OK to post
Anne Somaluvar, 9/27/2021, nw
2. (a)
$x_{N}\left(i_{i}\right)$ becomes $x_{N}(i-1)$ if you lose a round (you have yet another dollar to male up). $x_{N}(i)$ becomes $x_{N}(i+1)$ if you win a round (you have one less dollar you will need to win). There is an equal chance of winning on losing each round, so $\quad x_{N}(i)=y_{2}\left(x_{N}(i-1)+x_{N}(i+1)\right)$.

The boundary conditions are true because, If $i=0$, you automatically lose and your chances of winning are 0 . If $i=N$, you automatically win and your chances of winning are (.
(b)

$$
\begin{aligned}
& y_{2}\left(\frac{i-1}{N}+\frac{i+1}{N}\right)=\frac{i}{N} . \\
& y_{N}(0)=\frac{0}{N}=0 . J \\
& y_{N}(N)=\frac{N}{N}=1 .
\end{aligned}
$$

we have this solution because, for any nonzero C,

$$
y_{2}(c(i-1)+c(i+1))=c i \text {. Since }
$$

$X_{N}(N)=1, \quad c=\frac{1}{N} \quad$ and $\quad c_{i}=\frac{i}{N}$.
(c) Given i dollars, if you lose a round, you have it dollars. If you win, you have it. There is an equal chance of winning or losing, so
$E_{N}(i)=1 / 2\left(E_{N}(i-1)+E_{N}(i+1)\right)+1 \quad$ (the 1 is added for the current round that has been played).
The boundary conditions are true because, if $i=0$, you automatically
lose and there are no expected rounds. If $i=N$, you automatically win and there are no rounds.
(d)

$$
\text { d) } \begin{aligned}
& 1 / 2\left(z_{N}(i-1)+z_{N}(i+1)\right)+1 \\
= & 1 / 2((i-1)(N-i+1)+(i+1)(N-i-1))+1 \\
= & 1 / 2\left(N_{i}-i^{2}+i-N+i-1+N i-i^{2}-i+N+i-1\right)+1 \\
= & 1 / 2\left(2\left(N_{i}-i^{2}-1\right)\right)+1 \\
= & N_{i}-i^{2} \\
= & i(N-i)=z_{N}(i) .
\end{aligned}
$$

We have this formula because

$$
y_{2}((i-1)(c-(i-1))+(i+1)(c-(i+1)))+1
$$

$=i(c-i)$ for any c, and
since $E_{N}(N)=0, C=N$.
5)(a) Recurrence

$$
x_{N}(i)=p x_{N}(i+1)+(p-1) x_{N}(i-1)
$$

This is the case because there is probability p that the player will win a round, in which case the probability of winning becomes $x_{N}(i+1)$. There is probability $p-1$ that the player will lose a round, in which case the probability of winning becomes $x_{N}(i-1)$.
(b)

Explicit Form

$$
x_{N}(i)=\left\{\begin{array}{cc}
\frac{1-\left(\frac{1-p)}{p}\right)^{i}}{1-\left(\frac{1-p)}{p}\right)^{N}} & \text { if } p \neq 0.5 \\
i / N & \text { ip } p=0.5
\end{array}\right.
$$

The boundary conditions remain the same.
(C)

Recurrence

$$
E_{N}(i)=p E_{N}(i+1)+(p-1) E_{N}(i-1)+1
$$

This is the case because there is probability p that the player will win a round, in which case the
expected \# of rounds becomes $E_{N}(i+1)$. There is probability $p-1$ that the player will lose a round, in which case the expected \# of rounds becomes $E_{N}(i-1)$.

$$
M=0, k=i
$$

Explicit Form

$$
E_{N}(i)=\left\{\begin{array}{l}
\frac{i}{1-2 p}-\frac{N}{1-2 p} \frac{\left(\left(\frac{p p}{p}\right)^{i}-1\right)}{\left(\left(\frac{1 p}{p}\right)^{N}-1\right)} \text { when } p \neq 0.5 \\
i(N-i) \quad \text { when } p=0.5
\end{array}\right.
$$

The boundaries are the same.

