```
#Hrudai Batini Hw7
    read "/Users/hb334/Documents/M7.txt";
    with(Statistics):
    with(LinearAlgebra);
    Help7();
[&x, Add, Adjoint, BackwardSubstitute, BandMatrix, Basis, BezoutMatrix, BidiagonalForm,
    BilinearForm, CARE, CharacteristicMatrix, CharacteristicPolynomial, Column,
    ColumnDimension, ColumnOperation, ColumnSpace, CompanionMatrix,
    CompressedSparseForm, ConditionNumber, ConstantMatrix, ConstantVector, Copy,
    CreatePermutation, CrossProduct, DARE, DeleteColumn, DeleteRow, Determinant,
    Diagonal, DiagonalMatrix, Dimension, Dimensions, DotProduct, EigenConditionNumbers,
    Eigenvalues, Eigenvectors, Equal, ForwardSubstitute, FrobeniusForm,
    FromCompressedSparseForm, FromSplitForm, GaussianElimination, GenerateEquations,
    GenerateMatrix, Generic, GetResultDataType, GetResultShape, GivensRotationMatrix,
    GramSchmidt, HankelMatrix, HermiteForm, HermitianTranspose, HessenbergForm,
    HilbertMatrix, HouseholderMatrix, IdentityMatrix, IntersectionBasis, IsDefinite,
    IsOrthogonal, IsSimilar, IsUnitary, JordanBlockMatrix, JordanForm, KroneckerProduct,
    LA_Main, LUDecomposition, LeastSquares, LinearSolve, LyapunovSolve, Map, Map2,
    MatrixAdd, MatrixExponential, MatrixFunction, MatrixInverse, MatrixMatrixMultiply,
    MatrixNorm, MatrixPower, MatrixScalarMultiply, MatrixVectorMultiply,
    MinimalPolynomial, Minor, Modular, Multiply, NoUserValue, Norm, Normalize,
    NullSpace, OuterProductMatrix, Permanent, Pivot, PopovForm, ProjectionMatrix,
    QRDecomposition, RandomMatrix, RandomVector, Rank, RationalCanonicalForm,
    ReducedRowEchelonForm, Row, RowDimension, RowOperation, RowSpace, ScalarMatrix,
    ScalarMultiply, ScalarVector, SchurForm, SingularValues, SmithForm, SplitForm,
    StronglyConnectedBlocks, SubMatrix, SubVector, SumBasis, SylvesterMatrix,
    SylvesterSolve, ToeplitzMatrix, Trace, Transpose, TridiagonalForm, UnitVector,
    VandermondeMatrix, VectorAdd, VectorAngle, VectorMatrixMultiply, VectorNorm,
    VectorScalarMultiply, ZeroMatrix, ZeroVector, Zip]
GR(p,i,N),GRt(p,i,N),GRm(N,p),OneStepMarkov(P,i),MarkovTrip(P,K), StSa(P,K), StS(P),
    StSp(P,K), RandSM(N)
> #1
    EstGR := proc(p,i,N,K)
    local c,prob,r,cle;
    r := 0;
    c := 0;
    prob := 0;
    while r<K do
    cle := GRt(p,i,N);
    prob := prob + cle[1];
    c := c + cle[2];
    r := r+1;
    end do;
    prob := prob/K;
    c := c/K;
    print('ProbabilityOfExitingAWinner',prob); print
    ('AverageDurationOfGame',c); RETURN([prob,c]);
```

end proc;
EstGR(0.5,5,10,100);
$E s t G R:=\operatorname{proc}(p, i, N, K)$
local c, prob, r, cle;
$r:=0$;
$c:=0$;
prob :=0;
while $r<K$ do

$$
c l e:=\operatorname{GRt}(p, i, N) ; \operatorname{prob}:=\operatorname{prob}+\operatorname{cle}[1] ; c:=c+\operatorname{cle}[2] ; r:=r+1
$$

end do;
prob $:=$ prob/ ;
$c:=c / K$;
print('ProbabilityOfExitingAWinner', prob);
print('AverageDurationOfGame', c);
$\operatorname{RETURN}([p r o b, c])$
end proc

$$
\begin{align*}
& \text { ProbabilityOfExitingAWinner, } \frac{23}{50} \\
& \text { AverageDurationOfGame, } \frac{627}{25} \\
& {\left[\frac{23}{50}, \frac{627}{25}\right]} \tag{2}
\end{align*}
$$

\#2
\#A) The given linear homogeons equation is true becuase it takes into account the probablity of a fair coin, $1 / 2$ being equal for either a head or tails. The possibility of losing is just as likely as the possibilty of winning and the boundary conditions are the possibilties of achieving the goal at N and losing at 0. To infinity the probablity of this problem is $1 / 2$ as the reccurence conditions are only 0 and 1.
\#B) The closed form expression $y N(i)=i / N$ satisfies the recurrence as plugging it into the reccurence returns i / N for all values of i. The value of 0 for i would return 0 for the probabilty and N for i would return 1 . Hence the losing and winning conditions are taken into account and the explicit formula xN(i) $=i / N$ can be established.
\#C) The linear reccurence is true for deptermingin the number of rounds as this specific problem is simplified to the number of coin flips equates to the number of rounds. The boundary conditions of 0 and N are set to 0 becuase atleast 1 flip is required at the most minimal conditon for this problem and that constraint is accounted for in the equation with the +1 outside the 1/2(...).
\#D) Plugging in $\mathrm{zN}(\mathrm{i})=\mathrm{i}(\mathrm{N}-\mathrm{i})$ into the recurrence returns, $\mathrm{i}(\mathrm{N}-$ i). The boundary conditons are the same as when $i=0$ and N; the value returns to 0 . Hence the reccurence is equal to $E N(i)=i(N-$ i).
\#3
ExactFairGR:= proc (i,N)

```
    local x, c, XN,d;
    x:=i;
    c:=0;
    while 0<x and x<N do
    XN := RandomVariable(Bernoulli(i/N));
    c:= c+1;
    d:=trunc(Sample(XN,1) [1]);
    if d=0 then
        x:=x-1;
    else
    x:=x+1;
    end if;
    end do;
    RETURN([i/N,c]);
    end proc;
    x:= 1;
    while x<=19 do
    ExactFairGR (x,20);
    EstGR(1/2,x,20,3000);
    end do;
ExactFairGR:= proc(i,N)
    local x, c, XN, d;
    x:= i;
    c:= 0;
    while 0<x}\mathrm{ and }x<N\mathrm{ do
    XN:= Statistics:-RandomVariable(Bernoulli(i/N) );
        c:=c+1;
        d := trunc(Statistics:-Sample(XN, 1)[1]);
        if d=0 then }x:=x-1 else x:=x+1 end if
    end do;
    RETURN([i/N,c])
end proc
    x:=1
> #4 #k=4000 was causing the software to crash repeatededly.
    p := RandSM(10):
    StSa(p,400);
    evalf(StSp(p,400));
    evalf(StS(p));
[0.1075000000, 0.08500000000, 0.1225000000, 0.09750000000, 0.1150000000,
        0.08750000000, 0.1000000000, 0.1050000000, 0.1025000000, 0.077500000000]
[0.1043624510, 0.1043624510, 0.1043624510, 0.1043624510, 0.1043624510, 0.1043624510,
        0.1043624510, 0.1043624510, 0.1043624510, 0.1043624510]
[0.1043624510, 0.09411070242, 0.1003014246, 0.1163199561, 0.1080399967,
        0.08689788956, 0.09454729287, 0.09368425315, 0.09873286874, 0.1030031649]
```

```
> #Hrudai Battini Problem 6 Hw7
with(Statistics):
> # Optional 6
    EstimateProbSum := proc(p1,p2,p3,p4,p5,p6,N1,N2,K1,K2)
    local k1,k2,a,b,c,d,e,f,p,x,ps;
    a:=0;
    b:=0;
    c:=0;
    d:=0;
    e:=0;
    f:=0;
    ps:=0;
    k2:= 0;
    p :=0;
    while(k2<K2) do
    x:=0;
    k1:=0;
    while(k1<K1) do
    p:= rand(0.0..1.0);
    if(p()<p1) then a:= 1+a;
    elif(p()>p1) and (p()<=(p2+p1)) then b:= b+2;
    elif(p()>(p1+p2)) and (p()<=(p3+p2+p1)) then c:= c+3;
    elif(p()>(p1+p2+p3)) and (p()<=(p4+p3+p2+p1)) then d:= d+4;
    elif(p()>(p1+p2+p3+p4)) and (p()<=(p5+p4+p3+p2+p1)) then e:= e+5;
    elif(p()=1) or (p()>(p5+p4+p3+p2+p1)) then f:= f+6;
    end if;
    k1 := k1 + 1;
    end do;
    if(a>=N1) and (a<=N2) then x:= 1;
    elif(b>=N1) and (b<=N2) then x:=1;
    elif(c>=N1) and (c<=N2) then x:=1;
    elif(d>=N1) and (d<=N2) then x:=1;
    elif(e>=N1) and (e<=N2) then x:=1;
    elif(f>=N1) and (f<=N2) then x:=1;
    end if;
    if(x=1) then ps:= ps+1; end if;
    k2 :=k2+1;
    end do;
    print(ps);
    RETURN(ps/K2);
    end proc;
EstimateProbSum := proc(p1,p2,p3,p4, p5,p6,N1,N2,K1,K2)
local \(k 1, k 2, a, b, c, d, e, f, p, x, p s ;\)
\(a:=0\);
\(b:=0\);
\(c:=0\);
\(d:=0\);
\(e:=0\);
\(f:=0\);
ps \(:=0\);
\(k 2:=0\);
```

$$
p:=0
$$

while $k 2<K 2$ do
$x:=0$;
$k 1:=0$;
while $k 1<K 1$ do

$$
p:=\operatorname{rand}(0 \ldots 1.0)
$$

if $p()<p l$ then
$a:=a+1$
elif $p 1<p()$ and $p()<=p 2+p 1$ then
$b:=b+2$
elif $p 2+p 1<p()$ and $p()<=p 3+p 2+p 1$ then $c:=c+3$
elif $p 3+p 2+p 1<p()$ and $p()<=p 4+p 3+p 2+p 1$ then $d:=4+d$
elif $p 4+p 3+p 2+p 1<p()$ and $p()<=p 5+p 4+p 3+p 2+p 1$ then $e:=e+5$
elif $p()=1$ or $p 5+p 4+p 3+p 2+p 1<p()$ then $f:=f+6$
end if;
$k l:=k l+1$
end do;
if $N 1<=a$ and $a<=N 2$ then
$x:=1$
elif $N 1<=b$ and $b<=N 2$ then
$x:=1$
elif $N 1<=c$ and $c<=N 2$ then
$x:=1$
elif $N 1<=d$ and $d<=N 2$ then
$x:=1$
elif $N 1<=e$ and $e<=N 2$ then
$x:=1$
elif $N 1<=f$ and $f<=N 2$ then
$x:=1$
end if;
if $x=1$ then $p s:=p s+1$ end if;
$k 2:=k 2+1$
end do;
RETURN($\mathrm{ps} / \mathrm{K} 2$)
end proc
EstimateProbSum(1/6,1/6,1/6,1/6,1/6,1/6,100,330,360,1000);

$$
\frac{1}{200}
$$

|> EstimateProbSum(0.1,0.1,0.1,0.1,0.1,0.5,100,430,470,1000);

$$
\begin{equation*}
\frac{9}{1000} \tag{3}
\end{equation*}
$$

