$
iv) When $x^{\prime}(t)=0, x(t)$ is at an equilibrium point
$x^{\prime}(t)=0$ when $x(t)=0$
v) $F^{\prime}(x)=-2$

Unstable equilibrium
b)
i) discrete-time dynamical model
ii) $x(n)=0.5^{*} x(n-1)$
iii) $f(x)=0.5$ * x where $f(x)=f(x(n-1)$
iv) $\mathrm{x}=0.5^{*} \mathrm{x}$
0.5 * $\mathrm{x}=0$

0 is a fixed point
v) A fixed point is stable if $\left|f^{\prime}(\mathbf{x})\right|<1$
$f^{\prime}(\mathbf{x})=0.5$
0 is a stable fixed point
c)
i) discrete-time dynamical model
ii) $\mathrm{x}(\mathrm{n})=2 * \mathrm{x}(\mathrm{n}-1) *(1-\mathrm{x}(\mathrm{n}-1))$
iii) $f(x)=2 * x^{*}(1-x)$
iv) $x=2 x-x^{\wedge} 2$
$\mathbf{x}^{\wedge} \mathbf{2 - x}=0$
x * $(x-1)=0$
0 and 1 is a fixed point
v) $f^{\prime}(x)=2-2 x$
$\mathrm{f}^{\prime}(0)=2$
$f^{\prime}(1)=0$
1 is a stable fixed point
d)
i) continuous-time dynamical model
ii) $x^{\prime}(t)=2 * x(t) *(1-x(t))$
iii) $\mathrm{F}(\mathrm{x})=2^{*} \mathrm{x}^{*}(1-\mathrm{x})$
couldn't finish - ran out of time

