\#Julian Herman, 10/4/21, Assignment 9
3.) Find equilibrium points:

$$
\begin{aligned}
& x=k x(1-x) \\
& x-k x+k x^{2}=0 \\
& x(1-k+k x)=0 \\
& x(1-k(1-x))=0 \\
& x=0 \quad 1-k(1-x)=0 \\
& 1=k(1-x) \\
& \frac{1}{k}=1-x \\
& x=0, \quad x=1-\frac{1}{k}=\frac{k-1}{k}
\end{aligned}
$$

For $x=0$ to be stable, $\left|f^{\prime}(x=0)\right|<1$

$$
\begin{aligned}
\leadsto f(x) & =k x(1-x) \\
f(x) & =k x-k x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=k-2 k x \\
& f^{\prime}(0)=k-2 k \sigma=k
\end{aligned}
$$

$|K|<1$ for $x=0$ to be stable
\Rightarrow Since k must ye between 1 and $4, x=0$ will never be stable because:
$|k|<1$ is not true for any $1 \leq k \leq 4$.

Check stability of $x=\frac{k-1}{k}$:

$$
f^{\prime}\left(x=\frac{k-1}{k}\right)=k-2 k\left(\frac{k-1}{k}\right)=k-2(k-1)=2-k
$$

$|2-k|<1$ is when $x=\frac{k-1}{k}$ is stable

$$
\begin{array}{cc}
-1<2-k, & 2-k<1 \\
k<3, & 1<k
\end{array}
$$

$\Rightarrow x=\frac{k-1}{k}$ is stable for $1<k<3$
\Rightarrow Therefore, the first bifurcation point occurs at $k=3$, when the fixed point is no longer stable and the population oscillates between mare than one value (in the $k=3$ case, it fluctuates between 2 values).

