Attendance quiz for Lecture 23

Name: Deven Singh

a)

1. For the following scenarios,

(i) Decide whether it is discrete-time or continuous-time dynamical model

(ii) Set up the appropriate difference or differential equation (as the case may be)

(iii) Write explicitly the **underlying transformation** (recall that for one quantity, like in the models below, it is simply a function of one variable)

(iv) Find **all** the fixed points (if it is discrete-time) or equilibrium points (if it is continuous time). Explain! Use the criterion for finding them.

(v) Find **all** the **stable** fixed points (if it is discrete-time) or all the **stable** equilibrium points (if it is continuous time). Explain! Use the criterion for finding them.

Call the quantity x(t) or x(n) for the continuous-time and discrete-time respectively.

a The population of a certain species is **decreasing** at a rate that is twice its current value.

 \mathbf{b} The population of a certain species changes from one generation to the next. The value at a given generation is one-half of its value at the previous generation.

c The population of a certain species changes from one generation to the next. The value at a given generation is twice its value at the previous generation times (1 minus its value at the previous generation).

d The population of a certain species scaled such that the maximum possible is 1 is **increasing** at a rate that is twice its current value times (1 minus its current value).

a)	``````````````````````````````````````
	c)
i) continuous-time dynamical model	i) discrete-time dynamical model
ii) $x'(t) = -2*x(t)$	ii) $x(n) = 2^{*}x(n-1)^{*}(1-x(n-1))$
iii) $F(x) = -2x$	iii) $f(x) = 2^*x^*(1-x)$
iv) When $x'(t) = 0$, $x(t)$ is at an equilibrium point	iv) $x = 2x - x^2$
x'(t) = 0 when $x(t) = 0$	$\mathbf{x}^{\wedge}2\mathbf{-x}=0$
v) $F'(x) = -2$	x * (x-1) = 0
Únstable equilibrium	0 and 1 is a fixed point
1	v) $f'(x) = 2 - 2x$
b)	f'(0) = 2
i) discrete-time dynamical model	f'(1) = 0
$\dot{x}(n) = 0.5* x(n-1)$	1 is a stable fixed point
iii) $f(x) = 0.5 * x$ where $f(x) = f(x(n-1))$	
iv) $x = 0.5 * x$	d)
0.5 * x = 0	i) continuous-time dynamical model
0 is a fixed point	ii) $x'(t) = 2*x(t)*(1-x(t))$
v) A fixed point is stable if f'(x) <1	iii) $F(x) = 2^*x^*(1-x)$
f'(x) = 0.5	couldn't finish - ran out of time
0 is a stable fixed point	